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Surface segregation in simple metal alloys: An electronic theory
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Surface segregation in simple-metal random binary alloys is studied via an electronic theory based
on local ionic pseudopotentials and a linear-electron-response model appropriate for semi-infinite
systems. Segregation of the larger species ions to the surface layer and (in most cases) a nonmono-
tonic layer concentration profile are predicted. The segregation of the larger species ions to the sur-
face layer is driven by single-particle terms (Hartree-energy terms) in the total-energy expansion.
These single-particle energy terms are independent of coordination number and relative positions of
the ions but depend on the position of the surface layer relative to the inhomogeneous zeroth-order
electron density at the metal surface, thus giving rise to crystal-face specificity. The concentration
in deeper layers is determined primarily by effective interionic interactions. The electronic theory is

compared with a nearest-neighbor pair-bond model, and it is concluded that the pair-bond model is
not applicable to surface segregation in simple-metal alloys. The alloys considered in this paper are
composed of the alkali metals K, Rb, and Cs. Concentration profiles as functions of temperature
are presented for the (100) and (110) surfaces.

I. INTRODUCTION

Surface segregation is the enrichment of the concentra-
tion of one component at the surface of an alloy. This
phenomena is of great interest since the surface composi-
tion affects a number of properties such as oxidation and
corrosion, catalysis, chemisorption, wear, and electrical
and mechanical properties of thin films. Recent experi-
ments, employing modern surface-science techniques such
as Auger-electron spectroscopy, ' ultraviolet-photoelectron
spectroscopy, x-ray-photoemission spectroscopy, low-
energy ion scattering, and atom-probe field-ion micro-
scopy have provided a wealth of detailed information on
surface-segregation systems. These studies present evi-
dence for a dependence of the surface composition on bulk
composition, surface crystallography, and temperature. In
some cases multilayer segregation and a nonmonotonic
concentration profile (i.e., oscillations in the composition
as a function of depth) are indicated.

The possibility of surface segregation was predicted
first by Gibbs using thermodynamic arguments where the
reduction of the surface energy serves as the driving force.
More recent theories are of the pair-bond type in which
surface bond breaking provides the driving force, and
some theories include strain energy due to a mismatch in
the atomic sizes, in which case minimization of the bulk
strain energy provides an additional driving force. Re-
cently there have also been several efforts to develop elec-
tronic theories of surface segregation in transition-metal
alloys based on the tight-binding approximation. A dif-
ferent approach is that of Muscat' in which a cluster of
muffin-tin potentials is embedded at the surface or bulk of
a free-electron gas; it was found in this study that the
presence of the surface potential, rather than the number,
positions, or species of neighboring atoms, plays the dom-
inant role in surface segregation.

Theoretical treatment of alloy systems using band-
structure or density-functional methods, sometimes in
conjunction with the coherent-potential approximation
and its variants, have, in general, been employed for calcu-
lation of the electronic densities of states of nonperiodic
solids. " The application of these methods to calculations
of formation energies of bulk alloys is quite difficult. '

Furthermore the use of these methods in studies of surface
properties of metal alloy systems is prohibitively complex,
particulary for disordered systems. Thus it is desirable to
construct a theoretical formulation which would allow
systematic studies of surface properties and the physical
origins of segregation in such systems. In the case of
simple-metal (sp-bonded) alloys, pseudopotential theory in
conjunction with linear-response, or second-order pertur-
bation theory, has been applied with notable success in
calculations of bulk-alloy formation energies (heats of
mixing). "

The purpose of this paper is to present an electronic
theory of surface segregation in simple, i.e., sp-bonded,
metals. Our theory is based on the use of local ionic pseu-
dopotentials and a linear-response model appropriate for a
semi-infinite metal. ' The formalism is given in Sec. II,
and in Sec. III we present and discuss the results (layer
composition versus temperature for different bulk compo-
sitions) and compare the predictions of our theory with
those of a simple pair-bond —type theory. %'e find that
the dominant factors which determine the composition of
the surface layer are "single-particle" terms, i.e., terms in
the total-energy expansion which depend on the position
and species of an individual atom with respect to the inho-
mogenous electron-gas density in the surface region. In
this respect our results are similar to those of Muscat'
mentioned above. However, the composition of succeed-
ing layers is determined primarily by interionic interac-
tions, and in some cases we find a nonmonotonic concen-
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tration profile. The larger species always segregates to the
surface layer, segregation is greater for (100) than for
(110) surfaces, and depends on temperature and bulk com-
position. The present study is limited to homovalent al-
loys consisting of the alkali metals K, Rb, and Cs. Work
now in progress will deal with more technologically im-
portant (and more difficult to treat theoretically) simple-
metal alloys such as Al-Li, Al-Mg, etc. In addition, we do
not consider effects due to elastic strain and/or surface re-
laxation. These issues as well as local ordering effects will
be discussed elsewhere.

II. THEORY

+ (1—x —M„)ln( 1 —x —bx„)]

(3b)

is the ideal entropy of mixing of the solid solution. In
writing Eqs. (3) we have neglected any excess vibrational
energy and entropy and we have assumed that the ar-
rangement of species A and 8 within a given layer is com-
pletely random.

The equilibrium concentration profile is found by
minimizing the free energy with respect to layer concen-
trations, subject to the constraint that the average concen-
tration x does not change. We define a surface region
consisting of X, layers, and require the concentration to
be uniform outside this region, i.e.,

xn=x+Ax„ for 1&n &X, ,

x„=x+Axb for K, +1&n &Xz,

(4a)

(4b)

where Nl is the total number of layers (the limit NI —+ oo

will be taken). The constraint is

N

Mb —— (Nl N,)——

A. Free energy

Consider a semi-infinite solid solution composed of A
and B atoms. The average concentration of species A is x,
and the concentration in the nth crystalline layer parallel
to the surface is x„=x+b,x„. The total (ground-state) en-
ergy of the system will depend on layer concentrations,

Ez. Ez (x, {b,x——„}) .

