PHYSICAL REVIEW B

VOLUME 28, NUMBER 12

15 DECEMBER 1983

Golden-rule approach to the soft-x-ray-absorption problem

K. Ohtaka and Y. Tanabe
Department of Applied Physics, Faculty of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
(Received 5 August 1983)

The cross section of the soft-x-ray absorption is derived based on the Fermi golden rule, by sum-
ming the transition probabilities over all possible final states. It is shown that the factor connected
with the Anderson orthogonality catastrophe is canceled in the process of summation, and the spec-
trum is finally expressed by the core-hole propagator times the open-line propagator, as shown by
Nozieres and De Dominicis. Our results are compared with the results obtained by Mahan and col-
laborators and are shown to improve over theirs in several respects, expecially in the core-hole prop-
agator. With the use of the new integral kernel, the integral equation for the threshold region is
treated and the exact form of the edge anomaly, including the analytical form of the prefactor of
the power-law spectrum of Noziéres and De Dominicis, is obtained.

I. INTRODUCTION

After the work of Mahan!' and Nozieres and co-
workers,”3 which explained successfully the threshold
anomaly of the soft-x-ray absorption or emission spec-
trum, much attention has been paid to clarifying the ex-
tent in the frequency range for which the solution of
Noziéres and De Dominicis® (ND), exact near the thresh-
old, has its practical applicability. In the frequency range
where the solution of Mahan and ND does not work,
many authors have tried to find a better description of the
phenomena. For this purpose, calculating the absorption
or emission cross section in terms of Slater determinants
of a many-electron system has been a very powerful tool,
because the ND model Hamiltonian is a simple one-body
Hamiltonian that enables us to write down straightfor-
wardly the initial and final states of the optical transition.
As a matter of fact, the matrix inversion method intro-
duced by Combescot and Nozieres* (CN) enabled them to
deduce detailed edge anomalies for a core-hole potential
sufficiently strong to give rise to a bound state. Their
method, based on the calculation of determinants and in-
verse matrices, is quite suitable for numerical calculations
and has lead to exact information on the validity and the
limitation of the ND solution.’~7 Furthermore, a series
of analytical treatments of Mahan and co-workers®™!!
showed that, by rewriting the core-hole propagator G (¢)
and the open-line propagator L (¢) in terms of the Slater
determinants and decomposing them into sums of the con-
tributions from various final states, one can obtain an ex-
pression of the spectrum having a wider range of validity.

The matrix formulation of the x-ray absorption and
emission problem has been initiated by the remarks of
Friedel.'”> He demonstrated usefulness of the Fermi gold-
en rule by showing that the characteristics of the edge
anomaly manifest themselves already in the lowest-order
transition probabilities that were calculated using initial-
and final-state Slater determinants.

If we start from the Fermi golden rule, we need only
sum the transition probabilities between the ground state
of the initial-state Hamiltonian H; and all possible states
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of the final-state Hamiltonian Hy. Owing to the scatter-
ing by the core-hole potential in the final state, however,
two complications occur in the derivation: One is the
need to project the many-body final state Wy onto the ini-
tial ground state ®; for calculating the matrix element,
because the one-particle wave functions of H; and H are
not orthogonal in general. When Wy is the ground state of
Hy, however,. the projection (¥ |®;) becomes vanish-
ingly small as the number of electrons in the system tends
to infinity. This orthogonality, known as Anderson’s
orthogonality catastrophe!®> (AOC), occurs not only when
¥y is the ground state but also when it is an excited state.
The other complication is thus that we must carry out a
precise calculation in order to obtain a finite result by
summing an infinitely large number of vanishingly small
quantities.

It seems that this is the reason why there has been no
complete formulation based on the golden rule. In fact, in
their formalism, CN tacitly avoided the calculation of the
transition probabilities by representing G (¢) and L (¢) in
terms of initial-state one-particle wave functions.* Also,
the formulation of Mahan and co-workers®~!! starts from
the definitions of G(¢) and L (z), which are, of course,
both finite. This means that they also avoided the deriva-
tion from the golden rule of the exact form G (¢)L (¢) of
the spectrum, which appears to be one of the most diffi-
cult steps because of the AOC.

In this paper we straightforwardly follow the line pro-
posed by Friedel. We classify the final states according to
the number of excited electrons above the Fermi level and
calculate the transition probabilities. We show that a fac-
tor connected with the AOC is exactly canceled when the
summation is carried out over all possible final states and
that the result of the summation—the total transition
probability—is expressed in a closed form. Since the ma-
trix elements in the golden rule incorporate only the wave
functions of the initial and final states, the closed form
obtained is free from the complicated nature of the core-
hole potential. In addition, the validity of our closed form
is not limited to the threshold region.

Since the series of papers by Mahan and co-workers are
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the most important in the literature along the line pursued
in this paper, let us briefly review their findings and see in
what respects our results improve upon theirs. For the
special model of a contact or separable core-hole potential,
Penn, Girvin, and Mahan'® and Mahan!! decomposed
G (¢) and L (¢) into the superposed contributions that are
classified according to the number of excited electron-hole
pairs in the final states. They attempted to resum the
series thus obtained. As for L (¢), the resummation was in
fact accomplished for that special core-hole potential.!®
The resummation of the series for G (¢) was not complete,
however.!! In the linked-cluster expansion of G (), there-
fore, only a few leading terms were given.

In this paper we show that the resummation can be car-
ried out, leading to closed expressions for both L (¢) and
G (), which are valid for an arbitrary form of the core-
hole potential. Of course, in the case of the contact core-
hole potential the present formulas reproduce all the re-
sults that have been obtained by Mahan and co-workers.
For details see Sec. IV.

As for the threshold behavior, we demonstrate that our
formulas reproduce, both for G (¢) and L (¢), the exact re-
sults obtained by ND. In addition, we present the analyti-
cal form of the prefactor of the power-law spectrum,
which is called the critical amplitude and is obtained nu-
merically in Ref. 10. The agreement of our formula with
the numerical value is quite good, showing that our ap-
proach in this respect improves upon the ND solution of
the threshold behavior.

In Sec. II, we classify the final states, calculate the ma-
trix elements, and show that the resummation can be car-
ried out to yield the closed form of the total transition
probability. In Sec. III, various quantities necessary for
deriving the spectrum are calculated for a contact poten-
tial. In Sec. IV, we discuss the relationship between our
results and those of Mahan and co-workers. In Sec. V, the
result of ND is seen to be reproduced by our formula, and
the critical amplitude is derived. Section VI ends the pa-
per with a brief summary. In this paper, the formulation
is given only for the absorption case.

II. FORMULATION BASED ON THE
FERMI GOLDEN RULE

We consider the optical absorption process of N +1
electrons. In the initial state, the system is in the ground
state composed of N band electrons and one core-state
electron. In the final state all of the N +1 electrons are in
the band states, which are perturbed by the scattering po-
tential of the core hole left behind. The possibility of the
existence of a bound state in the final state is not con-
sidered in this paper. Let the initial and final band states
@i and ¥, be determined by the one-body Hamiltonian A;
and hp, respectively. The Hamiltonian Ay is h; plus the
core-hole potential. Owing to the completeness relation,
¥, is resolved into a superposition of {¢y }:

V= 3, APk 5 2.1)
k
where
axk:altx = <¢K l Pk > (2.2)
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is the overlap integral. We use Greek (Latin) letters for
the indices that specify the final (initial) band states.

