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Single-kink dynamics in a one-dimensional atomic chain: A nonlinear atomistic theory
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A nonlinear lattice-dynamical theory of single kinks is presented which involves a simple equation
of constraint. A set of coupled equations of motion is derived for the kink and discrete lattice fluc-
tuations, which retains the full details of their mutual interaction. The theory is used to study P-
lattice kinks. For low kink velocities the kink equation of motion reduces to a generalized Langevin
form. The static kink energy is found to vary periodically with the lattice spacing, implying that
thermal kink motion is an activation process at low temperatures. Numerical studies reveal that
kinks undergo damped motion, oscillatory motion, and trapping between lattice sites. Damping and
oscillatory motion vanish as the continuum limit is approached. A phenomenological theory of
damped kink propagation is developed and compared with numerical simulation.

I. INTRGDUCTION

A great deal of attention has been devoted to the study
of soliton, kink, and other solitary-wave motions in one-
dimensional systems. Dislocation kinetics have been
modeled by solitary waves' in the past. The Frenkel-
Kontorowa model of dislocations is a well-known exam-
ple. More recently, Krumhansl and Schrieffer proposed
that the motions of solitary waves called kinks or domain
walls are responsible for the extremely narrow central
peak observed near ferroelectric structural phase transi-
tions. Their work has stimulated much interest in the in-
vestigation of kinks and domain walls, and the appli-
cations of solitary-wave models to other phenomena such
as charge-density waves in polymer chains ' and dielectric
relaxation.

Virtually all one-dimensional studies of lattices that
support solitary waves use some variation of the following
Hamiltonian form:

2
tPZQgH= g + g (ut+)——ut) + g Vtt(ut)+H, „,.

I A, I

At low system energies, particles like to oscillate about
the bottom of one well or another. The Hooke's-law cou-
pling tends to minimize deviations of near-neighbor bond
lengths from the lattice spacing b. This, in turn, tends to
minimize the energy. Particles of the chain will, therefore,
tend to align themselves in the same well as their near
neighbor. This will lead to a situation where entire seg-
ments (or domains) of the chain will be aligned or ordered.
But thermal fluctuations will tend to maximize entropy,
thus disturbing this order. Usually, therefore, two
domains whose atoms occupy different walls find them-
selves neighboring one another. The transition region be-
tween the domains is a wall-like structure or kink in the
atomic displacement profile (see Fig. 2). It is a stable soli-
tary wave connecting the different domains, and is ap-
propriately named a kink or domain wall.

One of the most significant properties of kinks is that
they are mobile. They move in response to thermal fluc-
tuations' ' and external stresses, "' musing the expan-
sion or contraction of the domains which they bound. Be-
cause of this, kinks have significant nonlinear transport

ut(t) is the displacement of the lth atom of mass m from
its equilibrium lattice site x(l)=lb, b is the lattice con-
stant, C is the attractive Hooke's-law force constant which
couples near neighbors, H,„,represents a coupling to an
external field, and Vtt(ut) is a rigid-lattice single-particle
potential. The most common choices for Vz are the bi-
stable P potential

2 8 4V„(ut)= ——ut +—ut
2 4

and the sine-Gordon (SG) potential,

Vtt(ut) = [I—cos(aout )],
2

which are depicted in Fig. 1.

(1.2)

(1.3)

Eo

FICz. 1. Rigid-lattice single-particle potentials V. The solid
line is the P potential; the dotted line is the SG potential.

u, =( ~A
~

/B)'~ and ~/ao, Eo ——A /4B and Eo for the P and
SG potentials, respectively (see text).
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properties. ' Kink kinetics in ferraelectrics have a signifi-
cant effect on switching times, hystereses, and stability in
optical switching and memory devices. "

Past attempts to study one-dimensional lattice kinks
have included linear models to dislocations' in the
analysis of dislocation-fluctuation coupling of dislocations
to acoustical radiation. More recent attempts have made
use of a continuum approximation to (1.1) with (1.2),
reducing the problem to a nonlinear-field theory of kink
motions. ' ' ' In each of the latter cases attempts were
made to obtain an equation of motion for the kink of the
form Ma =f, where M is a kink effective mass and a is
the kink acceleration. The forces on the kink consist of
kink-fluctuation interactions or external fields.

The progress in the theory of lattice kinks has not been
altogether satisfactory. Formulations of kink dynamics
that have used the continuum approach yield predictions
of kink motion that vary substantially ' ' with respect
to kink diffusion and kink-phonon interactions. The kink
diffusion constant in the P lattice, for example, is predict-
ed to diverge, ' depend upon temperature T (Ref. 16) but
not upon the Hooke's-law coupling parameter C, and upon
T' and C to a power. ' These differences are due pri-
marily to a lack of a common understanding of how to
calculate the forces introduced by kink-fluctuation in-
teractions in the continuum approximation. The continu-
um theory itself suffers from an intrinsic weakness in that
it ignores the discrete effects of the lattice. Lattice trap-
ping effects, for example, found by the authors (Sec. II)
and others' are not present in the traditional continuum
approach. In addition, our studies show that kink-
fluctuation coupling is largely a discrete lattice effect. Be-
cause of the power of the continuum approach it would be
very useful to be able to incorporate the most important
effects of lattice discreteness into a new continuum theory
of kink motion.