The heat of mixing is defined to be the difference between
the total energy of the solid solution and that of a
mechanical mixture of the pure species, '

H (x, {bx„})=Er(x,{hx„}) xEr(x=1)—
—(1—x)Er(x =0) .

The free energy of mixing can be approximated by

(T,x, {b,x„})=H (x, {b,x„})—TS (x, {b,x„}), (3a)

where T is the temperature, and

S (x, {bx„})=—kz g [(x+hx„)ln(x+hx„)

The X, coupled differential equations which determine
the equilibrium configuration (layer-concentration profile)
are

i3F , az
(N—I N—)

' =0, 1&n &N, .
Bhx„ Bhxb

B. Pseudopotential linear-response formulation

The calculation of the surface-concentration profile
from Eq. (6) requires an expression for the total energy
which depends explicitly on the atomic species and their
concentration in the surface-region layers and in the bulk.
We have previously obtained an expression for the total
energy of a semi-infinite simple metal using local model
ionic pseudopotentials and linear-response theory. ' In
this section we will outline the theory presented in Ref. 14
and apply it to the surface segregation problein.

The semi-infinite metal is represented by an interacting
electron gas in the presence of a truncated neutralizing
positive background (jellium model), to which we add a
term which replaces the jellium positive background by a
lattice of discrete ions. The electronic Hamiltonian is
written as

H=H + gw;,

where H is the many-body Hamiltonian of the electron-
jellium system; the ground-state energy E and electron
density p (r) of the semi-infinite electron-jellium system
are given in the seminal study by Lang and Kohn. ' The
potentials associated with individual ions w;(r) are given
by

w; ( r ) = Vp (P;;
~

r —r;
~

) N'Z(13; ) V—+ ( r ),
where P; is the species of the ion at position r;, Vz(P, r)
and Z(P) are the bare ionic pseudopotential and valence
charge, respectively, of the ion of species P, N = g, Z(P;)
is the total number of conduction electrons, and V+(r) is
the potential due to the neutralizing positive background
charge. Thus, w;(r) is a neutral perturbation which re-
sults from replacing a part of the positive background
with an individual ion at site r;.

With the use of the coupling-constant integration
method and assuming linear response, the total energy of
the semi-infinite metal is given by'

Ez. E+g I d rp——(r)w;(r)

where p;(r) is the screening electron density induced by
the potential w;( r ), and EM is the Madelung energy of the
ions. The major task in evaluating Ez for an arbitrary ar-
rangement of ions of different species is to obtain a self-
consistent solution for the screening electron densities
p;(r). Linear-response theory yields' a pair of coupled
integral equations,
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p;(r)= f d r'ao( r, r ')[w;(r ')+P;(r ')], (10a)

2
P;(r)= f d r'[1 —G(r, r ')]p;(r'), (10b)

where ao( r, r ') is the random-phase-approximation (RPA)
response function and P;(r) is the self-consistent effective
potential due to p; ( r ), which includes exchange-
correlation effects through the local-field correction
G(r, r '). ' ' In our calculations we use the infinite-
barrier-response model developed in Ref. 14, i.e., ao is the
RPA response function for a free-electron gas confined to
the half-space z )0 and the local-field correction G(r, r ')
is approximated by G(

~

r —r '
~

). The details of this
response model are discussed in Ref. 14. This response
model has also been used to predict the relaxed structure
of the low-index surfaces of Al and Na, ' yielding good
agreement with available experimental results including
multilayer relaxation in Al(110).

For notational convenience the layer positions are given
by

It is convenient to define average and difference poten-
tials for layers,

w„(r)= xVz(A, (r z„)'~ —)
+(1 x)Vp(B—, (r z„)'~ )—N'ZV—+(z)

and

(14)

ing is similar to that developed by Inglesfield' for appli-
cation to disordered alloys, except that we will allow for
variations in concentration in the z direction. For the pur-
pose of the present study we consider only homovalent al-
loys, Z(A) =Z(B)=Z, and assume that the ion positions
are lattice sites of a truncated bulk crystal (no lattice re-
laxation at the surface and no distortion around impurity
ions); thus EM, the Madelung energy, is independent of
Idee„ I. However, we do not assume Vegard's law, i.e., we
minimize the total energy of a homogenous bulk random
alloy with respect to density to determine the lattice con-
stant and (bulk) total energy for a particular concentration

z„=zo+(n ——,
' )d, n =1,2, . . . b,w„(r) = V~(A, (r z„)'~ ) V~—(B,(r —z„)' ), — (15)

w;, (r)=w;(R, ~z
~

) (12a)

where zo ——3n./8kF, fikz is the Fermi momentum, and d is
the interlayer spacing. In this response model p„(r)=0
for z (0; thus we are able to define symmetrized quanti-
ties,

where z„[Eq. (11)] is the z coordinate of the nth layer.
Symmetrized reciprocal-space potentials w ( q ), hw~ ( q ),
and their corresponding screening-electron densities

p (q) and hp (q) are defined in analogy to Eqs. (12)
(with R; = 0 ).

