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A generalized intermediate-coupling scheme was developed for the transition-metal ions embedded
in cubic (octahedral or tetrahedral) crystal fields. This scheme is useful for the cubic complexes of
4d and Sd ions and in this context the advantage (in physical interpretation and in consequent sim-
plicity in calculations) of this scheme over the conventional strong-field coupling scheme was clearly
demonstrated. In this paper, this new scheme has been further generalized to include a lower-
symmetric (tetragonal or trigonal) crystal field, which is essential in dealing with most of the com-
plexes where deviations from the cubic symmetry are considerable. As in previous papers, one can
easily find out the obvious advantages of this scheme which allows one to arrive at the useful energy
levels and wave functions with the minimum amount of labor in calculations. The truncation in the
calculation by using only the group of lower-lying energy states (which, according to the very nature
of the scheme, are easily recognizable) is the salient feature of the scheme, and to show in passing
the validity of this method, we have, at the end, considered the case of a d system with the tetrago-
nal (D4~) distortion and the results obtained thereby are compared with the corresponding exact re-
sults appearing elsewhere.

I. INTRODUCTION

A generalized intermediate-coupling scheme was
developed' for the many-electron systems of the
transition-metal ions under ligand fields with cubic (octa-
hedral or tetrahedral) symmetry. This scheme is extreme-
ly helpful for the complexes of the transition-metal ions in
the second and third series, where the ligand field and the
spin-orbit coupling are large compared to the interelec-
tronic Coulomb interaction.

The applicability and great simplicity of the scheme was
illustrated for the perfectly octahedral complexes OsF6
(Sd system), ' KiReC16 (Sd system), ' and KiOsC16 (Sd
system). There are, however, a great number of similar
complexes which suffer deviations from perfect cubic
symmetry. A number of reasons, amongst which are the
Jahn-Teller effect and crystal-packing considerations, '5

may be responsible for the formation of such distorted
complexes. The ligand field in such a complex is of lower
symmetry, ' depending upon the nature of distortion.
The cubic part of the ligand field potential is represented
by the usual parameter Dq, and to represent the remaining
part (which is of lower symmetry) additional parameters
are introduced [say, the parameters Ds and Dt for tetrago-
nal (D4t, ) symmetry].

In the present paper we have extended the inter-
mediate-coupling scheme' by including the perturbing
lower-symmetric field. The unperturbed states in this
scheme fully incorporate the cubic ligand field as well as
the spin-orbit interaction; the interelectronic Coulomb in-
teraction together with the lower-symmetric part of the
ligand field will be treated as a perturbation. We consider
in detail the cases of tetragonal (D4t, ) and trigonal (D3d)
distortions, ' which are the most common in the com-

plexes of transition-metal ions. The case of an orthorhom-
bic distortion (with the symmetry group D2) is just indi-
cated briefly in the following section.

II. SPLITTING' OF LEVELS

In the absence of distortions, the terms of the
intermediate-coupling scheme' correspond to the irreduci-
ble representations of the octahedral double group O~.
These are A~ Az E T~ Tz I 6 I 7 and I 8, in general.
When a lower-symmetric ligand field (associated with the
distortion) is introduced, these original terms generate new
terms corresponding to the irreducible representations of
the associated lower-symmetry group. Thus some or all of
the degenerate levels in the original scheme are split by the
lower-symmetric field. The basis functions for the new
terms can be given in terms of the original basis functions.

In the presence of the perturbation involving the in-
terelectronic Coulomb potential ( V, ) and the lower-
symmetric part ( Vi ) of the ligand field potential, there will
be mixing in each set of levels corresponding to the same
irreducible representation of the associated lower-
symmetry group. Thus there will be a Hamiltonian ma-
trix block for each of these irreducible representations.
The specific cases of lower-symmetric fields are con-
sidered one by one.

A. Tetragonal (D4q ) symmetry

We consider the introduction of a tetragonal distortion
(along the Z axis, say). The original levels (corresponding
to the representations in 0/ ) will generate new levels (cor-
responding to the irreducible representations in the tetrag-
onal double group D4t, ) according to the following
scheme ' ':
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Here, the superscript T on each of the transformed terms
implies that tetragonal symmetry is involved. The basis
functions for these new levels in terms of the original basis
functions are as follows ' ':
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Here, the pair of new nondegenerate levels I 5,I 6 are Kra-
mers conjugates having the same energy values. The su-
perscript r on each of the transformed terms implies that
trigonal symmetry is involved. The basis functions for
these new levels in terms of the original basis functions are
as follows:

I
n;r, r,'b") =

I
n; r,a"),

I
n;r, ~r7'a") =

I
n;r, ~&,

In;rs r b")= In;r, v),
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I
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I
n;ra ) .