In this paper we propose a nonlinear theory of lattice
dynamics of single kinks which is generally applicable to
all Hamiltonians of the form (1.1) that support solitary
waves. It is a reformulation of the lattice dynamics of the
X particle chain in terms of X fluctuations and a single
kink, an equivalent (%+1)-body problem. Central to this
theory is the proposal of a simple equation of constraint
which determines the kink position. The equation of con-
straint and the X equations of motion for the atomic dis-
placements obtained from (1.1) are used to derive a cou-
pled set of Newton's laws for the kink and fluctuation
motions. The full detail of the interaction of the lattice
kink with discrete fluctuations is retained without using
the continuum approach. A continuum approximation
can be made, however, which gives rise to terms directly
attributable to the effect of lattice discreteness upon kink
structure.

We apply our theory to the case of the P potential (1.2)
in the absence of external fields; thus

~ 2Pl QI C 2 B 4H= y + y —(u/+] —u() — u/ + u$
I 2 4

We study kink structure and dynamics both analytically
and numerically. In Sec. II we present a review of the
basic ideas of solitons in the traditional continuum ap-
proach, including the linear perturbation analysis. In Sec.
III we present the kink-fluctuation theory.

It is found that for low kink velocities the kink equation
of motion reduces to a generalized Langevin form. A con-
tinuum approximation is made which retains the effects of
the large amplitude kink structure exactly, thereby giving
rise to "discrete" effects not present in the traditional con-
tinuum approach. The new continuum theory is, there-
fore, more exact than the traditional continuum approach
since approximations are made only in small amplitudes.
A comparison with other kink equations of motion is
made.

In Sec. IV the static structure of the kink is analyzed
using the equations derived in Sec. III, using both the ap-
proximate continuum approach and an exact numerical
solution. It is found that the static kink energy undergoes
a variation in the potential energy periodic in the lattice
spacing, thereby giving rise to a periodic kink potential.
This suggests that in a thermal lattice kink motion is an
activation process. The latter observation has important
implications for diffusive behavior and the central peak
phenomenon, topics treated in a subsequent paper.

In Sec. V, with the aid of numerical solutions of the lat-
tice equations of motion, kinks are found to undergo
damped motion, oscillatory motion, and trapping between
lattice sites. Because of the complexity of the kink-
fluctuation interaction, a phenomenological approach to
characterize the damping is made by numerically
"measuring" the damped constant. A phenomenological
theory of damped kink propagation is, therefore,
developed and compared to the numerical simulation re-
sults. Such a phenomenological approach leads naturally
to a stochastic model of thermal kink behavior.

II. CONTINUUM DESCRIPTION
AND LINEAR PERTURBATION ANALYSIS

We consider a chain of atoms, which execute one-
dimensional motions which are purely longitudinal (or
purely transverse) relative to the chain direction. The
equation of motion derived from (1.4) is

8 uI(t) av,
m —C[ul+, (r)+ u, , (r) —2u, (r)]+ =0 .

at2 + au

(2.1)

For the P potential (2.1) can be cast into the nondimen-
sional form,

8 ug(t) —C[ul+$(t)+up $(t) —2ug(&)] —&g(&)++1(~)=0,at2

(2.2)

where the dimensionless quantities are
~i =~&(&/l~

I
)', ~'=t( I&

~

/m)', and C'=C/3; all
the quantities in (2.2) are dimensionless and the primes
have been suppressed. Unless otherwise stated, all subse-
quent quantities are expressed as nondimensional numbers.
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the following (2.2) will be called the P -lattice equation.
The continuum description of the P lattice follows

from the replacement of the discrete coordinate uI(t) by
the displacement field u (x, t ), and the approximation

20 Q
QI+1+QI 1

—2QI~& (2.3)

0-—U

"o

-10 10
Then (2.2) becomes the P -continuum equation

8 u(x, t) 2 8 u(x, r)—cp
' —u(x, t)+u (x,r)=0,

Bt Bx
(2.4)

8 ri(x, t) 2 8 rI(x, t)
Bt2 BX2

—cp +ropy x, t =0, (2.5)

for small fluctuations qi(x, t), with cop ——2. The dispersion
relation corresponding to traveling wave solutions,

with eo ——C. The continuum description serves as a useful
reference system for the analysis of kink motions in a
discrete lattice. There are a number of properties of (2.4)
which should be noted before starting a discussion of
discrete lattice effects.

Inspection of the homogeneous equation (2.4) shows
that trivial solutions exist with Q =+1.0, which corre-
spond to all the particles sitting at the position of one of
the potential minima. These solutions are stable. Another
trivial solution is Q =0, which is unstable because the par-
ticles then are sitting at the top of the energy barrier. Ex-
panding about Q = 1 and linearizing, one obtains the
Klein-Gordon equation,

X
b

FICr. 2. Typical picture of a P4 lattice (dotted line) in the vi-
cinity of a lattice kink when C=1. Fluctuations in the atomic
displacements from their equilibrium positions x occur about the
solid line obtained from Eq. (2.8) with X=O. This curve is a
continuum kink. In general, a kink is not stationary; the dashed
curve is obtained by a translation of a continuum kink to the
right by ten lattice spacings.

u(x, r) =u~(x —X{r))+g(x X(r),r), — (2.1 1)

where the fluctuation P is assumed to be small in compar-
ison to u~. Inserting this into (2.4), keeping only terms
linear in g, and performing a Lorentz transformation to
the moving coordinate system where the kink is station-
ary, one finds

solitary wave which exists in the P -continuum descrip-
tion. In a dynamic lattice one needs to consider the in-
teraction of this wave with fluctuations in the system.

