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A self-consistent perturbation model for calculating the ground- and excited-state electronic prop-
erties of molecular and rare-gas crystals is presented. A tight-binding approximation is used, in
which the effects of the crystal potential, calculated with local-density functionals, are included as a
perturbation on the molecules (or atoms). The molecular (atomic) wave functions are then comput-
ed from standard Hartree-Fock theory. For the case of solid argon under pressure, a decrease in
atomic volume causes a gain in free energy, which is partially balanced by the energy required to
compress the atom. Calculated exciton energies for Ar disagree by only 2.5% with experimental

values at zero pressure.

I. INTRODUCTION

In the last two decades much progress has been made in
the theory of gas-phase chemical kinetics. Many models'
have been developed to explain and predict the outcome of
reactive collisions between simple molecules. However,
because of the fundamental differences between the chem-
istry of isolated molecules and molecules on a crystal lat-
tice, gas-phase concepts are not directly applicable to reac-
tions in solids, especially the high-pressure solids found in
the interiors of planets, in detonation shock waves, or in
diamond anvil cells. Recent experimental results’ on CO
and SO, at high pressures show that photochemical reac-
tions occur in these materials only after the crystals un-
dergo a structural phase transition. A recent theoretical
calculation® suggests that the Hg molecule, which cannot
exist for more than one vibrational period in the gas
phase, might be stabilized in a high-pressure solid. These
results show that the reaction potential surfaces are much
different in the solid than in the gas phase, with certain
reaction pathways potentially blocked by the other mole-
cules in the solid. Thus, a comprehensive theory of the
chemical reactivity of such systems must treat both the
electronic structure of the constituent molecules and the
crystal structure.

Crystal structures of molecular solids can be accurately
calculated by a recently reported ab initio theory.* This
method, which is based on the Gordon-Kim® model for
calculating intermolecular forces, gives very good results
for the structure and energy of molecular crystals, without
the prior determination of pair interaction potentials.
Since the only input is the electronic density of the con-
stituent molecules, perturbations of the molecules are easi-
ly incorporated in the crystal-structure calculation.

Significant progress has been made recently in calculat-
ing the electronic structure of solids. For metals, various
techniques [Korringa-Kohn-Kostoker (KKR), augmented-
plane-wave (APW), and linear muffin-tin orbital tech-
niques (LMTO)] have been developed for finding the elec-
tronic bands, cohesive energies, pressure-volume relations,
and other properties with deviations of a few percent.®
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Pseudopotential calculations have been employed to calcu-
late the properties of semiconductors, such as Si (Ref. 7)
and Ge (Ref. 8) with errors of 1% or so, and have been
used to give reasonably accurate predictions of phase tran-
sitions. However, none of these methods are entirely suit-
able for calculating the electronic structure of molecular
crystals. Band-structure calculations for metals, as usual-
ly applied,” employ a muffin-tin approximation, assuming
spherical symmetry about each lattice point. Because of
the nonspherical shapes of molecules, a spherical approxi-
mation is not a particularly good starting point for the
calculation of their properties. Pseudopotential calcula-
tions can be used, but require large basis sets, and are
therefore computationally costly.” The same criticism ap-
plies to the Hartree-Fock self-consistent-field methods
that have been proposed.'® These latter calculations are
numerically difficult, and the approximations necessary to
overcome this problem make the theories either inaccurate
or impractical for most crystals. Also, most electronic
structure methods!! cannot, in their present formulations,
be easily used to study the excited states (excitons) of the
molecules in the crystal.

One of the difficulties in dealing with the electronic
structure of molecular crystals is to take into account the
molecular character as well as the long-range forces in the
crystal. One can approach the problem by focusing on the
solid and using as a basis the solution to the crystal Ham-
iltonian, or one can focus on the molecules and treat the
crystal as a perturbation. Here we take the latter ap-
proach. Local-density functionals are used to calculate
the crystal potential, which in turn is used as a perturba-
tion in calculating the molecular wave function by stan-
dard Hartree-Fock theory. The ground-state crystal struc-
ture of the system is found self-consistently by including
changes in structure due to changes in the constituent
molecules. Excited-state transitions are calculated for the
molecule in the crystal field of the ground-state molecules.