The Slater determinants of the N lowest eigenstates of
h; and hp are denoted by

®?:|¢11¢72;'-')¢7Nl ’
Vo= |Ynds ..., ¥n] .

These two states represent the ground states of N band
electrons in the initial and final states, respectively. Let
their energies be Ef and E2, which are the sums of the N
lowest eigenvalues of 4; and hr. The difference, or the
ground-state energy shift due to the core-hole potential, is
denoted as AE®:

AE°=EQ—E;} .

(2.3)

(2.4)

From Fumi’s theorem,'* AEC is expressed as a sum of the
phase shifts, but we do not need an explicit form of AE®.
The overlap integral between ®9 and W is an important
quantity in what follows. We denote it as A:

A=(¥Y | DY)
=detd (2.5)
with an N X N matrix 4 defined by
(A)um =apm - (2.6)

Together with A, the overlap integrals of <I>9 with an ex-
cited final state of N band electrons are equally important.
For an excited state ¥y, obtained from ‘IIOF by replacing
the orbitals pu; <, < - -+ <pu, in Eq. (2.3) with a set of n

new orbitals above the Fermi energy ¥,<v72< *** <Vn>»
respectively, we denote the overlap ( Wy | ®?) as
AEpEy - s BV Y2 -5 Vn) -
For example, we set
anp °°° awy
A(m;y)=det |a,, a,n|<u, 2.7
ayi """ ann

where the uth row (@,1,a,), ...,a,y) in A has been re-
placed by (a,1,@,,, - . ., a,n). We use the bar on the sym-
bol u to emphasize that the state u is empty. Expanding
A(fz;y) with respect to the uth row, we have

Al@;y) _
—12—7’—= S A 2.8)

m(<)

where the summation is over the states (of 4;, as indicated
by the Latin symbol m) below the Fermi energy [symbol-
ized by (<) index] and 4 —! is an inverse matrix of 4 de-
fined by Eq. (2.6). According to AOC,!? the ground-state
overlap A vanishes in the limit of large N. Likewise, the
new overlap integrals A(fZ;¥), A(fZ1,[Z2;71,732), etc., vanish
in the same limit, as shown later.

In the optical absorption, the system jumps from the in-
itial state
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Q= QL@ - PNPe | s (2.9)

@. being the core state, to the ground or excited state of
the final state of N + 1 band electrons. We classify the fi-
nal states in terms of the number of electrons excited
above the Fermi level. Let \I/ ) be the final state, having n
electrons above the Fermi energy Smce one of the n elec-
trons comes from the core state, \I/f has n —1 holes. The
subscript f spec1ﬁes collectively the hole and electron
states. The state \I/f with f =(Z;y1,72), for example, de-
scribes the state with one hole at the state u and two excit-
ed electrons at ¥, and ¥,.

Now the transition from ®; to ‘I/“” is assumed to be
due to the dipole moment W:

N+1

W= 3w .

i=1

(2.10)

Our aim in this section is to obtain the closed expression
of the absorption spectrum from the golden-rule formula
(A=1):

1(w)=2ﬂz | (WP | W | @) | 28(Ef" —Ef —o)

_2Re2f dt | (WP | W | @) |2

e~ HEM—Ej—o )t

=3 I'"(w)

Here w . =w+i6 and the third equality defines the contri-
bution to the spectrum from the final states with n excited
electrons. Measuring the one-electron energies from the
Fermi energy (€gem;=0), we have for

(2.11)

S=ppy ... <> ¥n)

the following:

sHMr—1Y15Y2 - -

n n—1
E}n)__EI_w= 2 €, — 2 6”i+E£~ —(E;)+Ecore)_w
i=1

i=1

n n—1
0
= 2 €y, — 2 eﬂ,-+AE —€core— @
i=1 i=1
n—1

> €y, +On—o , (2.12)

n
=2 €,—
i=1 i=1
where €., is the energy of the core state ¢, (€. <O0),
AE" is the ground-state energy shift of N electrons intro-
duced in Eq. (2.4), and the third equality defines the re-
normalized threshold energy w,,

wth=AE0_€core . (2.13)

Let us begin with n =1 (no hole in the final state). The
symbol f now specifies only the state of the excited elec-
tron. Let it be . Then

a; " aiNy Wi
wib &, ) =det (214
(f|W| 1) “la ann Wne ( )
ayl M aYN ww
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with
wyc=(¢riw |‘Pc> ’

etc. Expanding Eq. (2.14) with respect to the last column,
one can see that the cofactors involved have just the form
given by Eq. (2.7). Hence

AE;y)
(WP | W | @) =A |wy.— (2) A Wye
pl<

=Ap(y). (2.15)

The symbol u( <) denotes the sum over the perturbed
states below the Fermi level. The second term of p(y)
expresses the exchange process (replacement transition of
Friedel'?), which can occur due to the nonorthogonality
between {,} and {@;}. It is important that the matrix
element (2.15) is proportional to A. The cross section of
the one-electron jump thus vanishes by AOC. Let us
rewrite p(y) in a slightly different form, making use of
the completeness relation of {@;}. It holds that

piy)=73

b(>)

ayp— ——ma,‘b w

A (2.16)

pl<)

where b(>) means the sum over the (unperturbed) states
above the Fermi level and

w=_@s|w | 2.17)

In accordance with ND, the matrix element between the
core state ¢, and @, is assumed to be independent of b.
Now substituting Eq. (2.15) into Eq. (2.11) and using Eq.
(2.12) for n =1, we have

I'"(0)=2Re [ “dre “+ 7" | A2
X 3 lpp) |2,

y(>)

(2.18)

the summation being over the states above the Fermi level.