A perturbation theory approach to the analysis of kink-
fluctuation interactions begins with the decomposition,

1S

gq(x, r ) =aqsin(qx+rot),

2 2 2 2
q =~O+e~

(2.6)

(2.7)

8 P(x, t) 2 8 g(x, t)
Bt Bx

(2.12)

This shows that (2.5) describes the system as simply a set
of coupled oscillators with each oscillator subjected to an
additional linear restoring force with characteristic fre-
quency cop. From the standpoint of discussing kink
motions, equations such as (2.5) are of limited interest.

Equation (2.4) itself admits wave solutions of the form

u~ (x —X)= +tanh[IC(x —X)] . {2.8)

X(r) =Xp+ Vr, (2.9)

where Xp is the initial position and V is the constant speed
of the kink. Then K becomes

IC =Epy, (2.10)

with Xp ——1/2C and y= 1/(1 —V /cp)' . Notice that y
is just the Lorentz contraction factor which arises from
the Lorentz invariance of (2.4). Equation (2.8) describes a

If IC and X are treated as constants, then substitution of
(2.8) into (2.4) gives the relation IC = 1/2C = 1/2cp, and X
can be any arbitrary constant. Figure 2 shows a plot of
(2.8) superimposed upon a typical thermal-lattice profile;
it is seen that u&(x —X) describes a kink configuration
with X and X determining, respectively, the width and po-
sition of a stationary kink. Since we are interested in
moving kinks, we can replace the constant X in (2.8) by

where

Vs(x) =3uz(x) —1 (2.13)

1cdl f ECO

P(x, t) =aryT(x)+aI yl (x)e + dq aqyq(x)e

(2.14)

The hnea«heory represented by (2.12) shows that the sta-
tionary kink is absolutely stable to fluctuations yL and yq,
and neutrally stable to yT. The traveling fluctuations sim-
ply suffer a phase shift upon passing through the kink.
Thus, to first order in the fluctuations, continuum kinks
move freely, uniformly, and without acceleration.

One expects the continuum description to be valid for
large values of C, since the kink width E varies inversely
with C, and a large kink width means small displacement
gradients and higher derivatives [cf. (2.3)]. To determine

may be regarded as the scattering potential due to the
presence of a stationary kink. The eigenvalue problem re-
sulting from the assumption of sinusoidal solutions of the
form P-A(x)e'"' has already been analyzed. ' The eigen-
value spectrum consists of two discrete modes, coT ——0,
roL ——( —', )', and a continuum of modes cop (coq

&(roq+mcp)'~; the corresponding eigenfunctions yT(x),
yl (x), and yq(x) are known analytically. Thus
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the extent of its validity we solve the perturbation theory
(2.11)—(2.14) analytically and the P -lattice equations (2.2)
numerically for the case of a single propagating kink.
With one exception, we restrict our attention to initial
conditions in which atomic motions are purely due to the
movement of the kink, i.e., g~ (0)=P~ (0)=0,
ui(0)=u~(X(0)), ui(0)= —V(0)Bu ~/BX In. this case the
continuum solution is particulary simple: The kink propa-
gates at a constant velocity [see (2.8) and (2.9)] and the
fluctuations remain zero [since there is no source term in
(2.12)]. The reader is referred elsewhere for studies of
more general initial conditions. Figure 3 shows space-
time evolutions of single kinks whose initial positions and
velocities in a 100-atom lattice are X=50.5 and V=3; the
value of C is reduced from 20 to 10 to 5 in Figs. 3(a), 3(b),
and 3(c), respectively. In Fig. 3(a) the kink profile is
essentially undistorted and the velocity remains steady.
Thus in this case the continuum approximation is valid.
In Fig. 3(b) the kink dissipates energy by radiating fluc-
tuations behind the kink. Deviations from the continuum
theory are perceptable, even on the rough scale of the
graph. In Fig. 3(c) strong dissipation and large fluctua-
tions are present; however, in this case the initial condition
included nonzero values of' the fluctuation displacements
and velocities which lead to a large initial radiation pulse.
Figure 4 continues to show that as C decreases kink prop-
agation no longer behaves according to the continuum
theory. At C=1 the kink velocity decreases with time in
an oscillatory manner. At still smaller C the kink not only
will slow down but it can be trapped, as shown in Fig. 5.
The processes of kink damping and trapping do not follow
from the linear-perturbation analysis of the P -continuum
equation. Their manifestations are the results of strong
kink-fluctuation interactions. As we will see below, the
origin of such couplings lies in discrete lattice effects,
namely, the difference between (2.2) and (2.4).

III. REFORMULATION OF KINKS
AND FLUCTUATIONS

In order to analyze kink damping and trapping process-
es it is clearly essential to take into account kink-

fluctuation interactions. We now consider a reformulation
of the problem based on a decomposition of the discrete
displacment ui(t) in a manner similar to (2.11):

ul(t) =u~(X(r))+Pl(t), (3.1)

where u&(X(t))=tanhK(xi —X(t)). The reference system
in this case is a kink whose position X(t) will be treated as
a dynamical variable. The width E also can be general-
ized, but for simplicity we will assign to it the static value
K=Kp ——I/v'2C. To determine X(t) a condition of con-
straint needs to be invoked. We will adopt

du~ =0.
BX x=x,

(3.2)

The term representing the dispersion force can be written

2

C(us- +uz —2uz) =cp +F~(X),l+1 l —1 - 2

Bx

where

2 2'

F~(X)= g

(3.4)

(3.5)

represents the discrete lattice effects associated with the
kink structure. Using (3.5) one can evaluate the spatial
variation of I'~ and its dependence on C. Numerical com-
putations show that the series is strongly convergent for

This is a reasonable choice since it tends to minimize P~ in
the domain-wall region (where Bus /Bx peaks). It has been
used previously in the study of P -field theory.