Here we develop the method and apply it to a rare-gas
crystal (Ar) as a function of pressure. Although Ar can be
treated by standard band-structure techniques, the distor-
tions of the atomic wave functions make it a prototype for
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our molecular technique. The calculations are compared
to experimental structural data and to low-pressure exci-
ton data. In Sec. II, the crystal structure model is out-
lined, while in Sec. III the crystal-perturbation (CP) model
is described. Results on ground- and excited-state proper-
ties are given in Sec. IV, and are discussed in Sec. V. All
quantities, unless noted, are given in au. with 1
bohr=0.529 177 A and 1 hartree=2 Ry=27.2116 eV.

II. CRYSTAL-STRUCTURE CALCULATIONS

Crystal structures as a function of pressure were calcu-
lated with a recently reported theory, based on the
Gordon-Kim (GK) electron-gas model,” that gives excel-
lent agreement with experiment (1—3 % discrepancy in
both lattice energy and structure) for a large number of
molecular* and ionic!? crystals. It is assumed in the GK
model that the total electronic density of a crystal can be
approximated by the sum of the electronic densities of the
constituent molecules as

PAF)=3 FpiT—Ty) , 8
T

where p,(T) is the total electronic density at point T, the
sum over i is a sum over all the molecules in the unit cell,
1 is a lattice vector, and p; is the electronic density of the
ith molecule in the unit cell. The crystal electron-gas en-
ergy can be written as

w= [ Vdf" pHT)E;[p(T)]

— 2 2p(T—Ty)E;[p;(T—T)] |,
O

where E; is the appropriate energy density functional (ki-
netic, exchange, or correlation) for a uniform electron gas
and V is the unit-cell volume. The forms of these func-
tionals will be given in Eq. (5) below. The electrostatic en-
ergy is divided into a point-Coulomb (Madelung) term and
a non-point-Coulomb term. The total interaction energy
per unit cell is calculated directly, obviating calculation of
the pair potentials. The only input is the electronic densi-
ty of each constituent molecule.

For crystals involving neutral molecules (or atoms), the
long-range dispersion (van der Waals) energy must be in-
cluded. We approximate these interactions by summing
over the pair potentials ¥V = —C4/r®, where Cg is the
dispersion coefficient and r the distance between the pairs.
We do not include the electron-gas correlational energy
since it is included in the disperion-energy term. This ap-
proximation may break down at very small separations
where the long-range r —° form of the dispersion energy is
no longer valid.*® We neglect many-body contributions
to the dispersion energy.

At low pressures, the properties of crystals made up of
neutral molecules or atoms can be accurately calculated
using gas-phase electronic densities for the molecules
(atoms) in the crystals and gas-phase dispersion coeffi-
cients. At high pressures there are larger perturbations of
the molecules in the crystal, and the crystal-molecular
electronic densities must be used in the electron-gas calcu-

6813

lation of the crystal structure. Changes in the dispersion
coefficient can be approximated from relations given by
the Drude!? for dispersion energies and the Kirkwood for-
mula'* for the atomic and molecular polarizabilities. For
atoms, the polarizability is given by

_ 4,

a= ON )

where N is the total number of electrons and (#2) is the
average of 2 over the atomic electronic distributions. We
scale this result to the experimental polarizability and find
for a as a function of pressure

r3), |’
(r?),

Here, a, is the gas-phase value of the polarizability and
(rz)g the average over the gas-phase electronic distribu-
tions. We find (r?), from Hartree-Fock calculations on
the isolated atom. The average of r? over the crystal
atomic wave functions (r?), changes as a function of
pressure. The dispersion coefficient is given, in the Drude
model,'? by

_3 %

A Vm

where Q, is the number of electrons in the valence shell of
the atom and m is the effective mass of the valence shell
found by fitting experimental data. If we assume that Q,
and m are constants, independent of changes in the elec-
tronic distributions, we find

2, I’

v | (3)
(r’)g
where Cg , is the gas-phase dispersion coefficient. Below,
we shall use this relation to calculate pressure-dependent
changes in the dispersion constant for use in computing
the crystal structure.

We note that this method of calculating crystal struc-
tures is consistent with the tight-binding approximations
made in this paper. It is assumed that the atoms or mole-
cules in the crystal dominate the crystal properties. We
calculate the interaction of these molecules, rather than
the total crystal energy, which obviates the solution of the
many-electron crystal Hamiltonian, and thus makes possi-
ble calculations on complicated systems.

