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A model representation of a simple metal surface was used to calculate pair potentials between
atoms, both inside and outside the surface region, which are then solved exactly in the random-
phase approximation. Various lattice planes and atomic configurations are considered, and features
which are independent of the detail of the model are extracted.

I. INTRODUCTION

Consider a collection of ions positioned at points IR; I
and surrounded by a neutralizing electron charge of densi-

ty n(r). An infinitesimal displacement of an ion at point
R& introduces a perturbing potential 5V~(r —R~) and an
energy change given rigorously' by

AE= ——,
' g I d r I d r'5V(r R)X(r r ')—

R, , R

X5VJ(r ' —RJ),

where g( r, r ') is the electronic response function ap-
propriate to the density n ( r ). Equation (1) is thus the
core of the calculation of bulk phonons, bulk-phonon
softening, pair interactions in liquid metals, surface pho-
nons, surface reconstruction, ' and more.

The changes in 7, by going from bulk to surface proper-
ties, has been particularly interesting. The effect of
charge redistribution (in the surface region) on the
surface-phonon density of states has been estimated within
a very simple model. Approximate structures of X
(which include such charge transfer corrections) have been
employed in surface tension, surface-phonon, and surface
energy calculations. ' Surface reconstruction in semi-
conductors as well as metals has been attributed to
changes in X(r, r ') both at temperature T=0 and finite T.
Although such effects (in g) have been assigned to surface
states, ' and their corresponding Fermi-surface nesting
properties" (smeared at higher T), the upshot is always a
change in the force constants in Eq. (1). Since even the
more complicated metal surfaces contain a large com-
ponent (in X) of s-p electrons, the effect of simple charge
transfer (at the surface) must play a major role in all of
the abc.ve properties (persisting even to high T); it is this
which we want to study here. As a first step in that direc-
tion we evaluate Eq. (1) exactly for a well-defined model
and in the process provide exact results for comparison
with previous approximations of 7, and draw trends and
order-of-magnitude estimates of the changes in the surface
pair potential (both inside and outside the surface region)

which are likely to be insensitive to the choice of the
model.

In Sec. II we set up our solution of Eq. (1) for a jellium
profile. In Sec. III we generate the pair interaction of two
ions outside and inside the metal surface region. These re-
sults are discussed in Sec. IV.

Finally, we note that the response of more realistic met-
al surfaces do indeed exist. ' However, such calculations
have been largely restricted to perturbations with no varia-
tion parallel to the metal surface. As we shall see in Sec.
II, the construction of pair interactions requires the de-
tailed response for a range of wave vectors necessary to
reproduce the important asymptotic Friedel oscillations in
the pair potentials. To our knowledge, no such calcula-
tions exist for any model of a simple metal surface and
certainly not for a "real" surface profile. '

II. PAIR INTERACTIONS AT A JELLIUM
SURFACE; FORMULATION

If we consider an arbitrary external potential V(r) and

a set of auxiliary wave functions P-( r), then according to
k

Kohn and Sham' the ground-state density n (r) is given

by

n(r)= gP*k(r)y„(r)

and the P-(r) satisfy

2' V' + V ff(r) p-(r)=e p (r),
k k k

where

V ff(r)= V(r)+ VH(n(r))+u„, (n(r ))

with Vff (n ( r ) ) and u„,(n ( r ) ) the usual Hartree a'nd

exchange-correlation potentials which are functionals of
n(r) The longi.tudinal susceptibility X(r, r ') [of Eq.' (l)j
is given rigorously' as a solution of
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X(r, r ') =11(r,r ')

—f d r" f d r"'II(r, r ")
(~tl ~ill)X( t ttl +t) (3)

where

L2m.e 2

U(qll, q, q )=
~ (5q q +5q q )