Next, we turn to n =2. The excited state \I/(fZ) with

f=(@;v1,72) (¥1<y2) is now involved. Since

an " aiN Wy
Ay, Ay N Wye| <pg,
(\Il(fZ)|W|<I’1>=det : : :
ani aANN Wne
Ay, Ay,N Wyye
(2.19)

the expansion with respect to the (N + 1)th column yields
<‘l’}2) | W | @) =AEY Wy, —A(E;72)Wy

— 3 A@LE3Y LYW -
ol <)
(py7py)

(2.20a)
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Now for p#u, and y15£Y,, we have respect to the second row, put it into Eq. (2.20a), and
compare the result with Eq. (2.15) of the one-electron
ARy /A AlEgy2)/A jump. We then find

ARBEY oY) =RI Ay /8 A7) /A
(‘wfz} | W | @) =A(E;7 ) (v2) —AlE;72)p(7y) -
(2.20b) (2.20¢)
which is the relation known as Jacobi’s identity.!> One
can use Eq. (2.20b) in the right-hand side of Eq. (2.20a)  The restriction ¥, in f =(f;¥1,7,) can be relaxed in
without imposing the restriction p,5u,, since Eq. (2.20b)  Eq. (2.20c). For I'”(w) of the spectrum, we must take the
vanishes when u,=p,. We expand Eq. (2.20b) with absolute square of Eq. (2.20c). We find

2) o (@ —aoy)t 2 2 « —i‘rlt_ieyzt
I (co)=2Ref0 dte “+ [A12 S [ 2K (a2 | )—p*(y)p (YK (v172 | )]e ,  (2.20d)
Y ¥a(>)
where
Ky 0=——5 3 Ay )AGy)*e ™ 2.21)

,Al pl<)

Note the absence of the restriction y; < ¥, in Eq. (2.20d).
All the necessary procedures for obtaining the matrix element (\I/ | W | ®;) are embodied in the case of n =2. In-
stead of treating general n, we write down the main formulas for \l'm with f =(E1,8271,7273):

‘I’(f” | W | @, y=A( #1,,‘72§')’1’7/2)wy3c"‘A(Nl,.uz;‘}’sﬂ’z)wylc—A(#bﬂzﬁ’hh)wnc* 2 A(ﬁl,ﬁz,ﬁﬁ?’b?’z,)’s)w,‘;c s

#3(<)
(i pty)
(2.22a)
Alpi;y) /A AEy2) /A
A1, B2 3;7 1,V 2V 3) = A det | A7) /A e el (2.22b)
Ams;v)/A
Combining these two expressions and expanding Eq. (2.22b) with respect to the third row, we have
(WP | W | @) =A(B 1,237 1,72 (V3) — AE LY 372 (V1) — AlELE2 Y 1,Y3)P (V2) - (2.220)
Again, all the restrictions for {1} and {y} may be dropped. To derive I®*() from Eq. (2.22c) we must note
L S Al vyl A Y3, ve) M explie, t+i€, t)= | A|*det Kipuys|n Kiruyl (2.23)
! p TR K(y2y3|t) K(yzvalt)

Bpiy(<)

The identity is obvious when we note that the right-hand side has a form of Gram’s determinant when one uses Eq.
(2.21), so that it is decomposed into a linear combination of products of two determinants, as in the form of the left-
hand side of Eq. (2.23). Another thing to observe in I'*(w) is that the three terms proportional to | p(y) | ? are all equal
when the sum is taken over {u} and {y}, and so are all the contributions of the type p*(y;)p(¥,). This fact may be
checked by making an appropriate interchange of symbols in the summation over {1} and {y}. Thus, from Eq. (2.22¢),
it follows that

I®(w)=2Re fow dr '@+ o)

K(yyv2|t) K(yays|t)

A 2
x|Al2 3 K(y3,72|0) K(ysys|t)

{v(>)}

1
| p(y1) |y det

K(yy,72]0) K(7’1,1’3|t)
K(y372|t) K(ysyslt)

3
—p*(yp(y;)det | g exp(— 3 €,1) . (2.22))
i=1 ’

On the one-electron states {7}, there is no restriction except that they lie above the Fermi energy. The expression of
I'"(w) may be obtained similarly.
Our remaining task is to sum I"/(w) over n to derive I (w). We have
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I(@)=2Re [ " dr T A 121 S p() [ 2e YD) S prp(yID(yy (e T T (2.24)

y(>) v,7'(>) :
where
—igt 1 Kyprilt) K(ypya|t) —ile, +e, )t
pw=tr & Knmlve ey 2 K010 Koanaloff T 229
1 Y2t >
Ky,y' | Kr,yi|0) | —ie s
=K ) , .. .
D(y,y'|0=K(y,y |t)+y1(2>)det Koy’ |0 Kvor|nle  F (2.26)
r
. t
It is to be noted that the factor D(y,y’|t) depends expli- D(t)=D(0)exp { f drA(T) ] , (2.32)
. , . - 0
citly on ¥ and 7', the excited one-electron states involved .
in p(y) and p(y’), while D(?) is a quantity determined in- ~ with
dependently of p(y). For example, when o —wy, is very D)= [A] -2 2.33)
large as in x-ray photoelectron spectroscopy (XPS), the =[A]7%, :
factor D(y,y’|?) will become vanishingly small because of
the fact that €, and €, are then much larger than the Fer- d ) )
mi energy [see, e.g., the (y,7’) dependence of K given by A(r)=Tr | |—K(r)e '€ |[L+K(7)e _'g]“] . (2.34)
Egs. (2.21) and (63.21)]. Thus the XPS incorporates only dr
16,17 . .
K,le lf actor D (z). ’I;US mee;lnsl that ;lhe ;ealii]usftfr‘nent o,f The symbol Tr stands for the trace of the matrix to fol-
N dctons o crated cor el o he sk ff st o, *Formaly, e mvase matx (1 £K0e 4] n
To sum the series into a closed form, first observe that Eq. (2.34) determines g (y I_t)' From Eq. (2.31)
. . — t —i
D (1) is the Fredholm series'® of I= 3 p*(ye ey {[1L+K(t)e 'g]"l},,yfp(y') )
—iey t v7'(>)
det|8, ,,+K(y1,72| e | (2.35)

i.e.,
D(t)=det | 1+K(t)e '¢| ,
with

(2.27)

i€, t

[K(De ™), =K (ypy2| e ™. 2.28)

Next, consider the following integral equation for the
quantity g (y | 9):

qr |+ S K,y |De gy’ | h=p(y) .
Y'(>)

(2.29)

Then, by the Fredholm formulas of integral equations, 8 it
holds that

I@)=2Re [ “dte"+ 7" | A|2D(0)Io(1),  (2.30)
with

L= p*(y)e gy |D .
y(>)

(2.31)

Equation (2.30) is the closed form of the spectrum we
have been looking for. D(z) is given by Eq. (2.27) and
q(y | 1) is the solution of Eq. (2.29). K(y,y’|t) defined by
Eq. (2.21) is the fundamental quantity for both D (z) and
Iy(2).

Since Eq. (2.30) is proportional to | A | %, one may imag-
ine that the quantity D (¢) has a factor of | A| ~2 to give a
finite absorption spectrum. In Appendix A, it is indeed
shown that

In summary,
I(@)=2Re [ " dte" "+ *"exp [ [larawm ]Io(t),
(2.36)

with A (¢) and I,(2) given by (2.34) and (2.35), respectively.

We end this section by comparing the identity of our
formulas with the ones obtained by other authors. We
find that (¢ > 0)

D(1) —iAEC__ _ _ —i€coret
D) ° =—Y(—1t)e

:lG (t)e _iecoret

=(@Y | e T 9) (2.37)
where AE® is the ground-state energy shift in Eq. (2.4),
& (t) is the core-electron propagator used by ND (Ref. 3)
and CN (Ref. 4), G(¢) is the core-hole propagator of
Mabhan,!! and H; and Hy are N-electron Hamiltonians of
the initial and the final states, respectively. For the proof,
see Appendix A, where the first equality is shown by
transforming D(t¢) into the form involving the expression
of ¥ (—1) given by CN.*
Similarly it is found that
I(t)=—L(—1), (2.38)

where L (¢) is the open-line propagator defined by Eq. (29)



6838

of CN.* For the equivalence of the Fourier transform of
Iy(t) to the quantity used by Mahan and co-workers, see
Sec. V.