Here n denotes a configuration notation similar to yzj/7.

B. Trigonal (D3d ) symmetry

We consider the introduction of a trigonal distortion
along the (1,1,1) direction. The original levels (corre-
sponding to the irreducible representations in Oj ) will
generate new levels (corresponding to the irreducible repre-
sentations in the trigonal double group D3d) according to
the following scheme:

I
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C. Orthorhombic (D2) symmetry

We consider the introduction of an orthorhombic dis-
tortion (unequal distortions along the cubic axes). The
original levels will generate new levels (corresponding to
the irreducible representations in the orthorhombic double
group D2 considered) according to the following scheme:
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Here, the superscript OR on each of the transformed
terms implies that the orthorhombic double group (D2 } is
involved. The basis functions for these new levels in terms
of the original basis functions are as follows:

i
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III. d' SYSTEM

The intermediate-coupling scheme involves three basic
one-electron energy levels: ys1 (fourfold degenerate), y7
(twofold degenerate), and ys„(fourfold degenerate) in the
order of increasing energy values. The second level corre-
sponds to the irreducible representation I 7 and each of the
remaining levels corresponds to the irreducible representa-
tion I 8.

A. Tetragonal (D4q ) symmetry

In the presence of a tetragonal distortion, the three orig-
inal levels

~
ys1,'I s), i y7;I 7), and

hays„;I

s) will generate
new levels according to the scheme given in Sec. II. The
perturbing part ( Vz } of the ligand field potential can be
represented in terms of two parameters Ds and Dt. '

This tetragonal perturbation leads to a mixing
« lysi rs r7& ly»r7 r7& lys 'rs r & and of

i ys1,'rs~I 6 ), i ys„,I s~r6 ). Thus there are two con-
jugate 3&3 I 7 blocks and two conjugate 2)&2 r6 blocks
for the Hamiltonian matrix. The matrix elements for
these blocks can be easily calculated. These are as follows:
For the conjugate I 7 blocks (5=a" or b"}
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(y„;r, r,'5l~ly„;r, r,'5)
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For the conjugate 16 blocks (5=a' or b')
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I
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Here we have used the same notations as in Ref. 1, i.e.,

C „=cos 0 sin"0,
where

v 2'
tan20 =

10Dq+ 2 gd

gd and gd are two spin-orbit interaction parameters. '

ep(ysl ), 6'0(y8~), and 60(y7) are three different unperturbed
one-electron energy values and their expressions (in terms
of Dq, gd, gd) are given in Eqs. (2.3) and (2.6) of Ref. 1.
The present relations in Eqs. (3.1) and (3.2) have been ob-
tained by using the expressions for Kl—= lysi, 18K),
A, t

=
I y«, I 8A. ), etc. [see Eqs. (2.2) and (2.5) in Ref. 1], to-

gether with the following matrix elements of VT with
respect to the usual strong-field bases (g, l, g;O, e) (Refs. 2
and 7):

(g I
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B. TrigOnal IID3d ) SymmCtry

The perturbing trigonal part ( V, ) of the ligand field po-
tential can be represented in terms of two parameters acr
and D~. ' This perturbation leads to a mixing of

I
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I
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two conjugate 3 & 3 I ~ blocks and two conjugate 2 && 2
15(16) blocks for the Hamiltonian matrix. The matrix
elements for these blocks are as follows: For the conjugate
14 blocks (5=a or b)
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For the conjugate 1 5(I 6) blocks
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These relattons in Eqs. (3.3) and (3.4) have been obtained
by using the following matrix elements of V with respect
to the usual stron -field basesg

&41 v.
I k& = &n I v. I n & = &41 v.

I 0& = '9'—Dr,
&& I v. I n &

= &n I
v.

I k& = &0 I v, I g& = —(D~+ —9'D~),
—~3&41 v.

I
e& = &41 v.

I
&& = —~3&v

I v.
I
e&

&pl v,
I

e&= —&~ I
v,

I
&&

v3

5=Do.——,Dw,

(el v, le)=(
I v,

l

)=-', D .

IV. d SYSTEM

The low-lying unperturbed levels for the d system in
the intermediate-coupling scheme are'

I ysl~~1 &~ I y7~~1& ~

I ysliE ) ~ I y813 7iE )

I r81y7 T1 &

I
r'81 T2)

I ysly7 T2& .

