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A theory of metal-insulator transition (MIT) and of the localized moments in a narrow band is

given both at temperature T=O and T&0. In this approach the ratio g of doubly occupied sites is
expanded in a power-expansion parameter of the ground-state energy. The coefficients of the expan-
sion are determined from known expressions for the energy and g in certain limiting situations,
while the optimal value of g is found by minimizing the energy (at T=O) or the free energy (T&0).
At T=O the present theory reproduces the results for q and the energy obtained with the Gutzwiller
method. Also, we decompose the system into localized moments and the Fermi liquid, and provide a
precise meaning to the former. At T&0 a simple expression for the entropy is proposed which con-
tains both fermionic and localized-moment parts, each with an appropriate weighting factor. The
entropy reproduces correctly both the metallic and paramagnetic-insulator limits. The coefficient y
of the linear electronic specific heat is found to be strongly enhanced close to the MIT. Additionally,
we show that the insulating system (at T=O) behaves at T&0 as a semiconductor with a Mott-
Hubbard band gap. Our theory is based on the single-site approximation; in this paper only the
paramagnetic phase is analyzed.

I. INTRODUCTION

Although the Mott-Hubbard transition' continues to re-
ceive widespread attention a full microscopic treatment of
this transition is still lacking. Well-established theories
are based on the perturbation expansions either close to
the Hartree-Fock state or close to the atomic limit. For
the intermediate range it has been necessary to resort to an
interpolation scheme that correctly extrapolates to the
above limiting situations.

In this paper we set up a simple phenomenological ap-
proach which represents the single-site approximation to
the correct analysis both for zero and nonzero tempera-
tures. Namely, we expand the ground-state energy EG in
terms of the fraction g of doubly occupied sites and deter-
mine the expansion coefficients from a study of limiting
cases. We set up also an expression for the entropy of the
correlated electrons as composed of two parts. The first
part deals with quasiparticles moving in a band narrowed
by correlations. The narrowing effect is quite prominent
for the stronger correlations and greatly reduces the de-
generacy temperature. Secondly, the increased number of
singly occupied sites gives rise to a localized-moment con-
tribution kzln2 per extra moment in the paramagnetic
phase (the only phase we consider). Both these contribu-
tions have appropriate weighting factors; combined to-
gether they correctly reproduce both the band and the
atomic limits.

The principal characteristics of the present approach
are the derivation of the entropy and of the specific-heat
enhancement in the narrow-band system as we11 as the
demonstration that for sufficiently strong correlations the
system can behave thermodynamically as a semiconductor
even though we start from the one-band description.

The paper is organized as follows. In Sec. II we formu-
late the problem based on both intuitive and formal
grounds. The definition of the localized moments is also
provided in Sec. II. In Sec. III we generalize our theory to
nonzero temperatures, T&0, and derive there the enhance-
ment of the electronic specific heat near the metal-
insulator transition. Also, in Sec. III we discuss the
localized-moment regime at finite temperatures. We show
that the Hubbard gap appears naturally in the activation
energy for carriers in the semiconducting phase. The rela-
tion of the present treatment to earlier theories and to the
nature of the underlying approximations are described in
Sec. IV.

II. FORMULATION OF THE PROBLEM AT T =0

A. Definitions and phenomenological approach

For a quantitative formulation of the metal-insulator
transition we begin with the conventional model Hamil-
tonian in the site representation
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IH P ttj a;~ai~+ U+ng (n$ $ (2.1) that explicitly distinguishes between singly and doubly oc-
cupied states through the identity

in which t;J is the transfer integral between sites i and j
(the case i =j is excluded from the sum), a; aj represent
the creation and annihilation operators for particles of
spin o. on sites i and j, respectively, U is the on-site in-
teraction energy between two electrons with opposite
spins, and n;~ is the number operator for occupation of
site i by particle with spin cr.