The approach based on the golden rule thus demon-
strates correctly that the spectrum is made up of two
disconnected contributions—the deep-hole and the open-
line contributions. This fact is easy to understand in
terms of the diagrammatic expansion, as shown by ND.
In the CN paper, the disconnectedness is neatly demon-
strated by rewriting the spectrum using a matrix whose
rows and columns are labeled by the unperturbed one-
electron states. The present method may be said to be a
derivation based on the matrices represented in terms of
the perturbed states. As compared with the ND and CN
methods, the present derivation is rather complicated be-
cause of the careful treatment required to take an exact
account of AOC in each overlap integral involving the fi-
nal states \I/(f"). However, we have reached ultimately, say,
Eq. (2.34), which is the general form of the linked-cluster
expansion of G(t), free from a special model of a core-
hole potential.'?

III. SOME IDENTITIES FOR A CONTACT
CORE-HOLE POTENTIAL

The formulation given in Sec. II is now applied to the
case of a contact core-hole potential:

Vie=—V . (3.1)

We sometimes treat the variables, say, £ and k of ¢ and
¥, as discrete, although we take finally the continuum
limit by tending Q (the volume of the system) to infinity.
The secular equation for the energy €, of the state 9, is
obtained when the form ,=Yarpx is put into

hp 1/’/( =€y
1

1+V =0,
% €x—€x

(3.2)

with

Cx

A= (3.3)

’
€Ex— €

¢, being the normalization constant. Let the state 1, orig-
inate from @y with a perturbed energy

6K=€k0——iA6 , (3.4
T
where A€ is the spacing of the unperturbed levels and
6,=0(¢,) (3.5)

is the phase shift. Then in the limit Q— «, Eq. (3.2)
turns out to be (the symbol P denotes the principal part)

D 1

TVN cotd,=1+V f5 Nide P et (3.6)
where

N =N () (3.7)

is the state density of the conduction band in question,
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which is assumed to lie in the region D <€ <D. In deriv-
ing Eq. (3.6), we have divided the summation over k in-
volved in Eq. (3.2) into two parts—the sum over k with
€x <€, and the rest. In the first sum we have made use of
the partial-fraction expansion of cotd, and in the rest the
summation has been replaced by the principal-value in-
tegral. The summation involved in

d’x: 2 APk >
k

with a;, given by Eq. (3.3), may be treated similarly in the
continuum limit.
When v, is normalized so that

(Y| o) = 7\,178(6,‘—6,() : (3.8)
it follows that
sind, 1
Ak = Qe =0,,cO88; — N P-ex__—ek , (3.9)
where
Bt = ——Blex—€r) - (3.10)
Ny

Note that we have neglected the difference between the
state densities of the initial and final states. The pro-
cedure is obviously valid as long as the band states k and x
are concerned [however, see Appendix B for the derivation
of Eq. (3.12b)]. Note also that the first term of Eq. (3.9) is
apparently different from the expression of a,; with k
treated as discrete (see, e.g., Ref. 13). However, we shall
use a,; always within the summand of Eq. (2.8), for ex-
ample. It is straightforward to check that the form of a4
with discrete k, when combined with the partial-fraction
expansion to be used in the summation over k, amounts in
the continuum limit to using Eq. (3.9) with Eq. (3.10).

Let us denote the inverse of the left-hand side of Eq.
(3.2) as X(z), with the complex variable z in place of €,:

-1
1+ 3 4
k

Xo(z)= (3.11a)

Z —€g

Noting the location of poles and zeros in the complex z
plane, we have an alternate form

H (Ek —2Zz)
k

Xo(z)=m . (3.11b)
In the continuum limit, we have
D —1
Xo(z)= 1+Vf5 N(ede— , (3.12a)
_ 1 D 8e)
Xo(z)=exp | —— fﬁ e ] ) (3.12b)

For the derivation of Eq. (3.12b), see Appendix B. The
phase shift 8(e) determined by Eq. (3.6) has a simple rela-
tionship with Xy(€e, ) defined by Eq. (3.12) with z =€+i86:



28 GOLDEN-RULE APPROACH TO THE SOFT-X-RAY-ABSORPTION PROBLEM 6839
_sindle) ___pn(e), sind,, 1| 1 1 (3.20)
| Xoley)| | Xy | 20 | X Xmy |’ :
cosd(€) b (3.13)
[ Xole) | =1+V f5 N(€')deP — which converts the integral in the range D <¢,, <0 into a
o+ contour integral encircling the branch cut on the real axis,
Now we divide X((z) into two parts, thereby enabling the integral over €,, to be carried out ex-
— actly. Making use of Egs. (3.13) and (3.14), we can
Xo(2)=X(2)X(2) B.14)  rewrite Eq. (3.19) into the form which reveals the
with particle-hole symmetry:
Alf;y) vV =
X SN X X . 3.21
X(z)=exp ——f z—e A €—€, | y+| I 'y+| ( )
(3.15)  From Eq. (3.19) or Eq. (3.21) we see that A(iZ;y) is pro-
X(z)=exp |— f 8(6 portional to A, so that it vanishes by AOC in the limit
N— .

They are nothing but the dispersion integral used by
Mahan and co-workers.>~!! They are important factors
determining A(fZ;y), p(7), and finally I (o).

With these preparations, let us now determine A(fZ;y)
for a contact core-hole potential. From Eq. (2.8), we must
first determine the lnverse matrix 4 —!. One can obtain it

by solving 4 4~ , i.e.,
D aum(d ™ Dmy=8y, (3.16)
m(<)

When transformed into an integral equation, the left-hand
side has a typical form of a singular integral equation,
with the kernel a,,, having a factor P(eﬂ—em)‘l as de-
fined in Eq. (3.9). Since the mathematics to solve it is
familiar from the ND formulation, we only write the re-
sult, which is the unique solution of Eq. (3.16):

| —V+ | 1
A1 _—_— S )8 —
(A7 my= %, | N (cosd,, )d(e,, —€,)
sind
" p.1 , (317D
€Em —€y
where
X,, =X(,.),
AR (3.18)
Xmi=X(€,4) .
Owing to the presence of the factor X, ., (4~1),, is

singular when €,, —0 [for a constant phase shift 5(e)=
| X+ | = | €m /(€ —D) | %™ note that Eq. (3.17) is valid
for an arbitrary N (€) or 8(¢)]. It is interesting to note
that in the context of the golden rule we must solve the
singular integral equation in a very early stage of the for-
malism, while in the ND formalism we need solve it only
once in a final stage.