+qll

with U( r —r ') =e /
~

r —r '
~

and where II is the irreduci-
ble response function (see Fig. 1); the propagators are all
constructed from the P-( r ) in the usual way, i.e.,

k

G( r, r ') = g P*-( r )P ( r ') [co—e-+ i5 sgn(co —p ) ]
k

and p is the noninteracting chemical potential.
For a jellium surface the translational symmetry along

the surface reduces Eq. (3) to

X(qll, z,z')=Il(qll, z,z') —f dz" f dz"'II(qll, z,z")

4me qll

(q +qll)(q' +qll)
where both q and q' are either even or odd (zero other-
wise). Equation (1), for one pair interaction between an

ion at R& and a second ion at R2 can now be written as

1 oo

EE)2 =—4=
2m

dqllqll Jo(qllp)F(qll zi»2)

where
~

R~ —R2
~

=[p +(z, —z2) ]' Jo(qllp) is the
cylindrical Bessel function, and

F(qll z~ z, )=L'+5V, (qll q z~)X(qll q q'

XX(qll, z"',z'), (4) X5V, (qll, q', zP) .

where, e.g.,

X qll, z,z')= f d pe l' X(p,z,z')

(z and z' are perpendicular to the surface). The electrons
are confined between two imaginary surfaces separated by
a distance L (the jellium background is bounded by these
imaginary surfaces and separated by some arbitrary mi-
croscopic distance from them} then it is useful to write
Eq. (4) in cosine transform, i.e.,

X(qll, z,z') = g cos(qz)cos(q'z')X(qll, q, q ),
q, q'

where q and q'=nm/L, n =0+1,.+2, +3, . . . , and

1 L
X(q

l
l, q, q') = dz dz'cos(qz )cos(q'z')X(qll, z,z' },L2 0 0

(5b)

then Eq. (4) becomes

&&V(qll'q 'q )X(qll'q 'q)

The form of Eq. (6) is unfortunately not very suitable
for numerical solution which proceeds best by successive
iteration. Such an iterative solution closely resembles a
sum of an expansion in powers of U(qll, q",q"'). Gell-
Mann and Brueckner' (for example) pointed out the error
in such an expansion and showed that the correct inter-
particle interaction must be 4ne /[Q e(Q)]
[Q=(qll+q )' ] where

e(Q}= 1+ Ilg(Q)

(the bulk dielectric function). ' We therefore cast Eq. (6)
in such a form following Ref. 17, i.e., if a surface did not
exist, then

Ilg(Q)
II(qll, q, q')= 5q q .

The effect of the surface is to introduce a nondiagonal
correction Q (qll, q, q ), so that

II~(Q)
II(qll, q, q')= 5 +@ (qll, q, q') . (10)

We define the function X(qll, q, q') such that X of Eq. (6) is
written as

247M qll
X(qll, q, q') =X(qll, q, q') —g' X(qll, q,q"). . . „,, X(qll, q"', q')

II III (qll+q" )(qll+q'" )

where the prime over the summation sign restricts q" and q'" to both even or odd. With simple matrix manipu-
lation Eq. (4) for X can be transformed to an equation for X, i.e.,

II~(Q ) 4me
X(qll, q, q') = 5 Lg II(qll, q, q") —X(qll, q",q') .

qll+q
Finally, we define'

lip(Q) Q(qll, q, q')

Lp(Q) g9 ~(Q)~(Q )
[Q qll +q } ]

The integral equation (12) can be rewritten only for the surface corrections,

(12)

(13)
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where

q"

(14)

and the iteration of Eq. (14) now proceeds in terms of only the screened interparticle interaction. The X(q~~, q, q') of Eq.
(11) is then given by solving Eq. (14) numerically for g (when g is known; see the following sections). By back tracking
to Eq. (13) we get X, and from Eq. (11)X is analytically solvable due to the separability of the kernel.