III. CRYSTAL-PERTURBATION MODEL

a(P)=a, (2)

Cs

Co(P)=Cq,

A. General

We assume that the electrons in the molecular crystal
are tightly bound to their molecular sites. This assump-
tion limits the model to regimes where the band gap is
still large. We then determine the way the crystal envi-
ronment perturbs a molecule by performing a Hartree-
Fock self-consistent-field (SCF) calculation on the mole-
cule in a crystal field. The crystal potential is calculated
with local-density functionals, and is included in the SCF
calculation only in the one-electron integrals, thereby
lengthening, only slightly, the time needed for the molecu-
lar or atomic calculation.
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As in the GK model, Thomas-Fermi-Dirac (TFD) functionals!® are used and the total crystal energy can be written as

E= [ {p D) Ei[p,]+Exlp:1+E.[p:))+p,Plp,)}d T,

4)

where the density functionals are, for the kinetic, exchange, and correlational functionals, respectively,’

1/3

313
Ek:_%(3,n,2)2/3p2/3zckp2/3’ Ex=_z ;r_ 1/3

p =

1/3
—Cxp ’

0.03111nr; —0.048 +0.009751nr; —0.01r,, O0<r;<0.7

E,= |—0.06156+0.018981nr,, 0.7 <r, <10

—0.438r, '+ 1.3257,72 —1.471,72—0.4r,7°7%, 10<7,

where r,=(3mp)!/3. The total electronic density p, is

given in Eq. (1) and the total charge density p - is given by

P )= 2221’8( r—Ty) —p T,
P

where Z; is the nuclear charge of the ith atom and 8(T) is
the Dirac 8 function. The total electrostatic potential is
®,.. The different terms (kinetic, exchange, and correla-
tion) are scaled to give agreement with atomic SCF ener-
gies.!® The scaling factors for interacting pairs of atoms
are found by comparing the density-functional energies,
found by integration of the energy density functional in
Eq. (5), with the appropriate SCF energies for the atom
isoelectronic with the pair. This scaling is an approximate
correction for the inadequacies of the density functionals
in determining the pair interaction potential with the GK
model.!® These factors are used in calculating the crystal
structure, and, for consistency, in finding the crystal po-
tential.

The TFD crystal potential H, can be found by taking
the functional derivative of Eq. (4) with respect to p,,

H.=3Cip}*—4Copy* +E(p) + @, ©

where E_ is the derivative of p,E.(p,). The crystal in-
teraction potential is found by subtracting the TFD poten-
tial of the atom or molecule at the origin. This molecular
(atomic) potential H,, has the same form as Eq. (6) but
with p,,(T), the molecular (atomic) electronic density, re-
placing p,. The crystal interaction potential is

V(¥)=H,—H,, . (7)

This perturbation is added to the molecular (atomic)
Hartree-Fock Hamiltonian and the crystal-molecular
(atomic) wave function determined using standard free-
molecular Hartree-Fock techniques.

B. Application to argon

We now illustrate the method for the rare-gas crystal
Ar. For computational ease we represent V' (r) as an ex-
pansion in a set of orthogonal polynomials. For Ar in the
fcc lattice, it is most convenient to use the Kubic harmon-

l

ics, which are linear combinations of the spherical har-
monics.!” We then have

V(E)=SK,(0,0)V,(r) (8a)

and
2T AT ’
Vatr)= [ [ V(FIK,(0,8)sin0d0d¢ . (8b)

For a fcc lattice only even terms in the expansion are
nonzero, and the n =2 term vanishes. The first two Ku-
bic harmonics are the following:'®

Ko=Y0, Ke=() [ Yao+ () (Yu+Y3)].

Here the Y}, are the spherical harmonics. In the SCF cal-
culation of the atom in the crystal field, the crystal poten-
tial is included in one-electron integrals over products of
the atomic orbitals. The integrals over terms with n >4
are zero for Ar, unless excitations to.d orbitals are includ-
ed. Here we consider the ground and first few excited
states of Ar, so we keep only the spherically symmetric
Vo(r)K, term. The crystal potential is determined by
summing the electronic density and potential in the crys-
tal and then finding the density-functional and electrostat-
ic terms. The expansion coefficients V(r) are determined
by numerical integration using a two-dimensional Gauss-
Legendre (GL) quadrature'® at a set of radial distances
corresponding to the one-dimensional GL quadrature used
to calculate the SCF perturbation integrals.