From 4!, Eq. (2.8) yields A(m;y).
over m ( <) as an integral, we find

Alg;y) _ 1
A €,—€, TN,

Treating the sum

sind, | X, |
IX vl
Note that €, <0 and €, >0. Although the detailed deriva-

tion is omitted, the key relation involved in the derivation
is the identity

(3.19)

In order to obtain p(y) from Eq. (2.16), we need the
quantity > [A(f;y)/Ala,,. The sum over u can be treat-
ed in the same way as the sum over m in the above. We
have

A(Z;y)
S __IZ_Z_a”b
pl<)
sind. X sind
_ 1 y | Xy 4 | b (3.22)
6},‘—61, 7TNY le+| 1TNb
The second term contains the phase shift §, =8(¢;). Now
substituting Eq. (3.22) into Eq. (2.16), we find
py)=|X, 4 |w. (3.23)

The result, still exact for a contact potential, is remark-
ably simple.

Equation (3.19) or Eq. (3.21) with Eq. (3.15) yields the
kernel K (y,y’'| ) introduced in Sec. II. The combination
of K(y,v'| ) given by Eq. (3.23) then determines D (¢) and
I,(¢) and hence the absorption spectrum I (w).

IV. COMPARISON WITH THE RESULTS
OF MAHAN AND CO-WORKERS

Before we proceed to obtain the spectrum for a contact
potential, let us see the relationship between our results
and those given by Mahan and co-workers, because the
latter results apply to a contact or separable core-hole po-
tential and are directly comparable with our results. As
stated in Sec. I, Mahan and co-workers treated the core-
hole propagator (Ref. 11) and the open-line propagator
(Ref. 10). They decomposed them into the contributions
of multipair excitations, trying to resum the series thereby
obtained.

As regards the core-hole propagator, Mahan gives the
expression of P,(t), the contribution from the rn-pair exci-
tation. By comparing Eq. (2.37) with Eq. (9) of Ref. 11,
the following relation is established:

D(2)
= P,
D) nzo (1) .
His expression for P,(t) [Eq. (14) of Ref. 11] is just the

nth-order term of the Fredholm series of D(¢) given by
Eq. (2.27):

4.1)
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Ky Ky Ky,
2 . .
‘L%L 2 det : :
! {y(>)} Knl Kn2 Knn

n

Xexp | — 3 €t |=Py(1), 4.2)
i=1

with K;;=K(y;,7;|t). To verify the above relation, it
suffices to change Mahan’s notations [(R /7)dk,
—>N,de,, e?'9 X (€), e2® X (€)] and use the identity
(2.23) (trivially extended to a general n Xn case) and the
form (3.19) suitable for a contact potential. The
equivalence as combined with the relation (4.1) shows that
the series P,(¢) can be indeed resummed, and our (2.27)
represents the summed result, valid not only for a contact
but also for an arbitrary core-hole potential.

Mahan attempted the linked-cluster expansion of G (t)
by writing

P,(t)=exp |— ccdup(u)(l—e‘“')/u ,
0

n=0

plu)= i ™),

n=1

(4.3)

p™(u) being the contribution from the n electron-
hole—pair excitation. Since p'™(u) involves complicated
correlations of Py (t) (k <n), Mahan did not succeed in ob-
taining p™(u) for general n nor in resumming p'*(u) over
n. Instead, he gives only p'"(u) and p'?(u) for a separable
potential. The calculation of p'®(u) was already rather
cumbersome. The fact that we successfully resummed the
series of P,(z) in a closed form implies that the resumma-
tion of p™(u) is possible. Indeed, comparing Egs. (2.32)
and (2.34) with Eqgs. (4.1) and (4.3), we obtain

__ L r~ iut
plu)= o f_wdTA(T)e

=2 [ dre® Trin[14+K(re ™. (44)
2T Y -

The result is again valid for any core-hole potential.
Furthermore, the expression for p('”(u) is obtained from
Eq. (4.4) in a straightforward manner, with the correlation
of P(t) stated above being exactly taken into account.
We see that Mahan’s expression for p'*(1z) may be extend-
ed to p™(u) if we make the following replacement in Eq.
(16) of his paper,

L n+1 1
2 —(=D nat’
and increase the number of the denominators and the
times of integrations appropriately.
As regards the open-line propagator, the following rela-
tion is established between R (w) given by Eq. (3.14) of
Ref. 10 and our result;

R@)= 3 R,(w)

n=0

= [ dre i /w? .

4.5)
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To see it we need only expand Iy(#) into the series expan-
sion with respect to K (y,y’|t) using Eq. (2.35). We have
therefore succeeded in summing the series R,(w) over n
into a closed form:

R(w)= f_ocwdte"""
X 3 p(‘}’)e_ieyt{[l-l-lj(t)e—ig]_l}yy’
Y, Y'(>)

xXp(y')/w?. (4.6)

This relation, when applied near the threshold, gives us
the critical amplitude defined by Mahan, which is one of
the topics to be discussed in the next section. In sum-
mary, our formulation is complete in that it may be ap-
plied without any restriction to the form of the core-hole
potential, reproduces in the case of a contact potential
what has already been obtained, and gives a number of ex-
pressions that have not been derived so far.

V. THRESHOLD BEHAVIOR

We are now in a position to derive 4 (¢) and I(¢) for a
contact core-hole potential. We are interested in the
threshold region, i.e., w~wy. Our purpose is twofold: to
see that the result of ND is reproduced and the prefactor
of the spectrum is obtained.

Substitution of Eq. (3.21) into Eq. (2.21) yields the ker-
nel K (y,y’ | ¢ for a contact potential:

|X—'u+ |2ei€”l

(eu—e ) €eu—€,)

K(y,y'| H=v? |Xy+ | |X'r’+ | 2

pu(<)
The kernel thus contains two energy denominators. Be-
cause of this it appears that solving the integral equation
(2.29) would be difficult. Here we describe our method of
obtaining A4 (¢) and I(z), where the energy denominators
of K(y,y’|t) are removed by the identity

P e Eyr_ 1

) fo dre _E+ . (5.1)
Since €, <0 and €,>0 in K, the denominator €,—€,+18,
for example, is the same as €,—€,. In what follows, the
energy variables in exponents should be understood to
have a small imaginary part as in Eq. (5.1).