Our immediate aim is to obtain an approximate relation
for the ground-state energy EG for the ¹itesystem. If
interactions are restricted to nearest-neighbor hops,

(2.2)

ni cr =nin( 1 ni —o ) +nlnnt cr —=via + gi (2.3)

in which the number operator n; for occupation of site i
by electron of spin o. is expressed in terms of the number
operators v; and g; for single and double occupancy of
site i T. he factor 1 n;— ensures nonoccupancy of site i
by a second electron of reversed spin —o", also,
'9~ =nsonr —~-

The number operators just introduced are not indepen-
dent since the sum of their expectation values must be
equal to the average degree of band filling n which is a
fixed quantity:

in which j(i) enumerates z sites that are nearest neighbors
to site i, t =t&(;), and g—:(n;,n;, ) is the expectation value
of double occupancy at site i; the lattice is assumed to be
translationally invariant so that g is actually independent
ofi

Since gN increases as U/W diminishes (here
W =2z

~

t
~

is the bandwidth in the tight-binding approxi-
mation) one must optimize g for each value of U/W; For
this purpose it is expedient to introduce a representation

n =g(n; ) =g(v; )+2(g; ) —=v+2', (2.4)

where translational invariance was invoked to render the
expectation values site independent. Consistent with
translational invariance we restrict ourselves to the
paramagnetic case only.

We turn now to a consideration of the various hopping
processes in the evaluation of g (a; aj ) in Eq. (2.2) by
writing

Ig a; aj ——g a;~(l n; ~+n—; ~)aj (1 nj —+n~ )

=g [a; (1—n; )aj (1 n~ )—+a; n; aj nj +a; (1 n; )aj—nj +a; n; aJ (1 nj —)] . (2.5)

Taking expectation values on both sides of the above equa-
tion one obtains the following interpretations. (i)
(a; (1—n; )aj ( nj )) repr—esents the probability of
transferring a particle with spin o from a singly occupied
site j to a previously empty site i. This quantity can be
represented by v (1 n) since,—according to the earlier def-
initions, v~—= (v; ) represents the probability of en-
countering a typical site in a singly occupied state, and
1 n= 1 —(—n;, ) —( n;, ) represents the probability of
finding a typical site empty. Briefly, (i) specifies the joint
probability of finding site i empty and site j(i) singly oc-
cupied by an electron with spin cr. The remaining terms
in (2.5) are represented and interpreted in a similar
manner. Namely, (ii) (a;~n; aj nj ) =gv specifies
the joint probability of finding site i singly occupied by an
elytron of spin —o and site j (i) doubly occupied.
Furthermore, we note that (iii) (a;~(1 n; ~)aj~nj— )
=ri(1 n) specifies the j—oint probability of finding site j
doubly occupied and site i empty. (iv)
(a; n; ~~ (1—nJ )) =v v specifies the joint proba-
bility of encountering both sites i and j (i) in a singly occu-
pied state.

The expectation values (iii) and (iv) as written in the
preceding paragraph present a problem because they
should be equal; it is not obvious whether this requirement
is met. Therefore, we choose to represent these terms as
follows:

I

(a; (1 n; )aj nj —)+(a; n; aj (1 nj —))
=~o+Bog+ Co'9 (2.6)

2

2
[v(1 n)+qv+—Ho+Bog+ Cog ]+Uq

8'
2

(2 ~Bq+Cg')+ Ug, (2.7)

in which the parameters 2, B, and C have been defined in

which is suggested by the interrelations between g(1 —n)
and v v [see Eqs. (2.3) and (2.4)]; the above equation is
the central ansatz of the present variational treatment.
The coefficients Ao Bo and Co will be determined from
the known expression for EG in several limiting cases.
The coefficients are assumed to depend on the degree of
band filling n and not on U/8'.