All integrals were calculated to about 1% accuracy.
We used a standard SCF program with the orbitals ex-
panded in Slater functions.”® The energies of the excited
states were found from the Slater coefficients for open-
shell interactions.?! The wave function for Ar, proposed
by Clementi and Roetti?? with two added 4s functions,
was used for all calculations. This wave function gives
the Hartree-Fock limit for the isolated atom. We opti-
mized the outer-orbital exponents for all calculations. For
the ground-state calculations, contributions from the first
three neighbor shells were included. At 500 kbar, in-
clusion of the second two shells changed the energy by
only 6Xx 107> hartrees out of a total energy of about
—526.719 hartrees. For the excited states, however, more
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shells were necessary to obtain convergence, as discussed
below.

The calculational procedure is straightforward. The
pressure-volume curve is determined using gas-phase Ar
electronic densities and the gas-phase dispersion coeffi-
cient (C¢=64.8).2> Many-body dispersion terms were
neglected, although Aziz?* has estimated them to make a
2% contribution to the total dispersion energy in the
zero-pressure solid. These calculations are done by
minimizing the free energy (G =E;+ PV) at a given pres-
sure, where the lattice energy E; is a sum of the electron-
gas terms, the Coulomb terms, and the dispersion energy.
At lattice parameters corresponding to a given pressure,
the crystal potential is calculated, followed by a SCF cal-
culation which gives the crystal atomic wave function for
that pressure. A new crystal volume is then computed for
that pressure using this new atomic wave function and the
new crystal dispersion constant found from Eq. (3). A
new potential is generated and the procedure is iterated
until we have a minimum crystal-free energy, where the
change in atomic self-energy due to changes in the wave
function must be included in the crystal energy. The
change in self-energy E; is given by

E.\':Ecr(P)_Escf(gas) ’ 9)

where E . is the SCF electronic energy of the crystal wave
function (not including the interaction energy with the
crystal potential) and E(gas) is the gas-phase SCF ener-
gy. In practice, it takes no more than one or two cycles to
reach self-consistency.

The atomic excitation energies are calculated using the
self-consistent ground-state crystal structure and atomic
wave functions. The excited-state interaction potentials
are found by treating the excited atom as an impurity in
the ground-state atom host. The total electronic density is
computed by.replacing the ground-state atom at the origin
with an excited-state atom in Eq. (1) and then subtracting
that density in Eq. (7). Here, we consider only absorption
and do not allow for relaxation of the lattice around the
excited atom. The calculations are iterated, with the host
fixed, until a self-consistent potential is found. The exci-
tation energy is the difference in energy between the
ground and excited states.

IV. RESULTS

A. Ground-state properties

The solid curve in Fig. 1 is the calculated pressure-
volume curve for fcc Ar found using the gas-phase elec-
tronic density and dispersion coefficient. Also shown are
the experimental results.?»?® The theoretical curve is
softer than the experimental curve, due primarily to
neglect of the many-body dispersion interactions. Table I
gives the experimental zero-pressure lattice parameters as
well as the theoretical values calculated with the gas-phase
atomic wave function. Considering the neglect of lattice
motions and many-body contributions to the dispersion
energy, the disagreement with the experiment is small
(within 2% in lattice parameter). Using the estimates of
Aziz?* for the zero-point energy (0.000297 hartrees) and
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FIG. 1. Pressure-volume curve for solid Ar. Solid curve is

the theoretical curve found with gas-phase atoms and dashed
curve is the self-consistent curve. Diamond at zero pressure is
the low-temperature experimental value of Ref. 25, and solid cir-
cles are the experimental points of Ref. 26 at room temperature.

many-body contributions to the dispersion energy
(0.000 083 hartrees), our calculated lattice energy for Ar at
0 K and zero pressure deviates by only 3% from the ex-
perimental value. Also given in Table I are the lattice pa-
rameters calculated with the gas-phase atomic wave func-
tion at higher pressures. With the use of these lattice pa-
rameters, the crystal potentials [Egs. (7) and (8)] for Ar at
a series of pressures were generated. An example of the

TABLE I. Calculated crystal properties for solid Ar. P is the
pressure in kbar, a is the nearest-neighbor distance in bohr, G' is
the calculated lattice free energy G'=E,;+ PV, E; is the atomic
stabilization energy of Eq. (8), and G is the total free energy
G'+E,. Energies are given in hartrees.