We start from

K(y,y'|t)= _N0V2 |Xy+ | |Xy'+ |
% fooo dr fow dfr'e—ieyr_,ey'f(—ﬁ-(t—{-‘)’—f-?") ,
(5.2

the double integral being due to the two energy denomina-
tors. Here

_ 0 _ ;
Nod(1)= fBNﬂdeu | Xy %€ “, (5.3)

N, being the state density at the Fermi level. Correspond-
ing to Eq. (5.2) the integrals with respect to one-particle
energies in A (¢) and Iy(¢) are transformed into those of
the time variables. An elementary but somewhat lengthy
calculation by iteration shows that Egs. (2.34) and (2.35)
become
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A(t)=N5V2f°°daf°°d¢¢(t+a)F(t+a,t+T)$(t +7)

=— f dof dr At +7,t +0)
XF(t+o,t +71) (5.4)
and
10<t)=N0w2f0°°dr¢(t +F(t 7t +) . (5.5)
Here ¢(t) and A are defined by
Nog(1)= f Nyde, | X, |2e ", (5.6)
At +7,t +0)=N3V? [ " dEd(t +7+€)

Xt +0o+8), (5.7)
and F is the solution of the integral equation
Ft+mt+0)— [~ dp At +7,t+p)

XF(t+p,t +0)=06(tr—0) (5.8a)
or
F(t+nt+0)— [~ dpF(t+rt+p)

XAt +p,t +0)=8(r—0) . (5.8b)

Once we know F by solving Eq. (5.8), Egs. (5.4) and (5.5)
as combined with Eq. (2.36) give the spectrum. Equations
(5.4)—(5.8) are exact for a contact core-hole potential. It
is important to realize the role of the argument ¢+
(=t +& with a small but positive 8) involved in Eq. (5.5).
The first iteration of Eq. (5.8a)

FOt +1,t +)=8(r—38)
leads precisely to
IQ(H)=Now?(2) .

If we incorrectly use t instead of t +, the first iteration
yields I (£)=+5Now?$(1), i.e., one half of the correct
value, because

¢ 1
J drdn=1.

It is easily checked that the difference of the factor + be-
tween the correct Iy(¢) defined by Eq. (5.5) and the in-
correct Iy(#) defined by Eq. (5.5) in which ¢ + is replaced
incorrectly by ¢ persists to all orders of the iteration of Eq.
(5.8a).

Now in order to obtain the threshold behavior, the
long-time behavior of ¢(z) and ¢(¢) is necessary. In this
situation some simplifications that allow an analytical
treatment may be employed. For example (see Appendix
),

¢()=(it) T I'(1—a) | X(0)|?,

(5.9)
d()=(it)"'"°T'(1+a)| X(0)|?,
with
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2 paexp | 2 [Paed=%
| X(0) | “=D%xp ‘n_fo de ,
(5.10)
- _ o(e)—§
| X(0)|?= | D | ~exp | = f- °],
where
850=25(0) (5.11a)
is the phase shift at the Fermi energy and
a=28y/m . (5.11b)
With the change of variables
t+1=t/x,
etc., and the definition of the new function
_ a—1
Fap=tX—F|L L (5.12)
x® x'y
it follows that (Appendix C)
Sptandy 1 1
tA(t)=—T— fo fo F(x,y)dx dy , (5.13)
1
Io()=Now?¢(z) fo dx F(x,1—), (5.14)
where
= tandy 1 (z/x)
Foop+—— [ dz! F(z,y)=8(x —y) . (5.15)

Note the argument 1— (=1—8) in Eq. (5.14) in accor-
dance with Eq. (5.5).

Before solving Eq. (5.15), we consider briefly its itera-
tive solution. We are concerned with it because, as dis-
cussed by Mahan,!! the first-order term of z4(¢) in the
iteration is —8gtand,/m?, while the exact result of ND is
—(80/m)®. We would like to know the type of series for
A (t) the iterative solution of Eq. (5.15) will nge rise to.

The first iteration is now trivial, since F®(x,y)

=8(x —y). From Eq. (5.13), we have
tA'9(t)= —8tand,/m? . (5.16a)

This is the result of Mahan. In the second iteration, cal-
culation shows

tand

AW =1 (5.16b)

2
J [1—280c0t(28,)] -

It is impossible to hypothesize about the general form of
A'™(t), based on Eqgs. (5.16a) and (5.16b). When, however,
the trigonometric functions involved are expanded with
respect to 8, one sees that

2

AV =— |— | 14383+ ),

8
1[4 +A V(1) ] = [ 0 ] (1— 88+ ---).

Now the structure of the iteration is evident: The next



6842

iteration will bring forth 4'®(¢), whose leading term,
when Taylor-series expanded with respect to &, is
2

8
A= |20 Bty (5.16¢)
T 45
so that
2
2 0 .
t Y AM=— |— | [1+0(5)] .
n=0 ™
Actually, the exact result for 4?)(¢) is obtained as
3 2
Sptand, 2 2 cot2d,
AP= | =2 | | | S — 2 2 cot2(28,)
2 26, | |37 5, T2V
(5.16d)

It is straightforward to check Eq. (5.16¢). From this re-
sult, we may convince ourselves that the ND solution is
correct, in spite of the fact that a few lower-order terms in
the golden-rule series obscure the validity of the ND solu-
tion.

So far we have considered A (z), the exponent of the
core-hole propagator. As for the open-line propagator,
Eq. (5.14) exhibits already the exact polwezg-l/aw behavior
through the factor ¢(2), i.e., Io(t)oct 20T from Eq.
(5.9). The solution of the integral equation thus deter-
mines the prefactor of the power-law behavior involved in
Iy(2).

Our remaining task is to solve Eq. (5.15) in order to see
that the iteration, in fact, converges to the ND result for
A (¢) and to derive an explicit formula of the prefactor of
Iy(t). Now let us return to Egs. (5.13)—(5.15). By means
of the change of variables, the integral equation (5.15)
may be transformed into a form solvable by the method of
Wiener and Hopf.!® The details are given in Appendix D.
The result is

A(t)=—(8g/m)*/t , (5.17)
Io(8)=NoAow?T(1—8,/m2iD0 " fit),  (5.18)
with
2 D 8(e)—§g
Ag=exp ;fo de——|. (5.19)

Combining Eqgs. (5.17) and (5.18) with Eq. (2.36), the spec-
trum near the threshold is obtained as

28y /m—(8y/m)?

I (@) < 1/(0—wy) (5.20)

Thus the exponent of the ND solution is reproduced pre-
cisely in the golden-rule approach without recourse to the
coupling-constant integration.>*

In terms of the spectrum of Iy(w), Mahan and co-
workers defined the critical amplitude E [4 (0) in their no-
tation'”]

D 28y/m

O — Wt

Iy(w)=27Now?=

(5.21)

From Eq. (5.18) we have
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2 28/
Io(w)=27Nw?4, i((ll:;sgo/j;) a)—Dcoth '
(5.22)
Thus
. (1—8y/7) (5.23)

"r(1—280/m) °

i.e., we have an analytic expression for the critical ampli-
tude.

Let us compare our = with the exact numerical result
obtained by Mahan. For a step-function density of states

with D=|D|=—+ and 8,=7/5, Mahan and co-
workers obtained!?

E=0.9104, . (5.24)
When the values I'(1—8y/m)=T(0.8) and

I'(1—28y/m)=T(0.6) are inserted into Eq. (5.23), our for-
mula yields

E2=0.91024, . (5.25)

The agreement is thus quite satisfactory, meaning con-
vincingly the exactness of our expression (5.23) of the pre-
factor. Note that because of the factor 4,, which is deter-
mined by the phase shifts over the whole conduction band
above the Fermi energy, the prefactor is not determined
solely by the phase shift at the Fermi level.