We collect items (i)—(iv), applying Eq. (2.6), and substi-
tute in the expectation value (H) derived from Eq. (2.1).
We restrict t,j to nearest-neighbor sites: then t,J t; other-
wise t~ =0. Summing first over j (i) one obtains the factor
z,' on subsequently summing over i one obtains N. Setting
8'=2z

~

t ~, the expectation value for the ground-state en-
ergy may be written as
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an obvious manner. An equation of the form (2.7) for
T =0 will be rederived in a more formal fashion in the
next section. From the derivation one can see how to gen-
eralize this procedure and the condition under which it is
applicable. The present approach is in fact a single-site
method since the averages (i)—(iv) are calculated assuming
that the intersite correlations can be expressed in terms of
single-site characteristics.

hole with given spin on site i is (1 —n/2). Hence, we ob-
tain (2.13). Similarly,

0o v=o=n /4.2

(ii) When g=0 one has v=n N. ow {a; aj ) of Eq. (2.2)
is given by , n —(1 n),—the joint probability that site j is oc-
cupied by one electron and site i is empty.

Combining these conditions yields

B. Systematic approach for T =0

The preceding discussion suggests the following, more
systematic approach: It is expedient to replace the quanti-
ty

(t/~) g' &a,'.a,„).)
o, i,j(i)

by the function 4(g)e, with

(2.8)

Ik/&/kFi

and

f)
no I v=o= —2.2J 2

n

4

(EG I&)
I v =o=e=e(fo+f iri+f2ri

8'
(EGIN)

~ o ———n (1—n) =foe,
2

which may be solved for

fo ——( 1 —n )(1 n /2)—
f) 4ln——(1 n l2), —

f2 ———8/n (1 n/—2) .

(2.15a)

(2.15b)

(2.15c)

(2.16a)

(2.16b)

(2.16c)

e-=tgexp[ik. (RJ(;)—R;)] .
j(i)

(2.9)

In the above equations
~
kF

~

is the modulus of the Fermi
wave vector, R; and RJ(;) are the position vectors for sites
i and j(i), respectively. Here, and within the single-site
approach, @ is a function of the single variable g [recall
Eq. (2.7)]. For the range of band filling 0 & n & 1 we have

0&g & 4 n & 4. It is assumed that in this range of n, 4
may be expanded in a Taylor series in g as follows:

d@ d @C(q)= C(0)+
g=O d I g=o

When Eqs. (2.16) are introduced into Eq. (2.12) we obtain

n U
IO 1— (2.17)

and Eq. (2.11) becomes

EG/&= —@(rio)( W/2)n (1 n/2)—+ Ugp, (2.18)

in which the coefficients of the function N are specified
by Eqs. (2.16), and (2.17) is to be used to replace gp.

The above results have points in common with earlier
work: Equations (2.17) and (2.18) have been derived on a
microscopic basis by Brinkman and Rice for n =1 and
for a rectangular density of states (DOS) for which case

fo+f)~+f~a'+— (2.10)
U

28' (2.19a)

Then, Eq. (2.7) is replaced by (we limit ourselves to order
in the expansion)

EGIN=@ (g)e+ Ug=(fp+f &ri+fzri )e+ Ug

(2.11)

E 8' U
4 28'

2

(2.19b)

The optimal degree of double occupancy may be found by
minimizing EG.. From d(EGIN)Idri=0 one finds

gp ———(1/2f2)(f)+ Ule) . (2.12)

The coefficients f(),f„and f2 may now be determined by
imposing the following special sets of conditions: (i)
When U =0,

E
U=O

8'
2

n (1 n /2), —(2.13)

and q =n /4 This is so.because Eq. (2.2) then reduces to
the first term representing the expectation value for en-
countering an electron on site j (i) with spin cr and trans-
porting it to site i. For U =0, the probability of having an
electron at site j is n/2, and the probability of locating a

Their general result is obtained by retaining e in the equa-
tion for g. We see that factor (1—U/2W) plays the role
of a band-narrowing factor, which diminishes the effective
bandwidth (band energy) toward zero with increasing
U/8'. For n =1 the critical value occurs at U/8'=2.
This ratio is considerably larger than the critical value
U/8'=0. 87 obtained by Hubbard. However, one should
point out that while our approach is valid for a rather
structureless form of the bare DOS (presumably rectangu-
lar), Hubbard derived his results for a semielliptical DOS.