P a G’ E; G
Experiment?® 7.08 —0.0029
o° 6.96 —0.0034 —0.0034
0° 6.96 —0.0034 0.0000 —0.0034
od 6.96 —0.0030
100° 5.92 0.0549 0.0549
100° 5.90 0.0532 0.0009 0.0541
200° 5.65 0.1009 0.1009
200° 5.60 0.0971 0.0022 0.0993
300° 5.48 0.1421 0.1421
300° 5.42 0.1362 0.0035 0.1396
500° 5.25 0.2160 0.2160
500° 5.20 0.2057 0.0062 0.2119

2Reference 25 at 4.2 K and atmospheric pressure.

®Calculated with gas-phase atoms.

°Self-consistent crystal calculation.

9Energy including zero-point energy and many-body dispersion
energy from Ref. 13.
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FIG. 2. Ar self-consistent crystal potential V, at zero pres-
sure as a function of the distance from the atomic nucleus R.
Arrows on the R axis are the neighbor-shell positions.

crystal potential at zero pressure is given in Fig. 2, where
the positions of the neighbor shells are shown. The com-
plicated shape is due to the balance between the repulsive
forces and the attractive electrostatic forces. As noted
earlier, only the first shell makes a major contribution to
the perturbation integrals for the ground-state atom. As
the pressure is increased, the shells move closer in and the
crystal potential becomes more repulsive.

In Table I are given the lattice parameters calculated
with the self-consistent crystal atomic wave functions. At

1072
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FIG. 3. Logarithm of the electronic density p(#) of the atoms
as a function of distance R from the nucleus and of pressure.
Given are the gas-phase, zero-pressure, and 500-kbar atomic
densities. Marked along the R axis are the nearest-neighbor po-
sitions for the 0-, 100-, and 500-kbar crystals.
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zero pressure, the atoms are essentially unperturbed from
their gas-phase state, and the self-consistent structure and
energy are the same as that found with the gas-phase
atoms. As the pressure is increased, the lattice parameter
found with the crystal atomic wave function becomes
smaller than that found with the gas-phase wave function.
By 500 kbar, the lattice parameter has been reduced by
about 1% from the gas-phase atom calculation, giving a
volume difference of about 3% and an energy difference
of about 2%. The change in the atomic electronic distri-
butions can be seen in Fig. 3, where the crystal atomic
density is plotted and compared with that for the gas-
phase atom. As the pressure is increased, the electrons of
the atom are compressed to a smaller volume. The driv-
ing force for this compression is the reduction in total free
energy due to the smaller lattice. There is a balance be-
tween this energy gain and the energy necessary to
compress the atom. At 500 kbar, about 0.01 hartree are
gained by having the smaller atoms in the lattice, but
0.006 hartree are needed to perturb the atoms (E; in Table
I). The dashed line in Fig. 1 is the self-consistent
pressure-volume relation for Ar. The smaller volumes
found with the crystal atomic wave functions indicate that
the effective interaction in the solid is less repulsive than
that between gas-phase atoms.

In Table II we show how the orbital energies change
with pressure. There is a gradual positive shift in energy
as the pressure is increased, with a change of almost 7%
relative to the gas-phase value in the energy of the outer-
most orbital (3p) by 500 kbar. The inner orbitals are
much less affected by the crystal potential, with the 2p or-
bital shifted by only 0.6% at 500 kbar. The shifts, while
small, indicate a perturbation of the electronic structure of
the inner shells. One other measure of this perturbation
can be found by examining changes in the electronic den-
sity of the individual orbitals. We find for Ar at 500 kbar
essentially no changes (less than 5%) in the 2s and 2p elec-
tronic distributions from the gas-phase values until a dis-
tance of about 2 bohr from the nucleus, where the contri-
bution from these orbitals to the atomic electronic density
is about 107 e~/ bohr® out of a total density of about
0.05 e~/ bohr”.

As the atoms are compressed in the crystal lattice the
extent of their electronic distributions is decreased (Fig. 3).
The change of ({r2))!/? with pressure is given in Table
III. There is a 3% decrease in the radius of the distribu-
tion from the gas-phase value to that found in the 500-
kbar crystal. By using Egs. (2) and (3) we find the values
for the polarizability and dispersion constant shown in
Table ITII. We see that the atomic polarizability decreased
by about 9% up to 500 kbar, while the effective dispersion
constant is reduced by 13%. Because of the crude nature
of the Kirkwood formula, the polarizability changes
should be considered as only qualitative measures of the
effects of compression. The decrease in the dispersion
contants makes the interatomic interaction potential less
attractive. If the gas-phase dispersion term had been used
in the calculation of the self-consistent crystal structure,
then the effects of pressure on the interaction energy
would be greater, yielding a slightly softer pressure-
volume curve.
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TABLE II. Orbital energies of Ar under pressure. Orbital energies for the gas-phase atom are given
in hartrees in column 1, with changes in eV relative to the gas-phase values given as a function of pres-

sure in kbar in the other columns.