With the use of the definitions given above, the second
term on the right-hand side (rhs) of Eq. (9) (the first-order
or "Hartree" energy) is

p;, (r) =pi(R,
~

z
~
), (12b)

where r =(R,z), R is a two-dimensional (2D) vector in the
surface plane. With the use of these symmetrized quanti-
ties, we are able to evaluate the second-order [band-
structure (BS)] energy term entirely in reciprocal space.
Thus, the third term in Eq. (9) becomes

g f d rp (r)w;(r)= + [EH(n)+bx„bEH(n)] g (1),
i(n)

where

EBs ——
4 g (2m') f d q e ' ' p;, (q)wj, (q), (13)

E~(n)= f d rp (z)w„(r),

6E~(n)= f d r p (z)iI),w„(r),

(17)

(18)

where p;, (q) and w;, (q) are the three-dimensional (3D)
Fourier transforms of p;, (r) and w;, (r), and q =(Q,q, ) is
a 3D reciprocal-space vector. The screening electron den-

sity p;, ( q) is obtained as a function of q, for a given
~ g ~,

layer, and atomic species by solving a single one-
dimensional (1D) integral equation, as discussed in Ref.
14.

We will now use Eqs. (9) and (13) in the surface-
segregation problem. The theory described in the follow-

and where i (n) specifies a lattice site in layer n.
The third terin on the rhs of Eq. (9), i.e., the band-

structure energy, Eq. (13), depends on the distribution of
the atomic species within the layers as well as on the layer
concentrations. Every site in a given layer is equivalent,
i.e., each site in the layer sees on the average the same dis-
tribution of A and B species around it regardless of wheth-
er that site is occupied by an A or 8 atom. Thus the
band-structure energy can be written

Ess= —,f d'q g [P~(q)+~. ~p~(i)l[w~, (q)+~~~w .(i]
n, m i(n)j (m)

+—,f d'qg I (x+m„)[p (q)+(1—x)ap (q)][w (q)+(1—x)bw (q)]4 (2n. )

+(1—x —M„)[p (q) —x bp (q)][w (q) —x hw (q)]I g 1 .
i(n)

(19)
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The primed sum omits the j(m) =i(n) terms, and the second integral in Eq. (19) results from the fact that the potential
at a given site, and thus the "self-interaction energy" f d r p;(r)w;(r), cannot be expressed in terms of the averaged
quantities for a layer.

For a Bravais lattice,

2 2
i(n) j(m) N g g(q G)( )n

—m

G
i(n), j(m) 0

(20)

where Nz g—,—.(& 1 is the number of ions in a layer, Ao is the area per surface atom, G is a 2D reciprocal-lattice vector,

and s- =e' ', where bR is the registry shift between adjacent layers. With the use of Eq. (20) and rearranging
G

terms in Eq. (19), the band-structure energy can be written as

EBs —— g g f dq, (s- )" [p (G,q, )w, (G,q, )+bx„bp (G,q, )w~, (G,q, )
4~O

+bx p (G,q, )bw, (G,q, )+b xb x Ap (G,q, )bw, (G,q, )]

+ —g(2n) f d q(x+bx„)(1—x —bx„)bp (q)bw (q)

Substituting Eqs. (16)—(18) and (21) into the total-energy expression yields

N~ ET Nz 'ET+ —g—f„b(x„+—, g p„

where the terms on the rhs are defined and discussed below.
(a) ET is the total energy of a uniform (bx„—:0) semi-finite solid solution of concentration x given by

Nz ET Nz 'E + QE——~(n)+ —, g (2ndo) 'g f dq, p~(G, q, )w~, (G,q, )
n, m

+ ~ g(2~) f d qx(1 —x)bp~(q)bw~(q) . (23)

(b) f„ is the change in the total energy of the uniform solid solution resulting from replacing an atom of species 8 in
the nth layer with an atom of species A. It can be regarded as an impurity" formation energy and is given by

f.=bEH(&)+ &EBs(~)+(1—» )&E,(~),
where

bEBs(n)= —, g (2rrAD) ' g (s- )" f dq, [bp (G,q, )w, (G, q, )+p (G,q, )bw, (G,q, )]

(24)

bE, (n)= —,'(2m. ) f d qbp (q)bw (q) . (26)

The second term, b,EBs(n), depends explicitly on the average concentration x [through the definitions of w and p; see
Eq. (13)],while bE~(n) and bE, (n) depend on x only through the density parameter r, which determines p (z) and the
lattice parameter and which is obtained by minimizing ET with respect to density for a given x. These two terms,
b E~(n) and bE, (n), depend on the z coordinate of the layer but are otherwise independent of crystal structure. For suf-
ficiently deep layers (large n) f„ is independent of layer number and is equal to the bulk value, fb„(k, which can be calcu-
lated for an infinite solid solution. Since in the bulk case the calculation can be done entirely in reciprocal space and
there are no sums over layers, this serves as a check on the accuracy of the calculations.

(c) P„serves to couple the concentrations in layers n and m, and is given by

, (2mAO) 'g (s- )—" f dq, [bp (G,q, )bw, (G,q, )+hp, (G,q, )bw (G,q, )]—25„bE,(n), (27)

where bE, (n) is defined in Eq. (26). The only dependence of ()(„on x is through the density parameter r, . P„be-
comes negligably small for large

~

n —m ~, and for sufficiently deep layers P„ is equal to the bulk value,
(I(b„((,(

~

n —m
~

), which also can serve as a check on the accuracy of the calculation.
We now return to the minimization of the free energy, or equivalently the free energy of mixing given by Eq. (3), with
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respect to layer concentration, to find the surface-concentration profile. Substituting Eqs. (1)—(3) and Eq. (22) into Eq.
(6) yields a set of nonlinear coupled algebraic equations for the b,xn,

T

N (x +hxn )(1—x )
1&n&N, .

x(1—x —bxn )
0= g p„bx +(f„—fb„~k)+kBTln (28)

m=1
N

+kB T g [ (x +b x„)ln(x +b,x„)—x ln(x )
n=1

In writing Eq. (28) we have taken the limit of an infinite number of layers, NI ~ Qo, so that b,xb [see Eq. (5)] is neglig-
able in the entropy term, NL /(NI N, —) = 1, and N, is large enough so that f„=fb„s, for n & N, . [N, must also be large
enough so that Mn =ducb for n &N„see Eqs. (4) and (5)). The free energy of segregation, i.e., the difference between
the free energy of the equilibrium configuration and that of the uniform solid solution, is