According to the present approach, the probability g of
double occupation of a site vanishes at the critical ratio
U/8'=2, for any value n &1. A similar result is ob-
tained by the methodology of Fulde et al. (cf. Appendix).
By contrast, in earlier approaches' based on the Gutzwill-
er variational principle, go does not approach zero for
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p(E) =C 'po(E/@), (2.20)

which shows that the DOS for a set of bare band states is
narrowed by the factor @ when the electronic interactions
are turned on. The internal energy for quasiparticles is
given by

any finite U/W and n&1. The origin of the strong differ-
ence in g as a function of U/W for the cases n =1 and
n&1 within the Gutzwiller approach is not evident to us.

A more general argument concerning band narrowing
involves the DOS function of electrons treated as a Fermi
fluid for which k is a well-defined quantum number.
Designate the single-particle energies by E-=We- where

k k
e- are the available energy states for noninteracting elec-

k
trons. If p(E) and po(E) are the corresponding DOS it is
readily established that

states should have a common Fermi surface, in agreement
with our quasiparticle desi".ription.

(3) Although a fraction N of electrons is itinerant one
cannot point out specific sites at which the remaining ones
are localized. Rather, the assembly of particles in the
translationally invariant system represents a fluid in a
ground state with an average number of singly and doubly
occupied sites in the stationary state of the whole system.

(4) Here we have regarded (1—@)N electrons as effec-
tively localized because they do not contribute to the band
energy. However, the fact that N(rl=n /4)=1, while
N(g=0)=(1 —n)/(1 —n/2) may be interpreted as fol-
lows: Firstly, for U =0 all electrons are itinerant (@=1).
Secondly, it has been shown earlier" that for U= co (for
which certainly go ——0) and for a rectangular DOS we
have

1 —n
~CT ( (0+J (i)IT '} n 0'

1 n /2—
=f Ep(E)f ~ dE

00 @(~—p))= 4f ~po(e)f de,
00 8

(2.21)

In our notation, gQ =n N. Hence @ represents the
conditional probability that hopping will take place if an
electron is present on a given site; thus the correspondence
with our key suggestion for interpreting N is established
once again.

in which f (x) is the Fermi-Dirac function, p is the chemi-
cal potential, and p) is the corresponding one for bare
electrons ()L(, = 4&)((, , ).

If one compares Eq. (2.21) for T =0 with the band ener-

gy given before

NF. =—g' (a; aj(;) }=@(g)
cr,i,j (i)

PI
=&5(g)f Epo(e)dF. ,

fkJ(ikFi

(2.22)

one sees that N=@; the quasiparticle band narrowing ob-
tained by the present line of reasoning coincides with that
obtained by the more elementary arguments. However, it
should be emphasized that since the variational approach
considers only the ground-state or equilibrium configura-
tion this approach does not specify excited states. In par-
ticular, the Hubbard subband structure derived from the
Green-function formalism is not directly available from
the variational approach. Nonetheless, the existence of the
Hubbard gap will be evident from the thermodynamic
properties considered in Sec. IV. On the basis of the fore-
going discussion the following conclusions may be estab-
lished:

(1) At T =0 and for n =1 the results obtained here
reduce to those of Brinkman and Rice. However, we also
find that for arbitrary n ( 1, g vanishes at the critical ratio
U/W=2.