Orbital Gas P=0 100 200 300 500
Is —118.6104 0.038 0.5604 0.999 1.301 1.815
2s —12.3222 0.035 0.547 0.901 1.167 1.625
2p —9.5715 0.035 0.550 0.906 1.173 1.633
3s —1.2774 0.027 0.365 0.574 0.743 1.039
3p —0.5910 0.028 0.365 0.610 0.798 1.128
Ei —526.8171 —526.8154 —526.7900 —526.7685 —526.7508 —526.7151

#SCF energy including interaction with potential.

B. Excited-state properties

The crystal potentials for the Ar 'P and 3P states (elec-
tron configuration 1522522p%3p°4s!) were found using the
self-consistent ground-state atomic densities and lattice
constants. The reference potential H,, in Eq. (7) was that
of the excited atom, assuming spherical densities. Because
of the large radial extent of the excited-state electronic
distributions, it was necessary to include a large number
of neighbor shells in the calculation of the perturbation in-
tegrals. For P =0, three neighbor shells were needed, but
for P> 100 kbar, a revised procedure was found to be
necessary. Our original procedure had been to calculate
the crystal potential to some distance, 7,,, from the nu-
cleus of the excited-state atom. We discovered, however,
that in the optimization of the 4s orbitals, a spurious ener-
gy minimum can be found with appreciable electronic
density in the region where the potential is set to zero
(r > rmax), thus giving a solution with a delocalized wave
function. Since it is cost prohibitive to carry out the cal-
culation of the potential to very long distances, we ap-
proximated the potential beyond 7.y, set to include six or
seven shells, by a constant that is roughly the average of
the potential in the shells with » <7,,,. The optimized
wave functions found with this potential exhibit localized
electronic densities (going exponentially to zero with dis-
tance). To ensure that errors are not introduced by the
constant potential, the optimized basis set is used to calcu-
late the energy of the excited-state atom with the potential

TABLE III. Variation of atomic properties with pressure.
Pressure P is in kbar and the electronic radius ({72))!/2, the po-
larizability a(P), and the dispersion coefficient C¢(P) are all in
a.u. Gas-phase polarizability is a,.

P (r2)p)2 a(P) a(P)/ag Cs(P)
Gas 5.102° 11.091° 1.000 64.8°
0 5.097 11.044 0.996 64.4
100 5.055 10.687 0.964 61.3
200 5.030 10.471 0.944 59.4
300 5.014 10.343 0.933 58.4
500 4.957 10.122 0.913 56.5

2Calculated from the gas-phase SCF wave function.
"Reference 24.

set to zero for r >rp,,. For all cases studied, the energy
differences between the wave functions calculated with the
constant potential and the zero potential were less than

0.01 eV.
The Slater open-shell interaction parameters were used

to calculate the excited-state energies.?! Excitation ener-
gies were found by subtracting the ground-state SCF ener-
gy of the atom, including the interaction with the crystal
field, from the energy of the state with an electron pro-
moted to the 4s orbital. The results are shown in Fig. 4.
Comparison of the excitation energies calculated for gas-
phase Ar atoms with the experimental values?’ (Fig. 4)
shows that the SCF method underestimates the energy
change by about 0.7 eV for both the 3P and 'P states. This
error is due to a lack of correlation in the Hartree-Fock
method, where inclusion of the correlational energy would
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P (kbar)