N

~„s Fm(x, [——hxnj) I' (x—, [hxn =OI)= g hxn (fn ——fbUu )+ 2 g bxm$nm

+ (1—x —b,x„)ln(1 —x —Ax„)—(1—x )ln(1 —x )] . (29)

C. Pair-bond model

Before presenting our results in Sec. III we will discuss
briefly a simple version of the pair-bond enthalpy formu-
lation and contrast it with our pseudopotential linear-
response formulation. In the pair-bond model the
cohesive energy of the alloy is written as a sum over
bonds,

f„= g C„[(1—2x)e+ —,(eAA —eBB)],
m=1

and the layer-coupling matrix elements are

(37)

to be the number of nearest neighbors that an ion in layer
n has in layer m (or vice versa). The formation energies
are

E,= —,
' g'e;, (30) 4nm = —2Cnm& (38)

2 — 2
EAA = E,(x = 1 ), 6BB=—E—,(x =0)

C ' ' C

The interspecies bond strength is written as
1

GAB 2 ( EAA +EBB ) +6

(34)

(35)

For an ideal solution @=0, but if the heat of mixing is
known (again either an experimental or calculated bulk
value), then

e(x)=[NCx(1 —x)] H'm(x) . (36)

The surface-segregation problem can be cast in the form
of Eq. (28). We define the layer coordination number C„m

The cohesive energy is related to the total energy Ez by

E,(x, [~„I ) =E,(x, I ~„I )+N[xEI"+(I X)EI'], (31)—
where El" and EI are the ionization energies of the 3 and
8 atoms. The heat of mixing is thus

Hm =E,(x, [bAn ] ) XE,(x =1)——(1 x)E, (x =—0) . (32)

For a bulk alloy, assuming nearest-neighbor interactions
only, the cohesive energy is given by

1 CE,(x)=—[x eAA+—(1—x) eBB+2x(1—x)eAB], (33)—2

N ' 2

where C is the coordination number. If EAA and EBB do
not depend on x then they can be obtained from the pure-
species cohesive energy [experimental, or from Eq. (31) us-
ing a calculated Ez ],

For a Bravais lattice C„=C(
~

n —m
~

); the only nonzero
C for bcc (100) layers is C(1)=4, and for bcc (110) layers
the nonzero C's are C(0)=4 and C(1)=2. Thus, for bcc
(100) and (110) surfaces only the surface layer has a for-
mation energy different from the bulk, and there is no
coupling beyond adjacent layers. In addition, the same-
layer coupling term for (100) layers is zero. The pair-bond
model can be extended to include interactions beyond
nearest neighbors and to allow for different bond
strengths near the surface, but it is difficult to uniquely
determine the additional parameters. In any case, the
pair-bond model cannot account for terms which arise
from the direct and indirect interaction of a single ion
with the inhomogenous electron gas (see Ref. 14).

III. RESULTS AND DISCUSSION

In this section the theory developed in Sec. II is applied
to the simple-metal alloys Rb-K, „, Cs K, , and
Cs Rb1 „. The choice of ionic pseudopotentials and
properties of the bulk alloys are discussed in Sec. III A. In
Sec. IIIB we discuss the various contributions to the for-
mation energy f„and differences f„—fb„~l, using the
Cs-K, „system as an example. We also discuss the
layer-coupling matrix elements, P„and differences be-
tween bulk and surface terms. The results of surface-
segregation calculations, in the form of layer-
concentration x„—versus —temperature curves, are pre-
sented.
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Metal

K
Rb
Cs

3.033ap
3.551ap
4.112ao

&c

0.5723
0.7273
0.8079

4.861ap
5.196ao
5.625a p

N 'ET
(Ry)

—0.3891
—0.3687
—0.3449

A. Bulk properties

In general, the choice of a model pseudopotential is
guided by the adequacy of the fit between certain calculat-
ed and measured material properties. When treating met-
al surfaces it is essential that the model yields the correct
bulk lattice constant at zero pressure and reproduces, as
well as possible with a limited number of parameters, the
elastic properties of the bulk metal. In addition, if the
model is applied to alloys, it is of utmost importance that
the model also yield the correct total energy, and thus the
correct cohesive energy, of the pure species.

The simplified Heine-Abarenkov model pseudopoten-
tial has been used by a number of authors' to calculate
properties (heat of mixing, phase diagrams, etc.) of alkali-
metal alloys. We will use the form

Vp(p, r)= .

—Z(P)e

—Z(P)e u, (P)
r, (p)

r )r, (p)

r (r, (p)
(39)

where Z(p) is the charge of the ion of species p in units of
the electron charge, e [Z(p) =1 for the alkali metals], and
r, (p) and u, (p) are the core-radius and depth parameters.
These parameters, r, and u„are chosen to reproduce the
lattice constant and bulk modulus of the pure species '

and are given in Table I. The model pseudopotentials
were used in Ref. 21 to calculate vacancy formation ener-

TABLE I. Parameters used in the calculations: r, and u, are
the pseudopotential core radius and depth [see Eq. {39)],and r,
and N 'ET are the electron-density parameters and bulk total
energy per particle.

gy and volume, and yielded results in good agreement
with experiment. We have verified that these potentials
give the correct lattice constant by minimizing the total
energy of the pure species with respect to the electron den-
sity parameter r, ; the resulting values of r, and total ener-

gy per atom N 'ET are also given in Table I. The calcu-
lated total-energy values agree with experiment [see Eq.
(31)] to within a fraction of l%%uo in each case. We have
also verified that these pseudopotentials predict a bcc
structure by comparing the total energies with those ob-
tained by assuming fcc and hcp structures.