(2) One may interpret the quantity N as a band-
narrowing factor or alternatively as the fraction of elec-
trons in an itinerant state for an assembly of charge car-
riers in a restricted hopping regime. The Fermi surface is
well defined at T=0, even for the fraction (1—N) of
charge carriers that reside in singly occupied states. Since
electrons are indistinguishable, singly and doubly occupied

C. Definition of localized moments

Since the number of double occupancies decreases as
U/W increases the quantity v—:g (n; (1—n; )) con-
tains information concerning the increased number of lo-
calized moments. To put it more formally we note that
the spin operator in second-quantized form is

Si (bit~i)~bi(bitt 2 (viT vi))) i

where

(2.24)

and

b;~ =a; (1 n; ~), —b;~=a;~(1 n; ~)—

&i-~=bi~bI~ .

Therefore,

((S;) }—:(S;.S; }= —,
' v= —,( —,

' + 1)v . (2.25)

Thus, v specifies the reduction of the magnitude of the
spin due to the presence of doubly occupied sites (recall
that v=n —2q). In other words, the observed length is —,

'

times the probability of finding a given site singly occu-
pied.

For U =0, v=n(1 n /2). T—herefore, we can define the
degree of localization of moments as

((S;) ) —~n(1 n/2)—
5=—

4 n ——,n(1 n/2)—2
z [v n(1 /2—n)] . (2.26)—

Equivalently, one can represent S; in the terms of the fol-
lowing operators which are projected onto the subspace of
singly occupied sites':
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If 6= 1 the system can be regarded as a Heisenberg mag-
net which, in this case, coincides with the Mott insulator.

TABLE I. Single-site configurations and the corresponding
probabilities.

III. GENERALIZATION TO NONZERO
TEMPERATURES

Configuration I i j Average probability
of occurrence

S;
@k~ If—(E-)lnf (E )

+ [1 f(E- )]ln—[1 f(E- )]j—, (3.1)

which has the same form as that used by Chao and Berg-
gren' except that we introduce'" the quasiparticle energy
E =We- in place of the bare particle energy e-. It is in

k k k

this manner that the effect of band narrowing is included
in the process of accounting for the thermal excitation of
itinerant electrons. The effect is important close to the
metal-insulator transition, where @ is small [cf. also Eq.
(2.21)].

The second contribution to the entropy arises from the
fraction (1—4&) of electrons regarded here in terms of
their localized moments. There is no corresponding con-

I

A. Free-energy functional

At nonzero temperature the entropy contribution must
be adjoined to the internal energy of the particles, E~/N,
as given by Eq. (2.21). We recognize two such contribu-
tions. The first is due to the fraction N of electrons which
are itinerant: %'ith the use of the Fermi-Dirac distribu-
tion f(Ek)—:f [(Ek p)/k~T—)] for quasiparticles, these
electrons contribute to the entropy an amount

Electron with o.=g
Electron with o.=g

Empty site
Doubly occupied site

Vy

Vl

1 —v —q
7l

4

S, /N = —(1—e)k~ gp, lnp, , (3.2)

or, equivalently,

SI/N= —(1—C&)kz[vlnv —vln2+rl in'

+(1+g n)ln(1+g —n)]—,
(3.3)

in which we have set v =v =v/2 since we consider
here only the paramagnetic case.

The free energy of the system is specified by

tribution to the internal energy because we neglect such ef-
fects as, for example, the second-order effects leading to
the kinetic exchange interactions' which are important in
the insulating phase. To set up this contribution to the en-
tropy we consider the various configurations and their
corresponding probabilities jp; j. They are listed in Table
I. Then the entropy within the single-site approximation
may be written as

F 1 kBT4gE „f(E—„)+ QI f(E )lnf(E )+[1 f(E )]in[1 f—(E )]j—
+k~ T(1—&9)[r) lng+ v(lnv —in2)+ ( I+ t) n)ln( 1+r) n)] .— — (3.4)

Next, recall Eqs. (2.20) and (2.21) and introduce the definitions
8'/2

e*(T)=I pp(e)sf*(e)dE,
W/2

s*(T)= J pp(e) If*(e)lnf*(e)+[1—f*(e)]in[1—f (e)] jdF. ,

with f'(E) =f((e p&)/k~ T*) and —T*—:T/4. With the use of these definitions Eq. (3.4) may be rewritten as

