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Localization effects near the percolation threshold
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The scaling theory of localization is used to explore the percolation-localization crossover near the
percolation threshold. When intercluster tunneling is neglected, electron states are always localized
before the percolation threshold is reached. The detailed behavior depends on the relation between

the correlation lengths for percolation (g~ ) and localization (gt ). At nonzero temperature the inelas-

tic scattering length g; is also important. If intercluster tunneling is taken into account a sharp
metal-insulator transition at p, is possible if a generalized Harris criterion is satisfied.

I. INTRODUCTION

Various studies of the relation between percolation
theory and Anderson localization have been made. ' lt is
generally agreed, and recent studies ' have confirmed,
that for a system in which the potential is either zero or
infinite, or one in which bonds are either present or miss-
ing, there will be some degree of disorder for which classi-
cal percolation is possible but for which the states in the
corresponding quantum problem are localized.

In this paper we use the scaling theory of localization to
explore this region in which classical electrons are close to
the percolation threshold. The anomalous dimension of
the infinite cluster at the percolation threshold dominates
the problem at short distances, as long as intercluster tun-
neling and hopping are unimportant. In Sec. II we ex-
plore the interplay between the characteristic lengths of
the percolation problem and of Anderson localization. In
Sec. III nonzero-temperature effects are taken into ac-
count by including a third length, the inelastic scattering
length. Finally we argue in Sec. IV that when intercluster
tunneling is present, a transition is possible even at (or
near) the percolation threshold p, . In that situation the
metal concentration is characterized by long-range corre-
lations (LRC), and a generalized Harris criterion is needed
in order to determine whether the transition is sharp or
not.

II. SCALING THEORY
OF PERCOLATION-LOCALIZATION CROSSOVER

In classical percolation theory, close to the percolation
limit p„ there is a characteristic length g~ proportional to

~ p —p, ~

e. Over length scales smaller than g~ the sys-
tem behaves as it does at the percolation limit, while over
length scales larger than gz it behaves like a modified bulk
material: an insulator for p &p„and a conductor for

p &p, . In particular on the conducting side of the transi-
tion (p &p, ) there is a bulk electrical conductivity propor-

t —t /v
tional to (p —p, )~, or g~

~ ~, over length scales greater
than g~. A review of these scaling aspects of percolation
theory and information on estimates of the value of the
exponents vp and tp can be found in Ref. 4.

To obtain a zero-temperature quantum theory of the
conductivity this might be combined with the conductance
scaling theory of Abrahams et al. In this theory g(L),
which is the conductance divided by e /2M for a d-
dimensional cube of volume L, satisfies a scaling equa-
tion of the form

where p(g) only attains its classical value d —2 in the lim-
it of large values of g. It approaches this limit from
below, with a leading correction proportional to —g
and for small values of g the exponential localization of
the wave functions is manifested by the asymptotic ap-
Proach of P to 1n(g/go).

Since the system is homogeneous for length scales I.
larger than gz the theory should apply as usual, with p
unaltered from its form for a bulk homogeneous material.
For L & gz we know that the classical theory gives a con-

/v
ductivity that scales as L ~ ~ (the conductance scales as—t /v+d —2L ~ ~ ) and so we expect the p function of the
zero-temperature quantum theory to approach —tp/vz
+d —2 from below for large g. According to the "nodes
and links" model this is equal to —1/vp for d (6. The
self-similar model for the backbone of the infinite cluster
also gives a negative value. In any case it is undoubtedly
negative even if these theories are not accurate. The result
is that at the classical percolation limit p„where gz is in-
finite, the conductance always scales down to the region
where P(g) is close to ln(g/go~ and so exponential locali-
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Notice also that the condition g(g~)=e /A' can be
rewritten as

x=1 gn gc

o(l,i)l,i
el

1 —t /v
8

(2)

gn g

FIG. 1. Schematic flow diagram in the x-(lng) plane.

zation occurs. At the percolation limit, the situation is
similar to the situation in homogeneous one-dimensional
systems or more accurately like that in an effectively
d,tt-dimensional system with d,ff —d tp/vp & 2 (for
d &6).