We conclude by listing the full form of Eq. (9) (i.e., of N). We write

F(q[],z],Z2) =A (q[],z],Z2)+8(q[[,z],Z2) / C(q)[,z],Z2)+D(q([, z],Z2)+E(q[[,z],Z2 ),
where

II2](Q)
A(q~~, z],z2)= L+5V—](q~~, q,z]) 5V2(q~~, q,z2),

s(Q)

(15)

(16a)

B(q[(,z],Z2) = —y 5V](q[[,q, z]), 5V2(q[(, q', z2),
I

(16b)

q~~ 5V](q~~, q, z] )Ila(Q)4ir 5V2(q~~, q', z2)II2](Q')4ir
C(qadi, z, ,z, )=-

8irD(qll) ~ Q «Q) Q «Q )
(16c)

D(qadi, z],z2) =—8' D(qll )

5V](qadi, q,z] )112](Q)4me

Q'~(Q)

5V2(q~~, q",Z2)q(q ~~,
q', q")4' 2

Q'~(Q')«Q") + (5V]~5V2) (16d)

E(q))i lz~z2)=—
qt)L,

' ~

8' D(q~~)

5V] (q
~
~,q', z] )P(q

~
~, q, q')4n e

Q «Q)&(Q')

5

V2(qadi,

q',

Z2)g(qadi,

q, q')4n e 2

Q'~(Q) ~(Q')
(16e)

In Eqs. (16c)—(16e) D(q~~ ) is given by

q~~ 112] Q 4
8~L, «Q) g2

@(qadi q q')(4 ")
8'r

q, q «Q)«Q')O'Q'

We now note the difference between the solution of Eq. (14) for a nonvarying external perturbation parallel to the sur-
face' and that required for pair interactions. The latter is a much lower symmetry problem which requires a detailed
numerical study of Eq. (14) in the region of q ~~+q = q~~+q' ) =4kF to reproduce properly the important Friedel os-
t:illations.

In the following section we solve Eq. (14) exactly for a model surface and evaluate Eqs. (8), (9), and (16) exactly for a
variety of pair-potential configurations.

III. NUMERICAL RESULTS

A. The model

We choose for the description of the surface the infinite-barrier model (IBM). It is worth making a few cominents
concerning self-consistency as described in Eq. (2). The IBM does not mean that the external potential of the positive jel-
lium is represented by V(z) =A.e~(z) [k—+ oo e~(z) = 1 when z &0, and e~(z) =0 when z &0]; actually A,e~(z) corre-
sponds to V,tt. The external potential V(z) is equal to

V(z) = V,tt(z) —VH(n(z)) U„,((z)) —. (18)

The density n(z) is constructed from the P (r) which are solutions to A,e (z). In this way we have developed fully
k

self-consistent wave functions and density appropriate to the external potential given in Eq. (18).
To evaluate the appropriate form for g (q~~, q, q') in Eq. (10) (neglecting correlations for the moment) we evaluate the

first bubble graph of Fig. 1 using in G(r, r '), P (r)=sin(k, z)e ~' l[(L/2)'~ A'~ ] (A is the surface area). Taking the



cosine transforms according to Eq. (5b) yields the following results for the static f (q ll, q, q'):

y (qll, q, q )=+ — [(qll —q'q) —4k qll+(q+q') qll]
~ [1—e ((q+q') —4k )]

A +41.
qual ql~

—q q

when the function in the square root is positive and

(19a)

qll qq =
z z z qll qq [1 6 ((q+q) 4k )]

R ~4L
qual

(19b)

when the function in the square root is negative. It is not
difficult to show that in Eq. (19)

—g f (q
l
l, q, q') = —IIg(Q ), (20)

where II~ is the uncorrelated (Lindhard) screening func-
tion.

B. Pair potentials outside the surface

2nZe —qll,5V, (qll, q, z, ) = — e
2

(21)

where Z is the valence of the ions (we take Z =3 and an
electron density no insider the IBM [i.e., (4~/3)r, =1/no,
r, =2.07], both corresponding to aluminum).