Substitution of (3.1) into (2.2) yields

$2@

Bt
C(el+1+el —1 201)

0 Qg i3 Vg—C(u~+ +up —2u~)+ =0 .
at 2 i= a+&I

(3.3)

Ut 0 U) 0

FIG. 3. Space-time evolution of atomic amplitudes obtained by numerical integration of (2.2). The initial conditions for (a) and (b)
are a moving kink (2.8) with f(x,0)=0.0 where V(0)=3 aud Cis varied. (a) C=20. Velocity is constant at its initial value. Fluctua-
tions cannot be seen. No discernable difference exists between this solution and the continuum solution. (b) C=10. Velocity is re-
duced to roughly 2.5. A small fluctuation wake appears behind the kink. (c) C=5. Fluctuation amplitudes and displacements were
nonzero initially about the kink position. The velocity drops to 1.5 and a fluctuation wake of sizable amplitude develops behind the
kink.
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FIG. 4. Lattice kink velocity V (open circles) compared with
the continuum solution (2.4) (solid line) for C=1. The lattice
kink velocity is determined by finite difference of X(t), which in
turn is obtained from (3.1) and (3.2).

FIG. 6. Fk for C=0.75 as a function of distance x from the
kink position X=O.O. The circles are obtained from (3.5) by
truncating at the tenth term; the solid line is just the left-hand
side of (3.4) minus the first term on the right-hand side. Thus
Fk is just the difference of the lattice and continuum approxima-
tion dispersion forces due to the presence of a kink.

C&0.6. Figure 6 shows that F&(x —X) is odd about X
and more or less localized about x=X. Figure 7 shows
that the maximum value of Fz decreases with C. In gen-
eral one knows that

a Q~

at
C(gt+ )—+QI )

—2gt )+Fxp[ux, g] =F~- at'
(3.g)

lim F&——0
C~ 00

(3.6) where F~~ is a kink-fluctuation interaction,

, a'u av,—Co 2 + , =0,
I aQ Q=Qg

(3.7)

one obtains from (3.3) an equation of motion for the fluc-
tuation amplitudes $1,

since in this limit the width becomes very large and all
higher-order derivatives must vanish. Thus in the contin-
uum limit Fz vanishes.

Using (3.4) and the identity

av, av,
FKQ[uK~W]

~g +0(
(3.9)

M(t)X(t)+k(t)X(t)+g(t)X'(t) =-
ax '

where, letting uz ———E 'au+ /aX,

(3.10)

The two terms on the right-hand side of (3.8) play the role
of source terms, the first arising from kink structure and
the second from kink acceleration.

Thus far the kink position X in u)r is still unspecified.
We obtain the equation of motion for X(t) by taking the
second derivative of (3.2) (see Appendix) to yield

X

10-

0

(b)
100 200 0.10-

l

b

0

A
V 0.05-

200

FIG. 5. (a) Kink trajectory in units of the lattice spacing b for
C=0.7 and V(0)=0.28. Notice that kink initially moves for-
ward, then turns around to move backward after about 15 lattice
spacings. (b) The ratio of the kink velocity to the initial kink
velocity. Solid line represents the instantaneous value X(t) while
the connected diamonds represent a time average over the inter-
val (t —2, t+2).

1.0 5.0

FIG. 7. Maximum amplitude Fk of Fk is plotted vs C. The
dashed line is drawn as a guide to the eye.
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M= gK (ux)I —gK (u~)I,
I I

(3 11) kink equations (3.10)—(3.14). In particular, let

M~Mg — dX JC uI;" —=Mg+M,
A, = —2 +K (ux')tPt,

I

g= —gK (utI-uZ)t+ gK (us'c')tA,
I I

(3.12)

(3.13)
Mx. = f dx K (ux) =

3 C

A, —+ —2 f dx K ux'/=A, ,

(3.20)

(3.21)

U= g —(ui+) —ut) + g Vg(ut) .
C
2 I

(3.14)

M(t)X(t)+ A.(t)X(t)=-
OX

(3.15)

It turns out that the X term is quite small except when
V-co, so that (3.10) is of the form

aU

I

, aU—+ —f dx Kux
BQ

g~ f dx K ux"—=g, ,

aU = —g K(ux )tax=

(3.22)

8U~
M,X(t)+A(t)X(t) =R(t)

BX
(3.16)

This is a generalized Langevin equation; if ( A, ) & 0 then
the A,(t)X term is a damping term. Equation (3.16) strong-
ly suggests that the kink is a Langevin- or Brownian-type
particle in a thermal lattice as has been hypothesized else-
where. '

Equation (3.8) is an equation for gt in a discrete lattice.
It is useful to examine the corresponding continuum
description. Replacing gt(t) by the fluctuation field P(x, t)
and applying the same approximation as (2.3) one finds

which is the equation of motion of a particle of mass M
moving in a medium characterized by a friction coeffi-
cient A,(t) and under the influence of a potential U. It
should be noted that M and U are functions of PI(t) as
well as ux. (X). But, in cases where gt &&ux. , M is roughly
constant (=MD, say) and, as will be seen in the next sec-
tion, U is roughly periodic in X with the periodicity of the
lattice spacing b. Thus, it is appropriate to separate U
into U= Ux(X) only, and a fluctuation part R (t) as fol-
lows:

a'uf dx Kux —co +
BQ

(3.23)

At low velocity, the P field yields

220 uZ—cp +Q~ —Q~ =0 .
BX

Then

aU Z~'@ 2dx Ku& —c 0 + (3ux. —1)Pax BX

+ 3uxg'+P'

(Mx+M )X+A,,X+/, X

2~ P2
= —f dx Kux —co +(3ux —1)$+3uxg +f2 3

BX

(3.24)

2B Q
2

0—co +I'scytux 4f =I'x urc—
BX

(3.17)
This should be compared with Sahni and Mazenko's
equation,

where we have replaced uz by uz. This result can be ex-
pressed as an equation for the displacement field

Mx X= —f dx Kux. [(3ux —1 )$+3ux g'+ g') .