Figure 1 shows a schematic sketch of a possible dia-
gram for lng (L) as a function of the parameter
x =L/(g&+L) for p &p, . For x & —, the flows are dom-
inated by the behavior at the percolation limit, and so they
are always towards negative values of lng, while for x & —,

the homogeneous bulk behavior is expected, which in
three dimensions implies flow to negative lng for g &g,
and to positive lng for g )g, . In two dimensions the flow
is always to negative lng since g, is infinite. The figure
can be divided into four general regions separated by these
flow lines. In region I, which is the good metallic region,
localization effects are unimportant, and the conductance
(up to factors which depends on g) is proportional to—t /v +1 —1x ~ ~ for small x, and to (1—x) for x close to uni-
ty. In this region the flow curves have all the same shape.
In region II, the poor metallic region, localization effects
reduce the conductance so that it is close to lng, for
x = z, but for larger values of x the bulk metallic
behavior dominates In this region the resultant bulk con-
ductivity cr gives a correlation length gt =2'/e which
is larger than g~. The distinction between regions I and II
is not sharp, but there is a sha'rp distinction between re-
gions II and III. In region III, which lies just to the left of
the critical line, the behavior for x & —, is similar to that in
region II, but for larger values of x the scaling is towards
exponential localization, with a localization length
which is greater than gz. Finall'y in region IV localization
occurs for length scales less than g~.

A similar discussion could be carried out for the finite
clusters with p &p, . There is a localization region in
which g't «g», and a classical region in which g't is of the
order of the average cluster size.

Notice that experimentally if the temperature is suffi-
ciently low (g'; & g~; see Sec. III) the conductivity cannot
follow the classical o.(p) curve once g(gt ) & e /A'. If o(p)
departs from the classical curve only at g(gz)=e /fi this
means that indeed intercluster tunneling and hopping are
not important and the effects discussed above predom-
inate.

where l,~, the elastic mean free path, plays the role of a
microscopic length scale. Using the relations
o(l,~)=ne D, D=U+1,~, n=k~/eF, we obtain the condition
for a crossover to a quantum behavior,

'1—t /v

(kFl,i) =
el

This is a generalization of the condition kF l,l
-1 for

homogeneous system (near percolation g~ »l,~). In some
situations the quantity kFl, l may be interpreted as the ra-
tio between the wavelength characterizing the motion in
the random potential (with LRC) and the de Broglie wave-
length of the electron. The crossover exponent from per-
colation to common (short-range) Anderson localization
P =tt —v which was found previously by Shapiro, follows
directly from Eq. (2).

III. NONZERO TEMPERATURES

At nonzero temperatures electrons are subject to inelas-
tic collisions after they have traveled some characteristic
distance g; (measured in a straight line between points).
Thus it is only for length scales less than g; that the zero-
temperature quantum theory of localization is relevant,
while for greater length scales the electron diffuses classi-
cally, without any quantum interference effects. This idea
can be used to analyze the situation in the four different
regions described in Sec. II, in the case of a three-
dimensional system.

In region I the zero-temperature behavior is essentially
classical, so the inelastic collisions make only an unimpor-
tant modification of the behavior. In regions II and III
the occurrence of inelastic scattering modifies the
behavior of the conductivity in a way which is familiar
from the study of localization in homogeneous systems.
If g;. &g~ we are in a weak localization reg™,since
gt & gt . We suppose the p function has the form

P(g) =— = —k —A /g,d lng
d lnL

(4)

where k = t~ /vt —1 (for a general d this is
tt /v&+2 —d=2 —d,ff). Integration from a value g0 at
some microscopic length ko gives

g(L) =(A,0/L) (2/k+g0) —2/k,

while the classical value gt (L) is obtained by setting A =0
in this expression. Therefore, the relative change in resis-
tance produced by localization effects on a length scale g;
1S