(3.5a)

(3.5b)

—=We (T) k& Ts*(T) k& T(—I —N)[ (n —2'�)l—n(n 2—r) )+(—n —2g)ln2 —rj lnq —(1 n+r) )ln(1 n+—l)]r. (3—.6)

One should note that T*=T/@ plays the role of an ef-
fective temperature; as @ decreases with decreasing g the
thermal activation of the carriers across the Fermi surface
is enhanced. Thus, the degeneracy temperature defined
through the conditions

I

ically in Fig. 1.
Equation (3.6) must now be minimized with respect to

g; for this purpose it is necessary to specify pp(E). In ac-
cordance with previous considerations we select the rec-
tangular DOS for the bare band,

P 1
—( ~/2) p —( w/2) e
kB TD kB TD

(3.7) 2/&for
~

&~ & ~/2
pp E

0, otherwise .
(3.8)

is much lower than the corresponding temperature for
noninteracting electrons. The situation is shown schemat- Upon inserting (3.8) into (3.5) and noting that for this
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po(E) )M =p]=0 for all temperatures, one obtains

e (T)= 2—kz T*ln cosh( W/4k& T*)

4k' T 8'/2
+ I dain cosh(e/2k~ T*) .8' (3.9)

The condition BF/Bg =0 leads then to the following equa-
tion determining rl=rl(T) for the most interesting case of
n =1.

2k~T (y

4k~ T
(1—4&)ln cosh

2kgT (p

W 4 ' 4kTJ (4&) ——,4&'(1 —@)tanh
2k~ T

N'ln2

2k@T 2g ka T
+ (1—N)ln + 4' (1—2g)ln8' 1 —2g 8 1 —2g

—2g lng + =0,U
8' (3.10)

where @=Sg(1—2g), @'=d@/dg=g(1 —4g), and

1 x@8'J(@)=f dx lncosh
0 4k~ T

(3.11)

I

under the condition WC&/k~T&~1, not too close to the
metal-insulator transition. The energy is given by

Ez /N =C e+ , yo@(T*—)+ Url =Ne+ , ( yo/@ )—TA Urj,
Equation (3.10) will be analyzed separately in detail. Here
we discuss only the most interesting special cases through
minimization of the free energy (3.6) by solving Eq. (3.10).

(3.12)

in which yo is the coefficient (per site) of the linear specif-
ic heat for bare electrons,

B. Low-temperature specific heat for a half-filled band

yo ~ po(p))(kg/3) =2~ k~/38',
and F. is, as before (see Fig. 1),

0
cpa(e)de .—8 /2

(3.13)

(3.14)
The low-temperature specific heat of the itinerant-

electron system is of intrinsic interest and also serves to
determine the entropy of this system. We proceed with
the Sommerfeld expansion' for the internal energy of the
system which is applicable to a correlated narrow band

We assume that the specific heat has the form C„=yT
(where y will be determined later), in which case
S =yT=C, .

The free-energy trial function of the system with n =1
is thus given by

W
2

E (b)

—=We+ —, T + Ug

—kz T(1—N) (1—2g)ln
2

1 —2g
—2'l7 ln'g

(3.15)

W
2

ke TD
W

v

kBTo"

This quantity must be minimized with respect to the vari-
able g. The relation BF/dg=0 in the low-temperature
limit corresponding to (3.10) yields for n = 1

1 3'0T 4' kaT
g —go ——

~
+. N' (1—2g)ln

—2q lng

9(E)

(1—N)ln
k~T 2g

1 —2n

The specific heat is then found according to

=0. (3.16)

FIG. 1. Schematic representation of the effective degeneracy
temperature TD for (a) the bare-band electrons which plays the
same role as the true TD does for (b) the quasiparticle states.
Narrowed quasiparticle band is also shown in (b). Situation
drawn here corresponds to the half-filled case (n = 1) for which
one can choose p =p ~