(3.25)

u(x, t) =ux(x X(t))+P(x,t)—
and one obtains

(3.18)

2 a2u
u —c02 + =Fx(x —X)

BQ
(3.19)

Comparison of (3.19) with (2.4) shows that the source
term I'z is entirely missing in the latter. The appearance
of I'~ in (3.19) results in an extended continuum descrip-
tion which takes into account the discrete lattice effects
associated with kink structure. Because the approxima-
tion (2.3) was applied only to the fluctuations and not to
the kink, the higher-order spatial derivatives of uz are re-
tained. Since F~ vanishes in the large-C limit, the conven-
tional continuum description (2.4) is recovered from (3.19).

The continuum approximation can also be made for the

X(t)=Xo+constQaz. (t), (3.27)

where aT(t) is the zero-frequency mode amplitude dis-
cussed in Sec. II. Thus

Their equation is not necessarily incorrect; the kink equa-
tions (3.8)—(3.10) are derived from a postulated equation
of constraint which is not unique.

Another equation of kink motion was attempted by
Wada and Schrieffer. '6 They place no constraint upon g,
except that the motion of the kink is determined from a
finite-amplitude perturbation theory in the amplitudes of
the fluctuations f. In particular, taking an initial kink po-
sition Xo, g is to be determined from

B2
P —co + (3ux —1)g+3uzg +g =0 (3.26)

Bx

and X(t) from
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X(t) =const Xaz.(t) . (3.28)

Now, note that —Aux ——yL, and note the orthogonality of
the yj. Then, multiply f by dx ux- and integrate to obtain

f 00 ~ ~

dx uzi = —const Xa T(t) . (3.29)

But since

—0= —&o +(3ux —1%+3u!rW +0,2 &'g 2 3

X

we have

expected U(X) is periodic in X; a typical variation over
one period is shown in Fig. 8 as the "zeroth"-order solu-
tion. One sees that the potential minimum always occurs
at a kink position midway between two lattice points, and
the well depth depends upon the precise configuration
used in the estimate of uE.

Equation (4.2) is interpreted as the zeroth-order approx-
imation to U, since u! =ux implicitly assumes $!=0
which satisfies (3.2). The continuum theory expressed in
(3.8) can then be used to generate a perturbation series
solution

u! —uK + tt! +Ol +E (1) (2) (4.3)
const &&X= dx Aux co +—(3u!r —1)1(t

2

Bx

+ 3urcf'+ tt' (3.30)

IV. STATIC STRUCTURE OF THE KINK SYSTEM:
THE POTENTIAL BARRIER

which is the same as (3.24) if we set the constant to be

equal to Mz and neglect the X and X terms. However,
this theory is only good when aT && 1, so that
~X(t) —X(0)

~

&1. So, for any nonstatic kink behavior,
the Wada-Schrieffer theory of kink motion is not expected
to be very useful.

u, (X)=ux. (X)+1(,'(X),
which yields a static Hamiltonian

2

Hs ——g ( u, + —u, ) + V!!( u, )
E

(4.4)

where the gt" are calculated from the perturbation theory
of Sec. II, with the only change being that the kink struc-
ture function F~(x —X) is a nonhomogeneous term that
causes 1( to be nontrivial. The first-order correction to the
energy is shown in Fig. 8. Higher-order results should
converge to the points in the figure which are the energy
minima numerically obtained subject to (3.2). We
represent the static lattice solution as

We have seen that the P -lattice equation and its corre-
sponding continuum analog both support solitary-wave
kink solutions. Direct computations using the P -lattice
equation have indicated that moving kinks can slow down
and become trapped; also the kink velocity shows an oscil-
latory variation. To understand fully these results one
needs to consider the dynamics of kink-fluctuation in-
teractions. It is useful, however, to first examine the po-
tential energy of the system. As we will see, a central
difference between a continuous and discrete system lies in
the kink potential, for in the discrete system the potential
varies periodically with the kink position. This gives rise
ultimately to the velocity oscillation and trapping observed
in simulations.

In the continuum description the Hamiltonian (1.4) of a
static P kink becomes

2 2
co Bu

E~ ——f dx + Vz(u)
QO 2 Bx Q =Qg

—= Us(X) . (4.5)

Equation (4.5) can be reasonably well represented as

Us(X)=Uo+ '
cos(2rrX) .