[g (4 ) —g(k )l/g (I ) =(~/kgo)l(k /~0) —ll (6)
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so there is a relative increment in the resistance propor-
tional to g,", which is similar to the usual weak localiza-
tion behavior for d,rf =2 —k. The diffusion constant
D(g;) over the distance is, on the one hand, related to the
inelastic scattering time by D (g; ) =g; /~;. On the other
hand, it is proportional to o.(g;)/n (g;), where n(g;), the
density of electrons belonging to the infinite cluster on
scale g;, is proportional to the density of the infinite clus-
ter on this scale, n ( g; )=g; ~ ~. Since tT(g~ )=g;49 —k —1

it follows that D(g;)=g;—:g, (see Ref. 9).
Thus we have v;=$2+a. The final result for the increment
5p in resistance due to localization in this region is (for
d =3)

(t /v —1)/(2+t /v —p /v ) p 3
6p jp~~;~ P P P P

In region IV the localization length g& is less than g~, so
the localization can be weak, if g; «gi, or strong with

In the weak localization case the situation is much
the same as it is for regions II and III. In the strong local-
ization case the electrons diffuse a distance gi by hops in
time ~;, ' so the conductivity on this length scale is pro-
portional to n(gi)gi/v;. Beyond this length scale the
motion is classical, so the bulk conductivity o., which is
approximately the conductivity at the percolation length

gz, can be found from the scaling relation

o.=o(g~) =(g'~/gi) ' 'o(gi)

k ''1
OC

For a detailed comparison of the formulas in this sec-
tion with experimental results it is necessary to know how
the inelastic scattering time ~; depends on temperature
near the percolation threshold. In some cases it may be
dominated by long-wavelength phonons which are little
affected by the inhomogeneities, in which case a T
dependence of w; is to be expected. " In other cases
electron-electron scattering may dominate, in which case
the present theoretical results"' must be modified to al-
low for the structure of the infinite cluster at the percola-
tion threshold. This question is left for further study.

IV. EXTENDED HARRIS CRITERION

So far we have neglected intercluster tunneling effects.
We now consider a situation in which our system consists
of, for example, a mixture of poor conducting and poor
insulating materials, that is, the conductance is not re-

stricted to the infinite cluster of the conducting com-
ponent. In this case even at or near p, we may have a
metal-insulator transition (as a function of, for example,
the microscopic conductivity of the insulator). This tran-
sition is characterized by LRC of the inhomogeneities,
with a characteristic correlation length g~. We now
develop an extended Harris criterion' to establish the
relevance of such LRC. (A similar problem in the context
of magnetic systems was discussed by Weinrib and Halpe-
rin. '4)

The statistical fluctuations of the transition point are
proportional to V '(g, hn; bnj)'~, where hn; is the
fluctuation in metal concentration of a microscopic
volume of size V=(~ (g'i &&g~). One can write this as—d/2+y /2v

The statistical fluctuations would be ir-
relevant (i.e., there would be a uniform sharp transition) if
they are smaller than the distance from the transition
point. The condition for this is

—1/vI y /2v —d/21)g p p

2'
VI )

d Vp
—

Pp

where vI is the exponent related to the LRC localization
fixed point. The crossover exponent from the regime
governed by the LRC to that of the short-range correla-
tions is

/=2 —(d —yq/vq)vi .

One can now study various crossover scenarios, from
the regime of LRC to the regime where the common
Harris criterion' is relevant. We emphasize that for
p&p, the true asymptotic behavior always corresponds to
short-range correlations. However, near p, one can have a
large regime where the behavior is dominated by LRC.
We also remark that if the inhomogeneity is sufficiently
strong it may be inadequate to use the Harris criterion at
all.
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