The results of minimizing the total energy of the ran-
dom alloy systems with respect to r, are summarized in
Table II where we give results for concentrations x =0.1,
0.5, and 0.9 (these are the bulk concentrations used in the
surface-segregation calculations). The deviations from
Vegard's law for volumes

r, (x ) = [xr, (1)+(1—x )r, (0)]'~s

are small and negative. The calculated values of the heat
of mixing are all positive due to the structure-independent
contributions; the band-structure contribution can be
positive or negative and are about an order of magnitude
smaller than the structure-independent contribution in
each case. The quantity X 'H /x(1 —x ) shown in Table
II is proportional to the alloy potential e of the pair-bond
model [see Eq. (36)]. This quantity is zero for an ideal
solution and is constant for a regular solution pair-bond
model. The qualitative behavior of H (x) is in agreement
with other calculations ' and with liquid-alloy experi-
mental results regarding the asymmetry of H (x ) about
x=0.5. In particular, H (x)/x(1 —x) is approximately a
linear function of x, except for the Cs-K system, and
H~ (x ) /x ( 1 —x ) increases with increasing concentration
of the larger species. Yokokawa and Kleppa have ob-
tained approximate values of H for the solid solutions
Rbp 7Kp 3, Csp 5Kp 5, and Csp 5Rbp 5 by extrapolation from
their liquid-metal experimental results, and these values
are compared to the results of several calculations in
Table I of Ref. 2S. The calculated values reported there
are all much greater than the experimental values, as are

TABLE II. Bulk alloy results: r, is the electron-density parameter, ET is the total energy, H is the
heat of mixing, TD is the calculated "disordering" temperature [Eq. (40)], and T is the melting tem-
perature.

rs

(ao)
'ET

(Ry)'
N 'H /x(1 —x )

(Ry)
TD
(K) (K)

Rb)K9
RbsKs
Rb9K)

4.896
5.034
5.165

—0.3869
—0.3785
—0.3706

0.0018
0.0017
0.0016

80
95
70

330
310
310

Cs)K9
CssKs
Cs9Ki

4.948
5.267
5.556

—0.3839
—0.3652
—0.3487

0.0092
0.0072
0.0063

400
410
270

283
283
278

Cs]Rb9
CssRbs
Cs9Rb)

5.242
5.418
5.584

—0.3662
—0.3563
—3.471

0.0020
0.0019
0.0017

90
105
75

300
282
293
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ours. We get values of II~ which are about 2, 3.5, and 11
times the extrapolated experimental values for Rbp pKp 3,
Cso 5KO 5, and Cso 5Rbo 5, respectively. However, our
values are generally lower than the other reported calcu-
lated values. The discrepancy between calculated and ex-
perimental values may be due to the assumption that the
heat and entropy of mixing are independent of tempera-
ture which is made in Ref. 25 in extracting the solid solu-
tion H from liquid-alloy measurements as well as in the
calculations, and the neglect of short-range order and lat-
tice distortion in the calculations. The "disordering" tem-
perature Tn(x ), below which the free energy of a mechan-
ical mixture (clustered or segregated) of the pure species is
lower than that of the random solid solution of concentra-
tion x, is given by

TD(x) =H~(x, [bx„=OI )/S~(x, Ibx„=OI ) . (40)

Values of TD(x) for alloys studied in this paper are also
given in Table II. The assumption that the aHoy is a ran-
dom solid solution is invalid near and below T=TD(x).
A correct treatment of the bulk heat of mixing and of sur-
face segregation would require the inclusion of short-
range order in both the energy and entropy terms, which
has only been accomplished in the context of simple pair-
bond models limited to nearest-neighbor bonds. Avail-
able phase diagrams indicate that each of the alloy sys-
tems considered here [with the possible exceptions of
K-Cs (Ref. 30)] form continous solid solutions near room
temperatute, but information regarding the presence and
degree of short-range order is not available. Our results
for Rb„K& „and Cs„Rb~ „are consistent with these ex-
perimental phase diagrams. The results for Cs„K& „are
not necessarily inconsistent with experiment since we have
assumed a totally random solid solution; the inclusion of
short-range order would certainly lower the predicted
clustering (i.e., segregating) temperature.

B. Formation energies and layer-coupling matrix

In this section we discuss the formation energies f„[Eq.
(24)] and layer-coupling matrix P„[Eq. (27)]. Table III
lists the numerical values of the bulk formation energies

fb„&k for the alloy systems which are treated in this paper,
along with the contributions bEH, b,E, and bEps [Eqs.
(18), (25), and (26), respectively]. The Hartree (first order
in the ionic pseudopotentials) contribution b,EII is by far
the largest in magnitude and is larger in the Cs-K alloys
where the difference in ionic size (pseudopotential core ra-
dius or pure-species volume per atom) is larger than in ei-
ther the Rb-K or Cs-Rb alloys. Also note that AEH is
positive and decreases as the concentration of the larger
species increases. fb„tk is defined to be the change in ener-

gy of the A~B& alloy when one of the smaller B ions is
replaced by a larger A ion. Thus we see that more energy
is required to substitute a large ion in an alloy consisting
primarily of smaller ions than vice versa. This is what
one would expect based on elastic strain arguments; how-
ever, the mechanism involved is different here since the
Hartree energy is independent of structure (relative posi-
tions of ions). The self-interaction difference bE, is also
structure independent and is relatively insensitive to con-
centration (when expressed in units of e kF). The last
contribution, b,EBs, is essentially a sum over effective ion-
ic interactions. This term may be either positive or nega-
tive and decreases (or becomes more negative) as the con-
centration of the larger species increases.