Also interesting is the comparison of our prefactor with
the result obtained by Oliveira and Wilkins through the
numerical renormalization-group scheme.?’ Since their
calculation corresponds to the prefactor of I(w), not of
Iy(w), we must take into account the effect of 4(z). To
obtain the core-hole propagator, Eq. (2.32) shows that we
must integrate 4 (7) in the range O < 7 < t. If the long-time
behavior of 4 (7) shown in (5.17) is assumed to be correct
down to ¢t =0, we find

(1 —8y/m)?
O T(1—280/m+(8o/m))

Using 47=0.866 obtained by Mahan, we find ==0.836,
to be compared with the result 0.82 by Oliveira and Wil-
kins. The agreement is again satisfactory. Note, however,
that the prefactor given by Eq. (5.26) is based on the
long-time behavior (5.17) of 4 (¢). We cannot say definite-
ly whether or not the short-time behavior of 4 (¢) can be
neglected in the prefactor. Unfortunately, therefore, we
may not attribute the cause of the discrepancy between
0.836 and 0.82 to the numerical analysis, which is report-
ed to have an error of a few percent.

[

—A (5.26)

VI. SUMMARY

The most elementary way of calculating the optical ab-
sorption cross section is perhaps to use the Fermi golden
rule. In this paper we have followed this approach in
deriving the soft-x-ray absorption cross section. Our
method is thus composed of specifying final states of the
optical transition, calculating the transition probability for
electrons in the ground state to jump to them, and finally
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summing the probabilities over all possible final states.

In our formalism we have focused our attention on
showing how the factor associated with the orthogonality
theorem of Anderson!3 arises in the expression of each
transition probability and how it gets canceled in the
course of summation over the various final states. It is
this cancellation that leads to an absorption cross section
that remains finite even in the limit of N (number of elec-
trons) — oo.

The expression of the cross section we have arrived at is
compactly written in terms of an integral kernel K. We
have given the expression of K [Eq. (2.21), valid for an ar-
bitrary core-hole potential]. Consequently, the final form
of the closed-loop and the open-line contributions we have
obtained are applicable irrespective of the form of the
core-hole potential. We would like to emphasize the ex-
actness and generality of our formulas.

For the special model of a contact core-hole potential, a
detailed comparison is made between the present results
and those of Mahan and co-workers,'%!! which are the
most extensive contributions related to ours in the litera-
ture. It is found that our formulas have a number of im-
provements over the formulas of Mahan and co-workers.
The extension achieved in the expression of the core-hole
propagator was especially emphasized.

As for the integral equation with the kernel K, we have
shown that the exact power-law behavior in the near-edge
region was correctly reproduced and the prefactor of the
power law could be obtained analytically. Our formula
for the prefactor shows good agreement with the numeri-
cal values known already.!®%2°

Finally, one brief remark is in order on the work of oth-
er authors. Except for the work of Mahan and co-workers
discussed in this paper, there recently have been a number
of developments in the analytical aspect of the x-ray ab-
sorption problem, and those by Hinsch and Ekardt?! and
Hinsch and Minnhagen?? should be mentioned in particu-
lar. The iterative step developed by these authors is not
directly connected with our iteration scheme in terms of
K. Nevertheless, the rapid convergence of their scheme is
remarkable in the near-edge region of the closed-loop con-
tribution.”2” From a practical point of view, therefore,
their formulas have perhaps some advantages over those
obtained in the present paper or achieved by Mahan and
co-workers by the golden-rule approach.

APPENDIX A: TRANSFORMATION OF D(t)

We prove Egs. (2.32)—(2.34) and (2.37) by rewriting
D(t) defined by Eq. (2.27) into a different form. For an
N XM matrix X and an M X N matrix Y, there is an iden-
tity

det|1+X ¥ |=det|1+YX]| . (A1

The left-hand side involves an N XN matrix, while the
right-hand side involves an M XM matrix. The equality
will be shown by expanding both sides into the Fredholm
series. When the definition (2.21) of K (y,7, | t) is substi-
tuted, Eq. (2.27) becomes
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ATy e A y,)*  —ie,t
D(t)=det |5, ,,+ 3 HYD ey .U;Vz i
pl<) A A
(A2)
By (A1)
ATy i Alfgy) et
D(t)=det |8, ,, + 2 .“1*’}’ e £3Y e 2
r>) A A

(A3)

The matrix with respect to the unoccupied states ¥,y is
converted into the matrix with respect to the states p,u,
below the Fermi level. The sum over y(>) in (A3) is
transformed into the sum over all the states above and
below the Fermi level:

2

y(>)

Alpyy)* —i€,t A(Eyy) i€, t
A* e A e

A@uY)*  iep AlEyy) et

= e e -8 . (A4)
Y(?ll ) A* A Ky
This relation results from
A(@;y)=98,, (AS5).
for the state y below the Fermi level.
Substituting (A4) into (A3), we find
ATV _ie s AMTyy) i€t
D(f)=det 2 HiY e ie,t B\ Y e M2 (A6)
yay  A* A

Now substituting Eq. (2.8) into (A6) and arranging the re-
sult using matrix notation, we find

D(t)=[det(4 ~1)]*detB(t)det(4 ) [] &%, (A7
pl<)
with an N X N matrix B(z) defined by
[BOki,= 3 abxe ap, . (A8)

y(all)

Note that the unperturbed states k; and k, below the Fer-
mi level label the row and column of B(t), and by the
completeness of {1, }, it holds that [B(0)]k,x, =6k k,- By

definition [Egs. (2.4) and (2.5)]
det(4—H)=1/A,

I—I e'e"t=eiAEO' I—I eiimf ,

pl<) m(<)

(A9)
(A10)

where AE° is the ground-state energy shift and ¢,, the un-
perturbed one-particle energy.

From (A7) and (A9) we obtain Eq. (2.33):
D(0)=|det(4~1) |2=1/|A|2. (A11)

When N factors eie"‘t (m =1,2,...,N) are put inside the
matrix B(?), it follows that
D(t)=D(0)det | B(t)e'€| ! AE°1 (A12)

The determinant involved in the right-hand side is exactly
the determinant used by CN. Thus Eq. (2.37) is proved.
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The remaining equation (2.32) with Eq. (2.34) is ob-
tained by transforming Eq. (2.27) into

D(t)=exp[Indet | L+K (e ]
=exp{Tr In[1+K()e "]} .
The identity

Fo=f©+ [ dr

then leads to the exponent given by Eq. (2.34).

