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Simple solution to the Newns-Anderson Hamiltonian of chemisorption

M. Baldo and R. Pucci
Istituto di Eisica dell Universita degli Studi di Catania, 57 Corso Italia, I-95129 Catania, Italy

and Centro Siciliano di Eisica Nucleare e di Struttura della Materia —Unita di Catania,
Gruppo Nazionale di Struttura della Materia del Consiglio Nazionale delle Ricerche, I-95129 Catania, Italy

and Sezione di Catania, Istituto Nazionale di FIsica Nucleare, I-95129 Catania, Italy

F. Flores
Departamento de Fisica del Estado Solido, Facultad de Ciencias, Universidad Autonoma de Madrid,

Canto Blanco, Madrid 34, Spain

G. Plccitto
Istituto di Eisica dell UnE'versita degli Studi di Catania, 57 Corso Italia, I-95129 Catania, Italy

and Centro Siciliano di Fisica Nucleare e di Struttura della Materia —Unita di Catania,
Gruppo Nazionale di Struttura della Materia del Consiglio Nazionale delle Ricerche, I-95129 Catania, Italy

and Sezione di Catania, Istituto Nazionale di Fisica Nucleare, I-95129 Catania, Italy

A. Martin-Rodero
Departamento de Fisica del Fstado Solido, Facultad de Ciencias, Universidad Autonoma de Madrid,

Canto Blanco, Madrid 34, Spain
(Received 21 July 1982; revised manuscript received 29 August 1983)

A new method for solving the Newns-Anderson model of chemisorption is proposed. It is based
on the introduction of an adatom self-energy, which is obtained using a surface-molecule viewpoint.
This self-energy is calculated by means of elementary group-theoretical techniques. The method,
applied to the case of a three-atom chain, shows, besides great simplicity, good accuracy compared
both with the exact result and with the most refined methods known in the literature.

I. INTRODUCTION

Chemisorption of hydrogen on transition metals has
been the subject of extensive research in recent years.
From the theoretical point of view the bulk of the effort
has followed the pioneering work of Newns. ' This author
has proposed a type of Anderson Hamiltonian for the
chemisorption of simple atoms on metal surfaces giving
an approximate solution to this case within the Hartree-
Fock (HF) scheme.

Other researchers have looked for improved solu-
tions by using different approaches. Special mention must
be given to the work of Brenig and Schonhammer, and
the work of Schuck —a generalization of Ref. 7 for the
asymmetric case—which gives the most accurate solutions
to the Newns-Anderson model. Quite recently, Martin-
Rodero et al. have given a new procedure —a generaliza-
tion of the one given by Schonhammer' —which goes a
step further in accuracy.

If one considers the model of an adatom being joined to
an end of a chain of three atoms the binding energy of the
adatom can be obtained exactly. One can also calculate
exactly" the electron density of states projected into the
valence-electron orbital of an adatom adsorbed on a sim-
ple discrete-level substrate. It is therefore desirable that a
solution of the Newns-Anderson model for chemisorption
reproduces these exact results correctly.

Furthermore, it seems possible that the chain model or

the discrete level substrate model have some physical
relevance. According to Newns' the key property of the
surface density of states is its bandwidth, and its detailed
shape is relatively unimportant.

It is worthwhile to notice that although the most widely
used approximation is the HF approximation, Schrieffer
and Gomer' raised some doubts on the accuracy of the
HF solution in situations where the correlation-energy pa-
rameter is large compared with resonance energy of the
one-electron part of the Hamiltonian. This problem is
particularly relevant for hydrogen chemisorbed on transi-
tion metals. In this case the intra-atomic Coulomb repul-
sion U has an effective value of about 8 eV and the tight-
binding hopping parameter T for the substrate is chosen
in order to simulate the bandwidth [T=l eV in the case
of Ni (Ref. 1)]. The hopping integral V between the ada-
tom and the substrate is usually treated as a parameter
[near 4 eV in the case of Ni (Ref. 10)].

The purpose of this paper is to reconsider the Newns-
Anderson Hamiltonian of chemisorption and give a new
method "ornparable in accuracy to the one given by
Martin-Rodero et al. —but having the advantage of
greater simplicity. Our method is based on the observa-
tion that if one considers the crystal levels as degenerate
the Newns-Anderson Hamiltonian displays a SO(4)
dynamical symmetry and thus is analytically soluble.
This is apparent from the fact that the Hamiltonian can
be expressed in terms of the generators of the group.
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Furthermore, the use of relations (Al) greatly simplifies
the calculations of the Green functions, whereas one needs
the repeated application of the Hamiltonian operator on
the reference states for the evaluation of the effects of the
evolution operator.