The formation-energy difference f„—fb„tk is the driv-
ing force which gives rise to surface segregation. The
dependence of this quantity on layer number and on alloy
composition is illustrated in Table IV using the Cs-K
(100) alloy surfaces as an example. The formation-energy
difference is always negative for the first layer, indicating
that the larger species will segregate to the surface. The
principal contribution to this first-layer energy difference
is again the Hartree-energy term and results from the fact
that the "zeroth-order" electron density p (z) is smaller at
the position of the first layer. In the second layer the
Hartree and second-order (band-structure) contributions
tend to cancel, and past the second layer all contributions
are essentially zero, so that only the first layer has a sig-
nificant formation-energy difference. This is similar to
the simple nearest-neighbor pair-bond model in which
f„—fb„~k

——0 for n ) 1 at low-index surfaces Howev. er,
we emphasize again that the mechanisms involved are not

TABLE III. Bulk formation energy, fb„jk= AE~+(I 2x)EE, +AEss [see Eq—s. (18) and (24)—(26)].
Units of energy are e kF where k+ ——(9m./4)' /r, and r, (x ) is given in Table II.

Rb)K9
Rb5K5
Rb9K)

0.0262
0.248
0.0236

—0.0018
—0.0018
—0.0017

AEgs
(e kF)

0.0029
0.0017
0.0006

(e k~)

0.0277
0.0265
0.0255

ulk

(Ry)

0.0217
0.0202
0.0190

Cs)K9
Cs5K5
Cs9K)

0.0673
0.0594
0.0534

—0.0076
—0.0074
—0.0071

0.0039
0.0002

—0.0026

0.0651
0.0596
0.0565

0.0505
0.0435
0.0390

Cs)R19
Cs5Rb5
Cs9Rbl

0.0371
0.0347
0.0327

—0.0024
—0.0024
—0.0024

—0.0004
—0.0012
—0.0019

0.0347
0.0335
0.0327

0.0254
0.0238
0.0224
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TABLE IV. Contributions to the formation-energy difference for Cs K, alloys, (100) layers;
[f„—fb„g, ]=6[bEII{n)]+(1—2x)6[&Eas(n)] where b[bEH{n)]=bEH{n) —bE~(bulk), etc. [see Eqs.
(18) and (24)—(26)]. Units of energy are e k», where k» ——{9m/4)' '/r, and», (x ) is given in Table II.

0.1

5[bEB{n)]

—0.0122
—0.0012
—0.0000
—0.0001

0.0002
—0.0000

b,[bE,{n)]

0.0007
0.0000

—0.0000
0.0000
0.0000

—0.0000

b, [bEBS(n ) ]

+0.0000
—0.0014
—0.0001
—0.0000
—0.0001
—0.0001

[j.—fb 1k]

—0.0116
—0.0001
—0.0002
—0.0002
—0.0000
—0.0001

0.5 —0.0098
0.0010
0.0001

—0.0002
0.0001

—0.0000

0.0006
0.0001

—0.0000
0.0000
0.0000

—0.0000

+0.0011
—0.0013
—0.0001
—0.0000
—0.0001
—0.0000

—0.0087
—0.0004
+0.0000
—0.0002
—0.0000
—0.0000

0.9 —0.0080
0.0008
0.0002

—0.0002
0.0001

—0.0000

0.0005
0.0001

—0.0000
0.0000
0.0000

—0.0000

+0.0018
—0.0012
—0.0002
—0.0000
+0.0000
—0.0000

—0.0068
—0.0005
+0.0000
—0.0002
+0.0001
—0.0001

TABLE V. First-layer formation-energy differences [see Eqs.
(24) and (28)).

(100)
surface

(110)
surface

0.1

0.5
0.9
0.1

0.5
0.9

Rb K)

—0.0038
—0.0033
—0.0034
—0.0018
—0.0015
—0.0012

Alloy

CsxK-[ x
(Ry)

—0.0090
—0.0063
—0.0047
—0.0042
—0.0027
—0.0017

CsxRbi x

—0.0039
—0.0033
—0.0027
—0.0017
—0.0013
—0.0010

the same. In our pseudopotential linear-response model
the surface-layer formation-energy difference is deter-
mined almost entirely by the Hartree-energy contribution
which is independent of coordination number and depends
only on r, and on the position of the layer with respect to
the zeroth-order electron density, p (z). In Table V we
give the first-layer formation-energy differences for all the
alloy systems considered. Note that the magnitudes for
the (110) surfaces are smaller than those for the (100) sur-
faces. This is due to the fact that the (110) layer spacing d
is larger and thus the z coordinate of the first (110) layer,
Eq. (11), is larger, and p (z) deviates less from the bulk
value at this position (see Fig. 1 of Ref. 14). Again, the
prediction, based on the magnitudes of the formation-
energy differences, that segregation will be more pro-
nounced at the more open (100) surfaces is the same as
that of the pair-bond model, but for a totally different
reason.

The nature of the layer-coupling matrix, P„~ is illus-
trated in Table VI with the use of the Cs5K5 (100) and
(110) alloy systems as examples. The qualitative features
are the same for all other systems. We note first that the
magnitude of P„decreases rapidly as

~

n —m
~

increases,
and the matrix-element coupling layers near the surface
differ from the bulk layer-coupling matrix elements.