(A13)

df(T)

APPENDIX B: DERIVATION OF EQ. (3.12b)

We derive Eq. (3.12b) from Eq. (3.11b). Let N;(e) and
Nz(€) be the state densities of the initial and the final
states, respectively. From Eq. (3.11b), it holds that

1 1

d
e - — . Bl
dz InXo(2) % €—2 g € —2Z (B1)
In the continuum limit
d D Np(e)—Nj(e)
ZIDX()(Z)= fﬁ de—-:z———— . (B2)
By means of the well-known relation
Np(€)=N(e)+86'(e)/m (B3)

and the integration by parts, we obtain

d d |1 pD . 8e)
L prgedte

__lnX()(Z) =—
z—€
from which Eq. (3.12b) follows.

w
£

dz dz

APPENDIX C: SOME FORMULAS
IN THE LIMIT t — o

In this appendix we describe the approximations that
lead to Eqgs. (5.13)—(5.15), used for the spectrum near the
threshold. From the definitions (5.3) and (5.6), the long-
time behavior (— «) of ¢(z) and ¢(¢) can be determined
by X, and X, with €,,€,~0. In this limit the disper-
sion integral involved in X, [Eq. (3.15)] is transformed

as follows:
8(6) D de D 8(e)—J
Pf de=8cP [ —“—+P [ P

8(e)—5
~Blne, — ’SolnD IDM e].

(C1)
In the same way,

0 &(e)
P fB e_“—_zdez—&)ln | €

0 8(e)—b
( 501n|D|+f_ﬂ—°deJ.

(C2)
Thus

K. OHTAKA AND Y. TANABE 28

Xy 2=67% X (0|2,
(C3)
|‘Yu+ |2: |eu|a|)?(0)|2 ’
with a=28,/m and | X(0)|? and | X(0)|? defined by Eq.
(5.10).

In the integrals over eﬂ [in Eq. (5.3)] and €, [Eq. (5.6)]
in deriving ¢ #(t) and #(t), we observe that the limits of in-
tegration D and D can_be replaced by — o and + oo,
respectively, when D¢, | D | ¢ >>1 and that the integrals are
well-behaved for |a| <1. The first condition for ¢ is
satisfied in the long-time behavior, and the second condi-.
tion for the phase shift is usually satisfied in the absence
of bound states. Equation (C3) leads to Eq. (5.9).

The definition (5.7) of A as combined with Eq. (5.9)
gives
At +7,t +0)

=[NoV | X(0)]| | X(0)|PT(1—a)T(1+a)
x [7dglie+7+£)]71°
X[i(t+o04+&]7 1. (C4)

The integral over & is evaluated by transforming the in-
tegral variable from & to

gziif_té
t+o+§€

The result is further simplified using
| X(0)|2 | X(0)]|%=|Xo(e=0) |2,
I'l—a)T
and the identity (3.13).

(C5)
(1+a)=ma/sin(ra) , (C6)
Finally

tand, 1| t+o

t+71

a
—1

Alt+1,t+0)= (CT)

2T T—0O

With this expression of A and the new function F defined
by Eq. (5.12), transforming Egs. (5.4), (5.5), and (5.8a) into
Egs. (5.13)—(5.15) is straightforward.

APPENDIX D: SOLUTIONS OF 4 (1) AND Iy(t)
BY THE METHOD OF WIENER AND HOPF

In terms of the new variables u,v,w defined by
(D1)

Eq. (5.15) becomes (@ =28y/m)

alu —w)

1 Flw,v)=8(u —v)e” .

— tand ® —
Flup)+—=2 [ dwt=¢
e

2 u—w)__
(D2)

Here we have used the simplified notations F(u,v) in place
of F(e *,e™"). Although we need consider only the re-
gion u,v>0 Eq. (D2) automatically defines F(u,v) for
u <0. In terms of the two auxiliary functions defined by
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F 0, u>0
+(wv)= F(u,v), u<0
_ (D3)
—F(u,v), u>0
F_(u,v)= 0, u<O0
Eq. (D2) is reexpressed as
tan80 © l_ea(u—w)
F+(u,v)——F_(u,v)-— pyn f_wdwm—:‘_—l‘F_(w,v)
=8(u —v)e’. (D4)
We solve (D4) using the Laplace transform. Let
f_w du e ~F 4 (u,0) =®*(s), . (D5)

The Laplace transform of the kernel is found to be

fw du e‘s“l__u—dm;=1r{cot[(s—a)fr]—cot(svr)} .
— o0 e -—

(D6)

Draw a straight line / in the complex s plane parallel to
the imaginary axis in the region O<a<Res<1
(O<Res<1l+4+a for —1<a<0). By considering the
analyticity, one sees that ®*(s), [®~(s),] is regular on the
left-hand (right-hand) half plane of the line /. From (D5)
and (D6), Eq. (D4) reduces to

Ot(s), — U~ Us)VUs)P(s),=e 1, (D7)
with
(s —a/2)?
Us)=— """+,
L'(s)I'(s —a) . (D8)
Vis)— rl—s+a/s2)

T (1= I1—s +a)

We have made use of (C6). Note that U(S) [V (S)] is reg-
ular and free from zeros on the right- (left-) hand side of /.
Equation (D7) determines a gap along / between ®*(s),
and ®~(s), when s approaches / from the left- and right-
hand sides, respectively. One can solve Eq. (D7) in terms
of the Hilbert transform, as in the ND formulation.

In the homogeneous equation of (D7)

)=V,

(D9)
e (s)=Ul(s)

are the solutions that are in accord with the regularity re-
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quirement. In terms of ¥ and ¢~, Eq. (D7) becomes

q)+(s)u (p_(s)u e—(s-—l)v
— = (D10)
@T(s) @ (s) @t (s)
The solution of (D10) that vanishes at s = o is
q;i(s) _ ¢i(s) f dr e-—(r-—l)v (DI11)
T 2w 1T pt(r)r—s)

Now the right-hand sides of Egs. (5.13) and (5.14) turn
out to be

1 1 _ =3
fo fo dxdyF(x,y):—fo [P (s=1)],e ",
(D12)

foldx F(x,1—)=—[® (s =1],_oy - (D13)

To evaluate (D12), first integrate over v and next carry out
the 7 integral of (D11) by closing the contour on the left-
hand half of the complex 7 plane. Calculation of (D13) is
rather delicate. The subscript v =0+, which originates
from the variable ¢ + in Eq. (5.5), means that in evaluat-
ing (D13) the contour used in (D11) should be closed on
the right-hand half of the 7 plane where @*(7)~! has an
infinite number of poles. Instead, put v =0 in place of
v=0+4. Then we can close the contour as we wish. Close
it in the left-hand half and calculate the contribution of
the integral along the added arc of the closed contour. In
this way we get [® (s =1)],—-o. Now the difference be-
tween [® (s =1)],_04 and [® (s =1)], o is a factor of
+ [see the comment given below Eq. (5.8)]. In this way
we find

1 a1 -1
L, F(xy,)dxdy:%z&ocotﬁo, (D14)
[ P14 )dx = (1= D=0/ (D15)
o F I =@ = T 1 280/m)

Combining these results with Egs. (5.13) and (5.14), we ar-
rive at Egs. (5.17) and (5.18).

Although (D14) and (D15) are derived under the as-
sumption that —1<a<1 (—7/2<8y<m/2 in terms of
the phase shift), the range of a where (D14) and (D15) still
apply may be shown to be extended to —2 <a <2. In the
presence of a bound state in the final state (planned to be
treated in a separate paper), this property of the solution
of the integral equation (5.8) plays an important role in
deducing the correct power-law behavior.*
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