2
(4.6)

0.667-!-

U {X}0.84 8

The accuracy of this cosine fit increases with increasing C.
Also shown in Fig. 8 is the continuum approximation (4.1)

2(2c )1/2

3
(4.1) 0.628

0.5
X

K

1.0

which is manifestly translationally invariant. In a discrete
lattice this symmetry is broken as the Hamiltonian of the
static kink becomes

2
Co

U(X) = g (ut+!—u! ) + V~ (u! )
E

2 ul =gal (X)
'

(4.2)

which now varies with the kink position X. As might be

FIG. 8. Static kink potential U(X) for C=0.5. A is the con-
tinuum approximation which is translationally invariant; B is
the zeroth-order calculation from (4.5) with tt, (X)=0; the
dashed curve C is the first-order perturbation calculation where

tP, (X) is determined from the static form of (3.17); D is the
cosine fit to the circles which obtained from the minimum ener-

gy solution of (3.3) subject to (3.2) and static conditions. The cir-
cles, therefore, represent "exact" energies of the static lattice
kink.



J. ANDREW COMBS AND SIDNEY YIP

E, =Eoexp( —aC) (4.7)

with a=4.84. Equation (4.7) states that the barrier for
kink motion is lower than the barrier for individual part-
icle hopping from one minimum to the other of the poten-
tial Vz(u) in (1.2). A general imphcation is that the pres-
ence of a kink has a "tunneling" effect on the particle
motions; it is a classical mechanism which increases the
rate of transition or hopping between stable states. Also,
one can make an analogy between kinks and dislocations
in solids, and interpret E, as the Peierl s barrier for dislo-
cation motion. The Peierl's stress then becomes the max-
imum value of —8 U/BX or o ~ =n.E, /b

which is a constant and somewhat larger than U obtained
by the perturbation or numerical approaches. It is clear
that the periodic structure in the kink potential is a conse-
quence of discrete lattice effects, effects completely absent
in the traditional continuum approximation.

The well depth E, has been determined numerically for
various values of the parameter C. The results are shown
in Fig. 9. The data are seen to extrapolate in the limit of
small C to Eo, the double-well potential barrier (cf. Fig. 1),
and at C (2 the variation is essentially exponential

V. DYNAMICAL STRUCTURE QF KINK SYSTEMS

A. Lattice trapping and velocity oscillations

The existence of a periodic potential U (X) in the
discrete lattice description makes it reasonable to expect
that kink propagation will reflect features of this poten-
tial. The effects which we have noted in Sec. II are the
slowing down of kink propagation, oscillations in the kink
velocity during slowing down, and trapping of the kink
when its velocity has reached a certain value. We will
first analyze the process of lattice trapping and kink oscil-
lation in the absence of damping, i.e., under the assump-
tion that the kink conserves energy.

Let us relax the assumption that the system is static, but
allow time dependence to appear through X(t) only. Since
the total Hamiltonian is conservative then the last as-
sumption is equivalent to the statement that kinks must be
conservative. The concept of the kink is expanded to in-
clude lattice solutions of the type (4.4) which vary with X
only. Hamiltonian (1.4) with (4.4) then becomes

(~, )
Hg ——g + Us(X), (5.1)

I

I
us

u, = —E X
BX

(5.2)

and Us is defined by (4.5). If we define the static kink
mass as

us
2

Ms=—gX' (5.3)

0.1

then (5.1)—(5.3) yield

as =
2 Msx + Us(X) .

In the continuum description

&x)
2 8u~Ms~ J dxIC

(5.4)

(5.5)

0.01- Notice that Mz is a constant where'as Mz has a periodic
structure like U:

5M
Ms —Mo+ —cos(2~X) .

2
(5.6)

0.001-

It turns out that Mo is slightly smaller than Mz,' as shown
in Fig. 10 5M decreases with increasing C like a power
law. If it is assumed that Ms ——Mo, the conservative kink
assumption

0.5

FIG. 9. Log plot of the kink energy barrier E, as a function
of C. The circles are the "exact" numerical solutions fit by the
solid line Eoexp( —4. 84C). The triangles and squares are the
values obtained from the zeroth- and first-order-perturbation
calculations, respectively.

de =0
dt

applied to (5.4) leads to

8Ug
Mo&= ——

BX

(5.7)

(5.8)
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V(t) =Axsin(tppt+ Po), (5.13)

where the amplitude Az and phase Pp are constants yet to
be determined, and

go=(2m Ea/Mo) (5.14)

0.15-

0.10

O. 05-

Equations (5.11) and (5.13) specify the kink-velocity os-
cillation frequency when the kink is propagating and when
it is trapped. As a test of these predictions of the oscilla-
tion frequencies we show in Tables I and II comparisons
of the theoretical values with numerical solution results.

The oscillation frequency of a propagating kink is
predicted to vary directly with the initial velocity; this
behavior can be seen in Table I. Reasonable agreement be-
tween the theory and simulation exists in Table II. The
theory yields frequencies that are too low for low C values,
which is expected since the actual kink potential U(X) is
softer than the approximate form (4.6) used to obtain
(5.14). From an overall standpoint the conservative kink
model described here appears to give at least a semiquanti-
tative account of the numerical solution data. These
features of velocity oscillation and trapping, of course, are
entirely absent in the conventional continuum description.

B. Dissipative kink motions: Phonon radiation

1.0 2.0

FIG. 10. Deviation 5M from the mean value Mo as a func-
tion of C. Solid curve is the power law 0.02C

By letting U be represented by (4.6), one can integrate (5.8)
to obtain

m'E~
V(t)=Vx+ f dt'sin[2mX(t')],

Mp
(5.9)

where Vz is the initial kink velocity. To see the behavior
of V(t) at short times, we assume the accelerations are
weak so that

X(t)=Wo+ V~t .