FIG. 4. Exciton energies AE as a function of pressure for Ar.
Open symbols are those from theoretical calculations with the
results for the P excitations given as circles and for the 'P exci-
tations given as triangles. Closed symbols are the experimental
results. Band gap (closed square) is from Ref. 29 and the exci-
ton energies at zero pressure are from Ref. 28. Also given are
the experimental (from Ref. 27) and theoretical (present) gas-
phase excitation energies.
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lower the electronic energy of the ground state more than
it would the more diffuse excited states. The present re-
sults are in better agreement with the experimental exciton
energies for the zero-pressure solid?® (Fig. 4), with error in
the P exciton of about 0.3 eV (19 mRy) and that for the
1P of about 0.4 eV (26 mRy). The shifts in the excitation
energies upon going from the gas to the solid are overes-
timated in the present model by roughly a factor of 2 due
to the large error in the gas-phase values. As the pressure
is increased we see a gradual increase in the exciton ener-
gies to 200 kbar, and then a slight decrease, with a shift at
500 kbar of about 1.5 eV from the zero-pressure value for
both the triplet and singlet excitons. The zero-pressure
experimental band gap at 14.16 eV is shown in Fig. 4.
Since band-structure calculations give a value for the gap
ranging from 8.3 to 18.5 eV, depending on the scheme
used,’® we do not plot the calculated pressure-dependent
band gap.

V. DISCUSSION

The model used here is based on the view that for
closed-shell molecular crystals, the crystal properties are
determined mainly by the ground-state properties of the
molecules (rare-gas atoms). This view places limitations
on the validity of the model, such that we must restrict its
application to regimes where the electrons are tightly
bound to their molecular site. Thus the crystal must be
far from the onset of metallization, where long-range fluc-
tuations of the electrons may occur. For Ar, the metalli-
zation pressure is estimated®' to be about 5.8 Mbar, so we
believe the present application is valid.

A measure of the validity of the tight-binding approxi-
mation is the width of the valence band. Here we assume
that atomic states are good approximations to states in the
crystal, which applies only if the bands are narrow.
Band-structure calculations estimate the zero-pressure 3p
bandwidth to be about 0.6—1.7 eV, with an orbital energy
of about —15.8 to —17.4 €V.3° The narrowness of the
bands supports the view of the localized nature of the
bonding.

One aspect of the present model that is somewhat dif-
ferent from the usual calculations of the electronic struc-
ture of solids is the mixture of local-density functionals
and Hartree-Fock theory. The difficulties with the SCF
method, as applied here, are the use of nonrelativistic
wave functions and the lack of electron correlation. Al-
though relativistic corrections are not important for Ar,*?
they may be for materials such as Xe. The neglect of elec-
tron correlation, however, causes appreciable error in the
total electronic energy of the molecules and in the long-
range electronic distributions. Inclusion of the correlation
energy is difficult in the SCF formalism unless very com-
plicated and expensive configurational interaction calcula-
tions are employed. Use of a density-functional method
that includes a correlational term (Kohn-Sham?3) for cal-
culation of the atomic states may improve the present re-
sults.

One other problem with the treatment of the correlation
energy is the simple electron-gas expression we used in de-
fining the crystal potential [Eq. (5)]. Recent developments
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in the theory of correlation energies in the non-local-
density approximation may provide a better correlational
energy than the expression used.>* However, the neglect
of long-range interactions with the fluctuating electrons is
probably the more serious error. To treat these interac-
tions properly would require the use of linear-response
theory, which we have not considered.

In spite of the approximations used in the present
model, the results are interesting and quite reasonable.
The compression of the atoms at high pressure implies
that crystal structures calculated with gas-phase interac-
tion potentials would have larger volumes at high pres-
sures than those found experimentally. Unfortunately, by
neglecting the many-body dispersion interactions, we find
the pressure-volume relation calculated with gas-phase
atoms to be softer than experiment, and with the self-
consistent results even softer, definitive comparisions are
impossible. This apparent softening of the interaction po-
tential at high pressure has also been noticed by others
calculating high-pressure equations of state.>> The change
in dispersion energy coefficients with pressure (13% at
500 kbar) will have some effect on the calculated crystal
parameters. However, neglect of many-body forces and
the higher terms in the dispersion-energy expansion, cou-
pled with a breakdown in the expansion at small distances,
may cause much larger errors than those induced by not
including changes in the Cy coefficient.

In Table II we show how the orbital energies change
with pressure. The perturbation of the inner cores is
small, as discussed relative to changes in the electronic
distributions. The lack of changes in the inner electrons
indicates that pseudopotential methods, which depend on
freezing the cores at their gas-phase values, can be used
for Ar with little error, at least to 500 kbar. If the inner
orbitals become more perturbed, as the pressure is in-
creased further, then it will be necessary to consider them
“unfrozen.”