——0.

aE, aq
Bg TOT

(3.17)

The leading terms in T as T~O in Bg /QT are obtained
from Eq. (3.16) as follows:
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1 AT
BT 8 8'

k~
No (1—2go)ln88' 1 2gp

plngp

kg 2QO
(1—@o)in48' 1 2gp

in which @o—=@(go), No =4"(go), and qo, as before, is the
optimized number of double occupancies per site. The
internal energy Ez is given by (3.12); thus,

respect to the remaining contributions to C, .
The change of band energy of the order of 0.01 eV

=100 K for the transition to the metallic phase (as es-
timated from the enhancement y/yo) points to the impor-
tance of the magnetic contribution and/or the lattice ef-
fects in driving the transition in actual systems since both
the magnetic and lattice parts of the internal energy can be
of this order of magnitude.

Small values of Np and gp also contribute to C, from
the second term in Eq. (3.20), in which the dominant term
is given by (k~/2W)(lngo) . The role of the localized
electrons is a minor one under conditions described here.

BEg ypT

BT

(jE~ ypT @'
+U.

(3.19a)

(3.19b)

C. Localized-moment regime (semiconducting phase)

We now turn our attention to the localized moment re-
gime, in which U&28'and for which %=0 at T=0. At
low temperatures we can neglect the band part of entropy,
i.e., set S;=0. Then, the trial free energy has the form

3 p kB @p
y=+, +2W

2
1 —2' p

—2qplnqp

The procedure now calls for substitution of (3.19) and
(3.18) into (3.17), followed by an elimination of the term
yoT @'/24 via Eq. (3.16). We neglect terms in T and
identify the multiplier of T with the linear coefficient in
the specific heat, namely

F =C~F+ Url+k~ T[ f1 in'rl —(n —2q )ln2

+ (n —2g )ln(n —2g)

+(1 n+g—)ln(1+g —n)] . (3.21)

—(1—a'o)ln
2gp

I —2gp

2

(3.20)

g —go+ (kg T/4W)in[2&/( 1 —2g)] =0 . (3.22)

Consider the semiconducting phase in detail by minimiz-
ing Eq. (3.21) and setting n = 1. The equation for
q=g(T) is given by

Thus, the coefficient y of the specific heat is enhanced by
two factors. One is the band-narrowing effect (the first
term); the other one arises from the localized moments
which are placed below or at the Fermi surface and contri-
bute to the thermal excitations over the Fermi surface
since the electrons are indistinguishable.

One should note that many experimental cases are
known' for which y exceeds the normal Sommerfeld con-
tribution yp to the specific heat by a factor of the order of
10 . To obtain such large enhancements it is sufficient to
require that @o——Sgo(1 —2qo) =10; here go ——( —, )

&&(1—U/2W). Thus one must demand that go-10 or
that U/2W be very close to unity. For the strongly corre-
lated band the conductivity at low temperatures is mainly
due to the doubly occupied sites. Thus, for systems for
which the specific heat is enhanced by a factor N ' with
respect to normal metals, the conductivity drops by a fac-
tor of at least 4 . This is so because both the bandwidth
as well as the carrier concentrations drop by the factor @.

The band-energy change caused by a transition from the
insulating phase (@=0) to the correlated metallic phase
(C&=10 ) involves a change in band energy of the order
of 10 eV since the band energy is given by
E~——+8'/4+ 28'g. The corresponding degeneracy
temperature is of the order of TD ——100 K, beyond which
the term yT in the specific heat is unimportant with

g(T) =
4 [1—U,rf(T)/2W] . (3.23)

Plots of U,rf(T)/W are provided in Fig. 3 as a function
of k~T/W for several values of go(U/W). One notes a
steep decline in U,ff/8' as k~T/8' increases, which is
consistent with intuition: With increasing temperature
U ff/8' approaches zero because the number of double oc-
cupancies per site increases and eventually reaches the