By far the greatest difficulty of evaluating Eqs. (9) and

We now place the two ions outside the surface, a dis-
tance z~ from the terminating L (i.e., one of the imaginary
planes surrounding the jellium background) and separated
by a distance p parallel to the surface. No matter what
the pseudopotential choice for the two ions (see below),
when z

&
is outside the surface and bigger than the core ra-

dius R, (see below) 5V in Eq. (9) becomes that of a point
charge. That is,

or

'0(qll q q')/[Q' (Q')l

are required. [In other words Eq. (14) can be cast as a
vector equation rather than the matrix equation for the
full g.] We achieve an iterative solution of Eq. (14) to an
accuracy of better than 10 for the full range of ql~ and
q. The IBM, however, provides, in addition, a test in that
at the surface boundary L (or equivalently z=0) the in-
duced density (due to 5V&) must be zero. It is an obvious
consequence of the density no(z) (in the IBM) going iden-
tically to zero at z =0, i.e.,

no(z) =no[1+3/y (y cosy —siny)], (22)

with y =2kFz.
The induced density along z (averaged along p ) is given

by

ni(z)= —lim L g cos(qz)X(qll, q, q')5V~(qll, q', z~) .
qll qq'

(23)

(16) is the solution of the integral equation [Eq. (14)]. It
demands a very accurate numerical result around
(q

l l
+q ) =—4kF to properly pick up the expected weak log-

arithmic singularities (which are well known to exist in
the bulk contributions) which govern the asymptotic
behavior of the pair potential. We therefore do not solve
it for the full susceptibility. From Eqs. (16b), (16d), (16e)
and (17) we note that only related quantities such as

g 5V~ (qll, q', z& )g(q ll, q, q')/e(Q')
q'

FIG. 1. Low-order screening functions. Graphs included in

lls(Q) are the Lindhard first five lowest-order and one example
of higher-order RPA. Dashed lines are actually dynamically
screened interactions.

We can easily cast Eq. (23) in terms of g(qll, q, q') follow-
ing the derivation of Eq. (16) and the resulting structure is
very similar (it will not be detailed here).

Our results for n
&
(z) (neglecting correlation) are

presented in Fig. 2. More precisely, in Eq. (14) we use the
of Eq. (19) and the Lindhard dielectric function is used

for e(Q) in both Eqs. (14) and (16).
It has been long recognized that the effect of correla-

tions in the response function of the uniform system adds
major modifications to the induced density and the corre-
sponding pair potential. ' There is no reason to believe
that similar effects will not occur at a metal surface. To
include such many-body corrections at a metal surface is
manyfold more complicated, due to the surface nonunifor-
mity. In other words, to include exchange and correlation
in Eqs. (14) and (16) requires the same level of approxima-
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I t I I

n(( qli z) = P (qll ~ z)+ y (qil z)

qil= 0.02 kF

{NOTE THE CHANGE OF SCALE
AT z = 4 a.u. )

-0.05

WITH EXCH. ;~{qll *' 'ANO CORR
n&(qll, z) .——nq {qll, z) NO EXCH. AND

CQRR.
I t

7 6
z (a.u. )

(z) = &. &2

(z) = ).92

(» &,

\

FIG. 2. Induced charge density (averaged along the surface) in the IBM for a positive point charge of Z=1 located outside the
metal surface. P(qii, z) is the contribution within the semiclassical approximation. y(qii, z) is the contribution from the quantum in-
terference (or equivalently the fine detail of the surface). Two densities with and without exchange and correlation are included for a
substrate density of Al (r, =2.07). Location of the image plane is labeled by (z ) and the (z ) =1.92 includes no exchange correlation
while (z) =1.72 does. Note that our convention labels z always positive whether in or out of the solid and is the distance from the
IBM boundary at L.

qil, q, q') @ (qll, q, q')II, (Q')~n', (24)

is appropriate [this is guided by Eq. (20)]; of course, the
dielectric function e(Q) is now also 1+4me /q II~(Q).