In the first approximation we can neglect the mixing of
these lower levels (through the perturbations of the
electron-electron Coulomb interaction and the lower-
symmetric part of the ligand field) with the much higher
levels of configurations involving ys„. This is because, for
the complexes of the transition-metal ions in the second
and third series, ep(ys„) is usually much higher than
eo(y81) and eo(y7). ' Then, in the presence of a tetragonal
distortion, we have a 4X 4 A

&
block, a 2 X2 B

&
block, a

1X1 A2 block, a 2X2 B2 block, and two conjugate 3X3
E blocks. The matrix elements for these blocks are given
in Appendix A. Similarly, in the presence of a trigonal
distortion, we have one 4X4 3 I block, one 1X1Az block,
and two conjugate S X5 E blocks. The matrix elements
for these blocks are given in Ref. 10.

conjugate 6X6 I & blocks and two conjugate 4X4 I 5 (I 6)
blocks. The matrix elements for these blocks are given in
Ref. 10.

VI. d SYSTEM

The low-lying unperturbed levels for the d system in
the intermediate-coupling scheme are'

I r» ~1& I rslr7, ~1&,

Irslr7, E&
I rslr7;E&,

I yslr7;T &,

Iy8ly7~T2&&
I ysly7~T2& .

In the presence of a tetragonal distortion we get one
4X4 2

~ block, one 2X2 BI block, »e 1 X 1 A z
block, one 2X2 Bz block, and two conjugate 3X3 E
blocks. The matrix elements for these blocks are given in
Ref. 10.

In the presence of a trigonal distortion we get one 4X4
A I block, one I X 1 3 z block, and two conjugate 5 X 5 E'
blocks. The matrix elements for these blocks are given in
Ref. 10.

VII. d SYSTEM

There are two low-lying unperturbed levels for the d
system in the intermediate-coupling scheme'.

4

and

I r81 r7; I 8 &

In the case of a tetragonal distortion we get two conju-
gate 2X2 I 7 blocks and two conjugate 1X1 I 6 blocks.
In the case of a trigonal distortion, we get two conjugate
2X2 I 4 blocks and two conjugate 1X1 I 5 (I 6) blocks.
The matrix elements for these blocks are given in Ref. 10.

V. d3 SYSTEM

The low-lying unperturbed levels for the d system in
the intermediate-coupling scheme are'

ly'l(T»r»'I & lr ly' l 8&,

I
y'„(~, )y„r,),

As usual, we omit the much higher levels of configura-
tions involving y8„.

In the presence of a tetragonal distortion, we have now
two conjugate 5X S I 6 blocks and two conjugate 5 X 5 I 7
blocks. The matrix elements for these blocks are given in
Ref. 10.

In the presence of a trigonal distortion, we have two

VIII. CONCLUDING REMARKS

In the intermediate-coupling scheme, the truncation
that can be made by omitting the higher-lying states in-
volving the orbital y8„ is of utmost importance —it makes
the calculations very simple and at the same time produces
useful results' which are very close to the exact results
obtainable through much more laborious and time-
consuming numerical calculations. Even such an exact
calculation may be preceded by the short-cut calculations
through the truncated intermediate-coupling scheme so
that preliminary assignments of the various parameters
may be made very quickly. We shall make ready reference
to the results given here while applying the interrnediate-
coupling scheme to 4d" and Sd" complexes having devia-
tions from cubic symmetry.

To show, in passing, the validity of the truncation in the
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case of a distorted system, let us consider the case of the
d' system with the tetragonal (D47, ) distortion. Magnetic
properties of several such complexes were studied, through
exact calculations, by De, Desai, and Chakravarty. The
exact calculation for such a d' system involves one 2&2
I 6 block and one 3)&3 I 7 block, whereas, the truncated
intermediate-coupling scheme for this system involves one
1 X 1 I 6 block and one 2X2 I 7 block (see Sec. II). Here,
for the sake of comparison, we employ the same values of
the parameters as used in Ref. 8 and see that the results
obtained here through the truncated calculations are quite
close to the exact results there. The two sets of results
(truncated and exact) for the complexes CsMoF6,
NaMoF6, RbMoF6, and KMoF6 are given in Table I. For
these complexes we have assumed (as in Ref. 8) Dq=2500
cm ', /=800 cm ', k(kl ——kq)=0.85.