The variation of g with k~T/W is shown in Fig. 2, for
various values of U/W as a parameter. We have also
plotted 7l(T) for U/W& 2 for comparison with the results
of Chao and Berggren' who considered the opposite limit:
They neglected the part SI of the entropy and disregarded
the band-narrowing factor in the Fermi-Dirac distribution
for particles. Thus, their results apply to the metallic lim-
it U «2W, while those based on (3.21) are complementa-
ry, being valid for U)28'. As may be seen, the free-
energy functional (3.4) interpolates correctly between those
limits. When comparing the curves drawn in Fig. 2 and
those presented in Fig. 2 of Ref. 13 one notices a similar
qualitative trend, although there are substantial numerical
differences. Furthermore, within the previous approach'
it is impossible to obtain the specific-heat enhancement
y/yo calculated above.

At this point it is expedient to define an effective
Coulomb interaction parameter U, rr( T) for n = 1 through
the relation [compare with Eq. (2.17)],
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FIG. 2. Number of double occupancies g per site as a func-
tion of reduced temperature k~T/W. (a) specifies g(T) in the
semiconducting phase ( U & 28') while (b) shows g( T) for
U &28'. Latter family of curves is drawn for comparison with
Ref. 13. Note the logarithmic scales on (a).

asymptotic value 4.
The main reason for considering the limit U & 2W is to

prove the existence of the Hubbard gap in the semicon-
ducting phase. For this purpose we solve Eq. (3.22)
analytically for g in the low-temperature range with
U/W &2. For T~O, g~O, and then ln(1 —2g)= —2g;
thus, Eq. (3.22) has the form

AT—qp+ ln(2g) =0 .48' (3.24)

g(T) = —,exp( —e, /2k&T) . (3.25)

For T—+0 we can neglect the first term in the above equa-
tion and obtain the solution

FIG. 3. Effective Coulomb integral U,qq(T)/S" as a function
of reduced temperature k~ T/W', for (a) U & 28' and (b) U & 28'.
Note the logarithmic scale on the abscissa of (a).

Thus, rI(T) exhibits an activated behavior, with activation
energy e, =U —2W, i.e., the value of the Hubbard gap.
Thus, although our approach does not explicitly specify
the Hubbard-split subbands, their existence shows up in
the thermal-promotion properties of charge carriers in the
semiconducting phase U & 2W' for n = 1.

From Eq. (3.21) one can now separate out the contribu-
tions associated with the energy of the system. One can
then use Eq. (3.23) in conjunction with Fig. 3(a) to evalu-
ate the variation of g with k~ T/W, and thence, the depen-
dence of the energy on k~T/W. Numerical differentia-
tion then yields the heat capacity curves shown in Fig. 4
for U/W=2, 2.2, 2.4; one should note the steep rise in
C„/kz as k& T/W is decreased

Returning to Eq. (3.21) one can also identify the entro-

py terms. On using Fig. 3(a) again, one obtains the varia-
tion of the entropy with k~ T/W as shown in Fig. 5. One
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APPENDIX: COMPARISON WITH THE FULDE
VARIATIONAL APPROACH

(OMO) =[W+ U(1 —n) ](n/2) [1—(n/2)] . (A3)

In the approach of Ref. 9 the optimal parameter q =rio
at T =0 is given by

n' 2(Oa)'
4 (O~O) '

Thus

n 2U n
gp —— 1— 1 ——

4 W+ U(1 n—)

2

(A4)

and

(OH) = U(n/2) [1 (n/—2)] (A2)

where in the paramagnetic phase and for a rectangular
DOS,

Thus, go ——0 only if U) U, = W[1—(n /2)] '. In partic-
ular, for n =1 one obtains U =28'. The value U, coin-
cides with ours only for n =1. However, both methods
have in common the fact that U for gp

——0 is finite. This
is in contrast to the Gutzwiller method for which go&0
for any value of U and n&1 (cf. Ref. 10).
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