At first sight it seems that in Eq. (24) we have violated
the symmetry between q and q' in X(qii, q, q'). Remember,
however, that we are not really interested in P itself but in

tion for l{ (qii, q, q') as the one entering the uniform corre-
lated II~(Q). Consider Fig 1; if w.e include this series of
graphs in II~(Q) we must extract the form of lt (qi, q, q')
for the same set of terms; in other words we calculate
these graphs with the propagator constructed out of the
IBM wave function (see above), but that is clearly unac-
cessible. In fact it is further complicated since the inter-
particle interaction must be properly screened (see above,
now dynamically). We take the following simplified ap-
proach. (1) We borrow the algorithm of Hubbard' and
introduce higher-order corrections via a similar enhance-
ment factor. (2) We ensure that our approximation satis-
fies the sum rule of the IBM [i.e., that n &(z =0)=0]. We
can verify that the transformation,

various sums over q and q'. Equation (24) is an alogo-
rithm for including exchange and correlation in the pair
potentials and not for providing the full form of X.

In Fig. 2 we include the effect of correlation in the in-
duced charge n

&
(z). The corresponding interaction of a

point charge with the surface is displayed in Fig. 3, and
the corresponding pair interactions are detailed in Fig. 4.
These results are discussed in the following section.

C. Pair potentials inside the surface

The calculation of pair potentials inside the surface re-
gion differs only in the form for 5V~(qii, q, z'), since now
the explusion of the electrons from the core region A,
must be included. For A1 we use a local Heine-
Abarenkov pseudopotential 5 V& ( r ),

5V((r)= [1—e~(r —R, )]— e~(r —R, ) .
—ZD ) Ze )

It is not difficult to calculate the cosine transform of
5V&(r); it is
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/i
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&(z1 zI P) FORP =0
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j' rjr
-2.0 Ir'

Pr'
r

r

1
r

i

4(z&, z&, p) AT CONSTANT

zl z2
FOR z&

= 1,2,4, AND 8 o.u.

FUL L CALCU LAT I ON
- NO INTERFERENCE g = Q——THOMAS- FERMI

FIG. 3. Potential surface of a point charge of Z=3 outside
the metal surface. Full calculation [Eq. (16)] includes the effects
of exchange and correlation (see text); same for the SCA [i.e., no
interference /=0 in Eq. (16)]. Thomas-Fermi approximation
sets /=0 and e(Q ) to the TF approximation in Eq. (16).

FIG. 4. Pair interactions outside the metal surface for two
ions (of Z =3) at various positions z~ away from the surface and
as a function of their separation p. Note that the bare repulsion
(Pb„, in text) is not included.

2'/TZe
5Vi(qadi, q, i)=-

L Q2

D sin(QR, )—2cos(qzi)
QR,

+ (1 D)cos(QR, ) +e— (25)

The parameters D and R, have been determined in the
spirit of Ref. 19 by matching a full self-consistent charge
density (see Fig. 5). However, the IBM cannot account
for the microscopic electron-density variation (e.g., an Al
surface), and we do not imply that the following results
are a detailed account of the corresponding pair interac-
tions for a real Al surface.

In Fig. 6 we present the structure of +(q~~, z&,z&)
[note that the bulk contribution to
——,'5V~(Q, z~)II&(Q)5V&(Q, z&)/e(Q), has been removed]
for the full range of q

~ ~

with and without exchange and
correlation. Figure 7 depicts the rate of convergence of
the surface contribution P, for three planes inside the sur-
face region. Figures 8—10 display the surface correction
to P for various planes and configurations of the pair in-
teractions. We turn to these results next.