We show how the atomic polarizabilities change in
Table III. As the pressure is increased and the atoms are
compressed, there is a gradual reduction of the polariza-
bility, until at 500 kbar, the decrease is 9%. Although
there are no experimental data, we can compare our re-
sults to those found by ten Seldam and de Groot*® in a
calculation of an Ar atom in a rigid spheroidal box. Us-
ing the rigid walls of the box as a model of the high-
pressure crystal environment, they found an 8% decrease
in the polarizability at about 3 kbar. While the box model
greatly exaggerates the effects of pressure, it gives qualita-
tively correct results for a number of atomic and molecu-
lar properties.’’ The present results may provide a way of
rescaling the pressures in a simple box calculation. The
calculated reduction in the polarizability with pressure
also may be used to refine the predictions of the Herzfeld
criteria for metallization,>""*® which predicts the metallic
transition when the molar volume of the solid is propor-
tional to the polarizability.

One of the most difficult problems in solid-state physics
is the calculation of electronic excitation energies. Local-
density-functional methods have not been very successful
in calculating excitation energies and band gaps for insu-
lating systems. Despite the interest in calculating excita-
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tion energies, only a few calculations are available, mostly
on the inert gases.”® Probably the most successful calcula-
tion on the zero-pressure Ar crystal was by Andreoni
et al*® who obtained a result within 0.03 eV (2 mRy) of
the experimental value. Their method depended on the
truncation of a sum over the terms in the crystal Green
function at the nearest neighbors and an accurate value
for the band gap; therefore, they cannot be used at higher
pressures unless the pressure-dependent band gap is
known and more neighbors are included, greatly increas-
ing the time of the calculation. We find much less
compression of the excited-state wave function in the
first-neighbor sphere than did Andreoni et al.,** and at
distances far beyond the first shell, the crystal excited-
state wave function is more diffuse than the gas-phase
excited-state wave function. The greater diffuseness of
the wave function may be why we needed to consider
more interaction shells than did Andreoni et al.,*® even at
Zero pressure.

Considering the simplicity of the model and the inaccu-
racies of the Hartree-Fock method, the present method
does very well (within 2.5%) in the calculation of the
solid-state excitation energies. As shown in Fig. 4, the
Hartree-Fock method greatly underestimates the excita-
tion energies in gas-phase atoms, while the CP model does
much better in the solid. Because of the hybrid nature of
the method, which employs an uncorrelated calculation of
the atomic properties and includes some correlation in the
interaction potential, it is difficult to locate the features in
our model that give a better description of the solid than
the Hartree-Fock method does for the gas. It may be that
the correlational interaction energy is more important for
the more diffuse excited state than the ground state, and
that the total error in correlational energy is then about
the same for both states. If that is the case, the difference
between the energies of the two states (the excitation ener-
gy) might be determined with reasonable accuracy. This
idea is supported by a somewhat similar method,*' pro-
posed a few years ago for finding energy changes in im-
purity atoms, which did not include correlation energy at
all and had similar accuracy as the present study. When
other systems have been studied with the present model it
may be possible to offer a more definite answer.

As the pressure is increased, the excitons in the solid
shift to higher energy, with a shift of about 1.6 eV from
zero pressure to 200 kbar at first. These results are quite
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similar to those from calculations done with a Hartree re-
laxation model on solid Ne, where the authors** found
about a 0.5-eV shift in the excition from O to 20 kbar. As
the pressure is increased, the band gap should close. Be-
cause of uncertainty in the band-structure calculations at
large volumes, it is difficult to predict exactly where the
excitions would be cut off by the descending band edge.

To test the model further, we are presently considering
a case where the applicability of the tight-binding approx-
imation may be less valid, namely that for solid Xe. We
shall examine how the model behaves on approach to .
metallization. We shall also consider combining the
present model with a “Wigner-Seitz” calculation,®® or
with the method suggested by Anderson** to develop a un-
ified scheme allowing calculation of both local and band
properties.

VI. SUMMARY AND CONCLUSIONS

We have presented a simple model for examining per-
turbations of the electronic structure of molecular and
rare-gas crystals. By focusing on the local site properties
we have been able to examine changes in both ground- and
excited-state properties of solid Ar as a function of pres-
sure. We find that the atoms compress with pressure, due
to the gain in free energy caused by a similar lattice.
Self-consistency is reached when this gain in free energy is
balanced by the energy required to compress the atoms.
Because many-body dispersion interactions are neglected,
the calculated pressure-volume curve is too soft. Excited-
state properties are easily calculated and agree properly
with the experiment. It is possible to extend the present
simple methods to much more complicated systems.
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