Then

m.E,
V(t)=Vtt+ cos(tozt+2mXo),

Mpco~

(5.10)

(5.11)

with co+ ——2vrVz. The result shows that a periodic poten-
tial gives rise to oscillations in the velocity of a propaga-
ting kink.

The approximation (5.10) is only good when
(Mp Vx )/2 »E, . If (Mph-)/2 «E„then the kink will
be unable to surmount the kink energy barrier and will be-
come trapped. In this case it will oscillate about an aver-
age position Xp where U(X) has a minimum. One can
describe this situation by an expansion

dHs
(Hsg+Hg) .

dt dt
(5.17)

Thus, (5.16) and (5.17) allow for the exchange of energy
between the kink and phonons. The conservative kink as-
sumption,

TABLE I. Velocity oscillation frequencies of propagating
kinks. Theoretical values are from co~ ——2m V.

cog /277
(simulation)

cO]t( /27T

(theory)

Thus far only lattice motions associated with the
translation of the lattice kink have been considered. This
restriction eliminates dissipative effects since the kink sys-
tem is then conservative. We now relax this assumption
by writing the fluctuation amplitude as

QI(t) =p, (X(t))+jt(t), (5.15)

where P, (t) is associated with the kink motion and gt(t)
may be regarded as a radiation amplitude. Corresponding
to this decomposition the Hamiltonian becomes

H =H (u„u,)+H g(u,', u„'gt,gt)+Hg(gt, gt), (5.16).

where Hz describes the kink, Hq~ describes the kink-
phonon interaction, and H~ the phonon (radiation) field.
Notice that since H =const (the total system is conserva-
tive) then

U(X)=U(X )+—,(X—Xo)1 29U
X=Xo

Then (5.8) yields

(5.12)
2.0
1.0
1.0
0.9

0.45+0.01
0.25 +0.01
0.24+0.01
0.24+0.01

0.468
0.255
0.249
0.250
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TABLE II. Velocity oscillation frequencies of trapped kinks.
Theoretical values are from Eq. (5.14), Mp ——M&.

0.50-

0.10
0.20
0.50
1.00
2.00

COp

(simulation)

1.26
1.02
0.63
0.19
0.026

(2+E, /M g )
' ~

1.02
0.94
0.57
0.20
0.022

0.30-

as =0,
dt

(5.18) 0.10
70 140 210

decouples the kinks and phonons. Thus, the coupled
kink-phonon system [which generally is the realized
behavior of (1.4)] can give rise to dissipative effects, kink
scattering effects, and other effects of the kink-phonon in-
teraction.

In fact, by treating the right-hand side of (5.17) as the
Rayleigh dissipative function one can define a friction
coefficient,

so that we may write

X(r)+I,X(r)=-
m, ax (5.22)

FIG. 11. Velocity transition from strongly damped to weakly
damped motion for the case C=0.8, V(0)=0.50. The transition
velocity cz in this case occurs at roughly V=0. 15. Oscillations
are due to lattice discreteness [see Eq. (5.11)].

I (t)=, (Hsg+Hg) .1 d
V2 dt

(5.19) Integrating once gives
r

In general I is time dependent, and is related to the A,(t) in
(3.10). But numerical solutions show that the kink veloci-
ty may be represented as

V(t)=V(0)e (5.20)

plus an oscillatory component which may be treated as a
perturbation to (5.20). The friction constant I"c obtained
in this manner behaves like

~e ~, Vwc~
0 -0, V &cz (5.21)

with «.=5.3 and P=7.5, for 0.5 ~C & 2, so long as V is
small compared to the sound velocity co. cz is the transi-
tion velocity defined below. At higher velocities nonlinear
effects represented by the X term in (3.10) cannot be ig-
nored. If (5.21) can be extended to large C (where the
damping was so small as to be difficult to measure) the
damping will vanish in the continuum limit. Thus these
empirical results strongly suggest that I 0, and thus kink
damping, is associated with discrete lattice effects only. If
this is true, such phenomena as kink diffusion in a
thermal lattice cannot be predicted by a traditional contin-
uum approach as the diffusion constant will diverge in the
absence of systematic dissipation.

The numerical results indicate that a kink propagates at
high velocity with dissipation but at low velocity its
motion is nearly conservative. The transition from one
behavior to the other is quite distinct, as can be seen in
Fig. 11. The critical velocity where the transition occurs,
denoted as cz, is found to be independent of the initial
velocity. Figure 12 shows the variation of cz with C.

When dissipation is included, Eq. (5.8) must be modi-
fied. We make the phenomenologica1 assumption that the
damping term A, X in (3.10) can be represented by I oXMo,

—I"pt ~E.
V(t) =e ' V«+ f dt'e ' sin[2~X(t')]

0 0

Q. 2 —,

0

0
0

0

c

0 1.0
C

FIG. 12. Transition velocity c~ vs C.

(5.23)

As a test of this model we have numerically evaluated the
integral (5.23) using the X(t) data generated from the nu-
merical solutions. The results for V(t) obtained thereby
are compared with the direct numerical solution of (2.2)
subject to (3.2) which incorporates kink-phonon effects ex-
actly (see Figs. 13—16). The phenomenological theory is
seen to be adequate at intermediate and large-C values,
C) 0.75, particularly at short times. In addition to oscil-
lations in the propagating regime, trapping, and dissipa-
tion are also reproduced. The apparently undamped oscil-
lation in Fig. 16 indicates that I o is effectively zero at
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V

e
4ooo

10

4

0
o 4~e e

20

FIG. 15. Same as Fig. 13 for C=O. S, except that a distinct
propagating oscillatory velocity was not observed at any velocity;
only strong damping followed by trapping of the kink is found.
In this case V(0) =0.5.