0.1 5

0, IO

IC
I

0.05
CU

-0.05
2

I

10 12

DISPLACED DENSITY FOR Al

IN A VACANCY

FIT WITH A HEINE- ABARENKOV-
PSEUDOPOTENTIAL

{Rc I 48 D 0 525)

IV. DISCUSSION

In the preceding section we presented pair potentials
which are exact within the random-phase approximation
(RPA) for a metal jellium surface described by an external

r (a. U. )

FIG. 5. Solid curve is the full self-consistent screening densi-
ty for an aluminum ion placed in a vacancy of a jellium (Ref. 19)
of r, =2.07. Dashed curve is the best fit we could achieve using
a local Heine-Abarenkov potential of well depth D =0.525 and
core radius R, = 1.48 a.u.
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O.)O

0.05

0

I I

euLK q11

3'
8 +d

kF

FULL CALCULATION
————FULL CALCULATION

tNO E'XCH. AND CORR. )
m~m ~ II{r% 0

qll/kF

21—

18—

~12
lt
O

9

z ~z&~ —+—=2.6215 oo.
3m d

8kF 2

-0.05

-0.&0
0 2

qll /k F

I

0.9
p 1'A

FIG. 6. Detailed behavior of the surface contribution to
F(q{~,z~, zq) [using the pseudopotential of Eq. (25)] as a function
of q~~ [entering Eq. (8)] for the two ions placed in the second
plane of a (110) face of Al. Effect of exchange and correlation
(solid curve) is of particular interest.

FIG. 8. Surface contribution P, (to the bulk pair interaction
Pb) for two Al pseudo ions in the first plane of a (110) face of Al
as a function of their separation p. Dashed curve is SCA. Ex-
change and correlation are included as discussed in text. Note
that Pb does include the repulsion of the two ions Pb,„,.

potential given in Eq. (18) and corresponding density of
Eq. (22). The fine details of the IBM certainly present
many variances with a realistic jellium profile. The
solution of Eqs. (8), (9) and (16) for a real jellium profile
with the required accuracy around 2kF (see above) is ex-
tremely difficult and has not as yet been carried out.
When such a solution is available it must, however, reduce
to the above results in the IBM limit. In addition, the ex-
act pair potentials (presented here) are important in assess-
ing the variety of approximations previously used to mim-
ic the presence of the metal surface. The most common

approximation is

P = ——,
' f d r f d r'5V& ( r R~)—

no(r)+no(r ')
XXg

2

(26)

0.&5

0.&O

2
O

0.05—
24 = Z2 $.2709 O, U.

, z4= z2= 2.62)5 o.v.

0
0.8 0.9 3.0 1.2

I

0.8
I

1.0
I

1.2
p/A

1.4
I

1.6

FIG. 7. Rate of convergence of P, vs Pb„, (see text) for two
Al pseudo ious [Eq. (25)] placed on three planes and as a func-
tion of their separation p (A is the lattice constant of Al).

FICx. 9. Same as Fig. 8 for the second plane of a (110) face of
Al. %'e inserted, also, the surface contribution vnthout exchange
and correlation in dashed curve.
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20

ly in the long-range oscillations of n, (z)] and the range of
the oscillations [in n

& (z)] very deep into the solid. The po-
sition of the image plane (z ), defined as

lim P(z&,z2,p) = lim
&/

(27)
Z e

~-o [(z +z +2(z))'+p']'"
is also inserted in Fig. 2. By using Eq. (16) we can readily
show that

]0

4~e 11,(g)
z = lim

C3

CL

E

4~e' 4(q~~ q q')
2 I2 (28)

p/o

From Fig. 2 the effect of exchange and correlation on (z )
is clearly non-negligible. From Figs. 3 and 4 we discover
(as expected) that the pair interactions are adequately
represented (to within 5%%uo) by an image potential form of
Eq. (27) (down to z&

——1) shifted by the appropriate (z ).
Figure 7 shows the rate of convergence of the surface

contribution P, (inside the surface region) relative to the
bare interaction

FICr. 10. Second derivatives of p, and pb Perpe.ndicular
force constants to the surface are related to 8 P, /Bz, Bz2 and the
force constants coupling vibration parallel and perpendicular to
the surface are related to 8 P, /BpBz&. Solid curves correspond
to pseudopotential parameters R, =1.48 and D =0.525, and the
dashed curves to R, = 1.386 and D =0.3969.

y»..=+Z'e'/
~
R, —R,

~

.