The matrix elements of the x and z components of the
magnetic moment operator, n=k l +2s, with respect to
the one-electron orbitals in the intermediate-coupling
scheme are given in Appendix B. These results together
with those in Sec. II were used to obtain the magnetic
properties (given in Table I) by the usual procedure. 2

APPENDIX A

The original wave functions for the low-lying unper-
turbed levels of a d" (n=2, 3,4,5) system are used to con-
struct sets of basis functions symmetry adapted to the ir-
reducible representations of the lower-symmetric (tetrago-
nal or trigonal) double group (see the scheme in Sec. II).
The Hamiltonian matrix with respect to these basis func-
tions separates into blocks corresponding to the irreducible
representations of the lower-symmetric double group. The
matrix elements for these blocks in each d" system
(n=2, 3,4,5) are given in Ref. 10 (Appendix C 1). These
blocks are diagonal in the Hamiltonian's unperturbed part
Ho containing the cubic ligand field and the spin-orbit in-
teraction: The diagonal elements of Mp appear in terms of

p( l st )', E'p( l 7). The part V, (electron-electron Coulomb
potential) of the Hamiltonian can give a nonvanishing ma-
trix element only between states originating from the same
irreducible representation in OI', . The lower symmetric po-
tential, VT or V„ in the Hamiltonian gives matrix ele-
ments in terms of the pair of additional parameters Ds,Dt
or Dog)r. To make the above points clear, we give here
only three examples of Hamiltonian matrix elements:

&1'st)'7 E~+'l bl
I

~
I
l'stl'7'E~Kbl & =&o(l'st)+&o(|'7)+ &l'all'7'&

I Ve
I
l'sll'7'E&

—(1+Co@)Ds+(—', —10Cp2)Dt,

& Ysl I 8 I sa'
I

~
I ) st( T2)y7;I s I ~a'& = &1 st,IV I l'st( T2)17'I s &

— C, (Dcr+ ', D7)—
+ —, Cpl(Der —'3 D7 ),

2 4~Z 5
&l st(T2)l'7 I 6~1 4a

I
~

I rsl(~1 )Y7 I 7~I 4a & C2p(Dtr+ D7 ) Cll(Dtr 3 D7) .
3 9

TABLE I. Comparison of the truncated and exact results for some 4d' compounds. Dq=2500
cm ', /=800 cm ', and k=0.85. The results in parentheses are the exact results collected from Ref. 8.

Compounds

CsMoF6

NaMoF6

Temperature
{K)

300

Ds
(cm ')

230

430

Dt
(cm ')

300

560

Splitting
of the lowest

I 8 (cm ')

627
(620)
1252

(1240)

Effective
no. of Bohr
magnetons

0.927
(0.950)
1.262

(1.285)

340 450

1040

997
(970)

2474
(2460)

1.089
(1.110)
1.392

(1.440)

KMoF6 430 560

780

1252
(1240)
1804

(1800)

1.169
(1.185)
1.362

(1.385)
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The electrostatic matrix elements,

&'Ysl'Y7»E
I

+e
I )'sil'7i+ &

etc., appearing in the Hamiltonian matrix elements are ex-
pressed in terms of the usual Racah parameters A, 8, and
C. These electrostatic matrices in the intermediate-
coupling scheme can be constructed through the following
steps. At first the Tables IA—IVA and IB—IVB given
in Ref. 27 of Ref. 1 are used to express the unperturbed
states of the intermediate-coupling scheme in terms of the
strong-field scheme wave functions. Then, using the
known electrostatic matrices in the strong-field scheme,
we can easily construct the required electrostatic matrix
elements in the intermediate-coupling scheme. For the
electrostatic matrices in the strong-field scheme we use
Table A28 of Ref. 5 where the matrix elements are given
in terms of three Racah parameters A, 8, and C. The use-
ful electrostatic matrix elements with respect to the
lower-lying states in the intermediate-coupling scheme are
given in Ref. 10 (Appendix C 2).

APPENDIX B

The nonvanishing matrix elements of the x and z com-
ponents of the one-electron magnetic moment operator
n=k 1 +2s with respect to the basic one-electron wave
functions in the intermediate-coupling scheme are given
below:

1
&tet

I
n 14 &

= — (1—k2)C20+v 2klC11,
3

—2 v2
&let

~
n&

~
vt & = —,(1—kg)C20+ klC11 —C02,

1 1
&Ici

I
n

I

tz" & = — (2+k2)C10+ klCpl
3 2 3

& A, i ~

n
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Here, in view of the inequivalence of the t2 and the e orbi-
tals we have used two different orbital reduction
factors' —we have put x.=k 1 when we consider matrix ele-
ments between a t2 orbital and an e orbital, and K=k2
while considering matrix elements between two t2 orbitals.
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