The qualitative features of the layer-coupling matrix
can be understood in terms of interaction potentials by in-
cluding interactions out to at least the second-nearest-
neighbor shell and taking the bond strengths from the cal-
culated effective ionic interaction potentials (pair poten-
tials). The bulk layer-coupling matrix elements are given
in terms of the pair potentials by

Pnm y + nt[UAA(» )+ UBB(» ) 2UAB(» )]
(j)

where the superscript (j) specifies the jth nearest-neighbor
shell, C„'~~ is the number of jth nearest neighbors which
an ion in layer n has in layer m, and U p(»{J)) is the value
of the bulk pair potential between ions of species a and P
evaluated for the jth-neighbor distance, r' '. The bulk pair
potentials for the Cs-K, „- alloys are shown in Fig. 1 (see
Ref. 14 for a discussion of interaction potentials in the
surface region). We get, for example, from Eq. (41) for
(100) layers using the bulk Cs5 K~ pair potentials
and first- and second-nearest-neighbor interactions,
$„„=0.001 58, P„„+)—0.002 50, and P„+z—0.000 39,
compared to the values 0.00192, 0.00361, and 0.00037
given in Table VI, which were obtained from Eq. (27). It
is necessary to include interactions out to at least the
fifth-nearest-neighbor shell to get reasonably quantitative
agreement with the exact calculation [i.e., Eq. (27)].
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TABLE VI. Layer-coupling matrix P„=P „ for Cs,K& (100) and (110) surfaces. Energy unit is
e'/k~.

0
1

2
3
4
5

0.003 29
0.003 88
0.000 50

—0.000 04
—0.00006
—0.00002

0.001 80
0.003 48
0.000 33

—0.000 18
—0.0

0.0

0.001 94
0.003 61
0.000 36

—0.000 01
—0.00001
—0.00001

(100) surface
0.001 96
0.003 67
0.000 39

—0.00003
—0.000 04
—0.00001

0.001 90
0.003 64
0.000 38

—0.000 02
—0.00003
—0.00001

0.001 92
0.003 61
0.000 37

—0.000 01
—0.00002
—0.00001

0
1

2
3
4
5

0.006 11
0.002 64

—0.00008
—0.00001
—0.00002
—0.00001

0.004 73
0.002 67

—0.00008
—0.0
—0.0
—0.0

(110) surface
0.004 65
0.002 67

—0.00008
—0.0
—0.0
—0.0

0.004 64
0.002 67

—0.00007
—0.00001
—0.0
—0.00001

0.004 65
0.002 66

—0.00007
—0.000 1
—0.0
—0.0

0.004 66
0.002 66

—0.000 07
—0.0—0.0
—0.0

Since the formation-energy difference f„—fb„&z is very
small in magnitude for n ~ 2, we may expect that the con-
centrations of these deeper layers will be determined pri-
marily by the coupling between the layer concentrations.
The matrix elements coupling adjacent layers are positive,
thus the heat of mixing H (x, I hx„ I ) may be decreased if
succeeding layers have alternately positive and negative
M's, resulting in a nonmonotonic concentration profile.

In fact, we find that in some cases, at very low tempera-
tures, T && TD, the "concentration layering" propagates
into the bulk. This bulk layering phenomenon is an ar-
tifact of the model, resulting from the neglect of local or-
der within and between layers and the fact that fluctua-
tions in concentration are allowed only between layers
parallel to the surface plane. The model is not valid for
T ( TD in any case [see the discussion following Eq (40)]..

In contrast to our ps eudopotential linear-response

C s xK1-X
I

Gs-Gs
K-K

Gs-K

X=O. 1
«& Rb-„K, „- (100)

X

0.4
X=O.

(1 10)

X=O.5 1.0
-3,5—

0.8-

1.0
X=O.9

0.8-

2
4

50.1

X=O.9
1.0

4
6
2

X&.5

X=O.1

I I I I
(

I I I I
]

I I I I & t I I 1

Q.5 1.Q 1.5 2.Q
R/R

0.2-
- S.g

0 100 200 300
Y (K)

0 100 200 300
T (K)

FICr. 1. Bulk pair potentials U(A), as functions of interionic
distance R in the Cs K, alloys for x =0.1 0.5, and 0.9. Ener-

gy units are 10 Ry. The distance A is in units of the bcc
first-nearest-neighbor distance R"', the ratios of the first five
nearest-neighbor distances to R "' are 1, V'4/3 —l. 15,
V'8/3=1. 63, V'll/3=1. 91, and V 12/3=2, respectively.

FIG. 2. Layer concentration x„[Eq. (4)] and change in free
energy upon segregation hE„z [Eq. (29)] as functions of tem-
perature for Rb~K, a11oys with bulk concentration x=0.1,
0.5, and 0.9. Numbers 1—5 adjacent to the x„-vs-T curves speci-
fy the layer numbers n. These results are obtained from the
pseudopotentI'al linear-response model explained in Secs. II A and
IIB with %,= 12 (the number of layers in the surface region).
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model, the nearest-neighbor pair-bond model described in
Sec. II C will always give a monotonically decreasing con-
centration profile if the bulk heat of mixing is positive
[see Eqs. (36) and (38)]. It is possible to obtain a non-
monotonic concentration profile from a nearest-neighbor
pair-bond model if the bond strengths in the surface re-
gion are adjusted '; however, this practice may be
misleading since ordering may be favored in the bulk even
though H~ is positive. In other words, the classification
of alloys as either ordering or segregating, which is in-
herent to the pair-bond model, is not valid for simple met-
als, and is probably not valid for noble or transition met-
als, simply because the cohesive energy cannot be ex-
pressed as a sum over pair bonds.