P, is only the surface contribution to Eqs. (9) and (16). In
other words, the usual electronic contribution P„ i.e.,

(29)

Equation (26) is an extension of the local density approxi-
mation (LDA) which similarly assigns a local density
variation in the bulk susceptibility of the uniform electron
gas. However, Eq. (26) is clearly much more demanding
than the LDA for one-electron potentials. ' Our prelimi-
nary results, using Eq. (22) in Eq. (26), cast doubts as to
its value in surface pair-potential calculations.

We next return to our results in Figs. 2—10. These pro-
vide the following interesting features of a metal surface
which are very likely to survive in a real metal surface.
(1) The extent to which the Thomas-Fermi (TF) or semi-
classical approximation [SCA, only Eqs. (16a) and (16c)]
gives an adequate description for P outside the metal sur-
face. (2) The rate of approach (z& ~ oo) to the image po-
tential form and the position of the image plane. (3) Rate
of convergence to the bulk pair potentials for different
planes in the bulk. (4) Qualitative changes in the structure
of the pair potentials; in particular, shifts in the positions
of the minima. (5) Structure of pair potential in terms of
different planes. (6) Effects of exchange and correlation
on the pair potentials. From Fig. 2 we first observe the
accuracy of our numerical results by noting the extent
that n

&
(z =0)=0. The limit q

~ ~

~ 0 was adequately
achieved by setting q~~

=0.02kF [note that in this figure
we used Z = 1 (not Z =3) in Eq. (21)]. 13(q

~
~,z ) represents

the induced density in the SCA and y(q~~, z) is the quan-
tum interference corrections (due to 1l). Most interesting
is the importance of exchange and correlation [particular-

to the bulk pair potential has been removed. More ap-
propriate is the rate of convergence of P, relative to the
bulk pair potential pb (pb —=p, +p»«). This is detailed in
Figs. 8 and 9 for two atoms on the first and second planes
of a (110) face of Al.

We note the very large changes in pb coming from p,
(even in the second plane) and this persists at least two
more planes into the metal. The convergence to pb is
clearly very slow, and it is expected that modification to
phonon frequencies (as an example) in all metals will per-
sist for many planes. Note that the surface details (i.e., g)
dominate the correction in the pair interaction, and we
conclude that surface changes (e.g. , due to adsorbates)
must severely affect the force constants of the substrate
and the corresponding surface phonon modes. In Fig. 10,
we present the results of two different higher-order deriva-
tives from the surface contribution to the pair potential
and compare them to the second derivative of the bulk
pair interaction. These derivatives are directly related to
the various force constants. We find systematically that
0 P, /Bz~Bz2 makes the largest change to the bulk force
constants, and we expect the transverse surface phonon
modes to exhibit a large sensitivity from surface screening.
We do not include the force-constant changes from
8 P, /Bp which we find are even smaller than
8 P, /BpBz &. The sensitivity to two choices of pseudopo-
tential parameters are also demonstrated.

There are major changes in the qualitative structure of



28 PAIR POTENTIALS ON METAL SURFACES 6757

lL
p

1

O

Pb after the addition of P, (i.e., P=P, +Pb). Most prom-
inant is a shift in the location of the minimas and maxi-
mas which could at least partially account for reconstruc-
tion of some metallic faces. Figure 9 also clearly demon-
strates the importance of including exchange and correla-
tion effects in P, . In Fig. 11 we plot the pair potentials
between atoms in the first and second planes. Note the re-
sulting additional structure which would be hard to
predict just from the two previous results of Figs. 8 and 9.

To produce reliable pair potentials for real metallic sur-
faces and for numerical applications of force-constant
changes to the corresponding surface-phonon dispersions
requires a formulation which accounts for the fine surface
details discussed above. We are working on such con-
siderations and on more accurate parametrization of the
bulk density response (see Fig. 5).
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