10 20

FIG. 13. Reduced kink velocity V= V/V(0) for C=1. The
circles are values obtained from a numerical integration of (2.1);
the curves are from (5.23) using the X(t) data so generated. The
solid circles (~ ) are for V(0) =0.2; the open circles (o ) are for
V(0)=0.04. Velocities are characteristic of damped oscillatory
propagation, and trapped oscillatory motions, respectively. For
comparison, the constant-velocity continuum solution is shown

at V=1.

C=0.5, a property which was not incorporated in the
phenomenological calculation.

In summary, kinks are found to move freely in a lattice
only for large C ( »1) where the field kink solution is a
good approximation. Atomistic effects of the lattice give
rise to two distinct regimes of kink motions: a propaga-
ting regime and a nonpropagating (trapped) regime as in-
dicated in Fig. 17. For a given value of C in the propaga-
ting regime, a distinct transition is present as the kink
velocity passes through c~. Similar transitions have been
found in simulations of steady dislocation motion under
shear stress in two and three dimensions.

VI. CONCLUSION

We have found that discrete lattice effects are funda-
mental to a proper understanding of solitary-wave phe-

V

10 20

O
O

Q O
O

0
eo

20

FIG. 14. Same as Fig. 13 for C=0.75. Solid circles are for
V(0)=0.3; open circles are for V(0) =0.1.

FICx. 16. Same as Fig. 15 for V(0)=0.1. There is little, if
any dissipation, of kink motion.
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0.3

0.2

0.1

Trapp

C 2

FIG. 17. Regime diagram of kink motion. The solid curve is
V=(2E, /M~)', the theoretical boundary of the trapping re-
gime. Numerical solutions confirm that below this boundary
kinks becomes trapped and oscillate about a midlattice position;
above the boundary they undergo damped oscillatory propaga-
tion. The dotted curve represents the transition velocity that dis-
tinguishes strongly and weakly damped motions for a given
value of C. The data points are numerically determined values
of c~. As C increases the lattice effects of damping and trap-
ping rapidly disappear. For C) 20, the continuum approxima-
tion should be very accurate.

the same degree as in the continuum theory, and what are
the effects of thermal fluctuations on the effective width
(and thus effective mass and formation energy)?

At present the dissipative effects and transitions in dis-
sipation are not well understood. It is expected that with
the aid of perturbation theory the mechanism for dissipa-
tion can be understood from the kink-fluctuation theory
developed here. Already, some progress has been made in
this direction. Such studies may be aided by generaliz-
ing the Hamiltonian to include a simple external-field
term linear in the displacement amplitudes. This would
yield a nonhomogeneous equation of motion which may
have simple but interesting solutions.

Finally, one significant limitation of the present theory
is that it treats only a single kink in one dimension. Mul-
tiple kink constraints need to be invoked which yield tract-
able equations of motion. When this is accomplished
more can be understood about kink-kink interactions, and
fluctuation behavior in a thermal lattice. Although one-
dimensional treatments are useful in understanding such
systems as polymer chains, two- and three-dimensional
treatments may be of more value in understanding the
continuum theory of dislocations, its limitations, and how
it can be improved. The available continuum theory can
be used as a reference state to develop the kink-fluctuation
theory.
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APPENDIX

This yields

g [ KX(uK)ill—+(uK)lgl j =0,
I

but ui and its time derivative can be written

u I uK + tt I i
I

ul = —K(uK )IX+ PI
so

4

Ql =ul +KX(uK )l .

Then (A3) in (A2) yields
r

Q K [(uK)l (uK)&l l X—= —K g (uK)lul .
I 1

(A2)

(A3)

(A4)

Define an effective kink mass M by

~—= g K'[(uK)' —(uK)lA)
I

(A5)

We begin with the equation of constraint (3.2) and its
time derivative

d g (uK)lgl =0
dt

where
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so that the kink momentum P becomes

P =MX = —Q K(ux )(u( .
I

(A6)

In this way the momentum of the kink can be extracted
from the (nondimensional) momentum u~ of the particles.
Newton's law for kink motion may be written down from
the time derivative of (A6),

gK (ux')(f( X— gK (uxu~')( X2—
I

Now

(A 1 1)

This is because 8/BX implicitly holds QI constant as well
as t. Thus (A9) can be rewritten as

but

dP d g (use)1 uI
dt dt

= —K g [ K—X(ux')IuI+(ux )Iu(],
I

BU
QI =—

(A7)

(AS)

(MX) =MX+X™
dt dt dt

dM d XK (u~)i —XK (uk)IA
dt dt 1

= —2 gK (uxu~')I X— gK (uIr')gg(
I I

(A12)

where U includes all potential terms. (A3) and (AS) can be
used in (A7) to yield

r

dp aUKg —KX(u~)I [g—( KX(ux )(—]—(ux. )(

g K (ux")(g( X
I

so (A12) and (A13) in (Al 1) yield

(A13)

gK (u~')I/I X— gK (uxu~)) X
I I

aU+ QK(ux)(
1 BQI

Now, note that

aU »i aU
ax=, aX au,

(A9)

MX+ —2 +K (ug )If( X
l

+ g K (uKuK )I + g K (uK )l f1
I I

aU
ax

(A14)

&»x aU &, ,
aU

(A 10) The terms in large parentheses are just the values A, (t) and
g(t) found in the text.
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