0
R=

0
X=o

~4 X=O.S

/X=o. i

1.0 2,4~5~
Q 8 3

1.0

X=Q.S
3—
4,5

0.6- 4
3~~ X=0.S 35~4~

2

1.0

(.& C.„R, (100) Cs„-&bq „- (110)

C. Segregation results

In this section we present and discuss the results ob-
tained by minimizing the free energy with respect to layer
concentrations. We have included twelve layers in the
surface region in each case [N, =12; see Eq. (6)]. Figures
2, 3, and 4 show the (larger) A species concentration in the
first five layers of A„-8i „- (100) and (110) alloy systems
Rb —K

&
— Cs —K ] — and Cs —Rb

~
—, respectively, with

x =0.1, 0.5, and 0.9. Results of the simple nearest-
neighbor pair-bond model (Sec. IIC) are shown in Fig. 5
for comparison using the Rb„K, „- systems as an exam-
ple. The reader is reminded that the results for tempera-
tures near and below the disordering temperature, T( TD
[Eq. (40), Table II], are probably not valid due to the
neglect of local ordering within and between layers, as dis-
cussed in the preceding sections. Concentration profiles
are presented in Figs. 6 and 7 as histograms of species-3

X=0.1

02- 4
3
5

I I I I
/

I I I I
]

I I I I
/

I I I I
f

I I I I
[

I

0 100 200 300
T (K)

100 200 300
T (K)

concentration versus layer number at temperatures
T=250, 200, and 150 K for the Rb„-Ki „- (100) alloy sys-

tems; Fig. 6 gives the pseudopotential linear-response re-
sults, and Fig. 7 is obtained from the pair-bond model.

The general features of the x„-vs-T curves are in agree-

PAIR"BONO MODEL

FIG. 4. Layer concentration x„and change in free energy
5F g as functions of temperature for Cs~Rb, ~ alloys. See cap-
tion of Fig. 2.

Q
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FICx. 3. Layer concentration x„and change in free energy
AF„g as functions of temperature for Cs~K, ~ alloys. See cap-
tion of Fig. 2.
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FICjr. 5. Layer concentration x„and change in free energy
EI'„g as functions of temperature for Rb~K, ~ alloys obtained
from the pair-bond model explained in Sec. IIC. In this pair-
bond model the layer concentrations decrease monotonically
with increasing layer number (the x„-vs-T curves are not labeled
with layer number in this figure). See also caption of Fig. 2.
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Rbx K1-x (100)

X=0.9

0.6- X=O.S

1.0

X=O. 4

0.2-
T=250 K T=200 K T=150 K

1 3 5 7 9 3 5 7 9
LAYER NUMBER

I
'

I
'

I

1 3 5 7 9

FKx. 6. Examples of layer-concentration profiles obtained from the pseudopotential linear-response model: the (100) surfaces of
RbgK, g alloys with bulk concentration x =0.1, 0.5, and 0.9 for temperatures T=250, 200, and 150 K.

ment with our expectations based on the formation-energy
differences f„—fb„'k and the layer-coupling matrix P„"as
discussed in the preceding section:

(a) The larger (A) species always segregates to the sur-
face layer.

(b) Segregation is more pronounced at the more open
(100) surfaces and increases with decreasing temperature.

(c) Segregation is more pronounced in the Cs„-K, „- sys-

tems where the difference in ionic size is larger.
(d) In most cases we observe a nonmonotonic concentra-

tion profile —the concentration in the second layer is usu-
ally lower than the bulk concentration due to the high
concentration in the first layer and the coupling between
layer concentrations. However, in some cases [higher bulk
concentration and/or (110) layers] the concentration pro-
file decreases monotonically away from the surface.

(e) At very low temperatures, T «TD (where the model

is not valid), one can see in some cases the onset of bulk
concentration layering.

(f) The pair-bond model gives a monotonically decreas-
ing concentration profile, overestimates the concentration
in the surface layer, and greatly overestimates the change
in free energy upon segregation.

IV. CONCLUSION

We have developed an electronic theory of surface
segregation in simple-metal alloys which is based on the
use of local ionic pseudopotentials and linear response,
and have applied this theory to the binary simple-metal
(solid solution) alloys composed of K, Rb, and Cs. We
conclude that the segregation of the larger species to the
surface layer is driven by single-particle terms in the
total-energy expansion, i.e., by the Hartree-energy terms
(first order in the pseudopotentials) which are independent

1.0

"x"~x

X=O.9

PAIR-BOND MODEL

L

0.6- X=0.5

1.0

0.6-
X=0.1

0.2-
T=250 K T=200 K T=150 K

3 5 7 9 3 5 7 9
LAYER NUMBER

1 3 5 7 9

FICs. 7. Examples of layer-concentration profiles obtained from the pai:"-bond model. See also caption of Fig. 6.
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of coordination number and relative positions of ions and
which depend only on the position of the surface layer
with respect to the inhomogenous zeroth-order electron
density in the surface region. The concentration in deeper
layers is determined primarily by the coupling between
layer concentrations which results from interionic interac-
tions and which may give rise to a nonmonotonic concen-
tration profile. By comparing our electronic theory with a
simple nearest-neighbor pair-bond model, in which the
bond strengths are obtained from bulk thermodynamic
data, we conclude that the pair-bond model is not applic-
able to simple-metal alloy systems, the reason being that
the cohesive energy cannot be expressed as a sum over pair
bonds. We speculate that the pair-bond model may not be
reliable for noble- or transition-metal alloy systems for the
same reason; this is supported by the results of Muscat, '

and by the results of Connolly and Williams ' regarding
many-body interactions and the heat of mixing in
transition-metal alloys. Experimental data on surface
segregation in the alkali-metal systems considered in this

paper is not currently available; the theory can be adapt-
ed to other (nonhomovalent) simple-metal systems such as
Al-li, Al-Mg, etc. , and the same mechanisms discussed
here must certainly be involved.

In the current version of the theory, surface relaxa-
tion, ' lattice distortion due to size mismatch, and effects
due to local (short-range) ordering have not been con-
sidered. The inclusion of surface-relaxation and/or
lattice-distortion effects would probably increase the
surface-layer concentration of the larger species due to the
fact that there is a greater freedom to relax the lattice in
the surface region. Short-range order can in principal be
included using the cluster-variation method.
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