In Sec. II we describe the proposed method of solution.
Section III is devoted to the numerical results for different
substrate models and comparison with other methods. In
the Appendix we give details of the calculations.

II. DESCRIPTION OF THE METHOD

The general Newns-Anderson Hamiltonian reads

H= QEkCk Ck +ma gA+ + g Vi, (A ~C ~k+H. c. )
k, o

+ UA+~A

k, cr

where the Ek's are the substrate-level energies, e~ is the
adatom-level energy, the Vk's are the interaction matrix
elements between the adatom and the substrate, U is the
intra-atomic interaction for the adatom, and cr is the spin
variable.

If we assume Ek ——0, the Hamiltonian can be written

H=e~+A+ +V+(A 8 +H.c.)+UA+ A

(2)

where
1/2

Q Vk
k

8 ==+ VkBk'=1

K2 2(A~ +8+ ), K3——= ,'(AQ BB ), ——
which form a closed SO(4) Lie algebra,

[Ki,Ki ]=i5 ~eiiiKi, [Ki,I]=0 (5)

where e,j~ is the total antisymmetric tensor in three dimen-
sions. The operator I acts as the identity operator. In

Hanultonian equation (2) is formally equivalent to the
"molecular limit" of Ref. 2, and thus it is analytically
soluble. The solubility is a straightforward consequence
of an underlying group symmetry and is not bound to a
two-atom surface model. For instance, with the same
Hamiltonian [Eq. (2)] we can treat the three-level sub-
strate model of Ref. 11, in which no clustering is assumed
and the only simplification is of the band structure of the
substrate. The main point is that the assumed degeneracy
implies that only a particular single-particle state of the
substrate is active, depending on the particular model of
the substrate. This will be used as the starting point for a
more realistic treatment of the substrate [see Eq. (9)]
where the degeneracy assumption is relaxed and the band-
width of the substrate levels will be treated explicitly.

The Hamiltonian equation (2) can actually be expressed
through the following operators:

I= Q(AQ +8 8 ), K) ——, i(A~ —8+), —

where the self-energy Mzz can be analytically expressed
(for the symmetric case) as

U co
(8)

4(co —9V )

Of course, the derivation of Eq. (8) is based simply on
algebraic manipulations and thus it could also be derived
by other standard methods. We found it, however, easier
to use systematic commutation relations such as (5), even
if other procedures are equally well suited.

Equation (8) is nothing but the self-energy presented in
a surface-molecule picture in which the only state of the
substrate (defined by the operator 8) which interacts with
the adatom is decoupled from the rest of the substrate.

Let us consider now a more realistic model of the sub-
strate by relaxing the degeneracy assumption, i.e., the
above-mentioned decoupling. It is easy to show that the
full Newns-Anderson Hamiltonian [Eq. (1)] is exactly
equivalent to

H, fr = g EkCk~Ck~+ [&~+M~q (co)]+A +
k, a

+V+(A 8 +H.c.), (9)

where M~~(co) is the exact self-energy of the adatom. In
fact, by using the one-body Hamiltonian [Eq. (9)], one
derives the exact set of equations for the single-particle
Green function given in Eqs. 2(a)—2(c) and (5) of Ref. 9.
The proposed procedure for solving the Newns-Anderson
model for chemisorption is to approximate the exact self-
energy M„z appearing in Eq. (9) by expression (8) ob-
tained in the degenerate case.

Actually, it can be shown' that Eq. (9) corresponds to
the first-order term of an exact expansion in the substrate
bandwidth of the adsorbate self-energy. However, it is
essential to realize that all the self-energy matrix elements
derived from Eq. (9), except Mz„(co), are already the exact
ones. The successive approximations modify only
M~(co). The meaning of approximation (9) is thus clear:
it corresponds to assuming for the adatom-adatom self-
energy an average self-energy obtained by adopting a sim-
plified substrate structure. It is expected that this average

terms of the generators K s and the operator I the Hamil-
tonian equation (2) can be expressed as

H =(e~ ——, U)( ,'I+—K3+K3 )+2V(K2++K2 )

+ —, U( —,I +K3+ +K3)' .'

The fact that Hamiltonian (2) displays SO(4) symmetry as
shown in Eq. (6) allows us to obtain an analytic solution.
We note that the Hamiltonian (6) contains electron-
electron correlation, which gives rise to the quadratic
term.

In the Appendix we sketch the derivation, from Hamil-
tonian (6), of the corresponding single-particle Green
function G(co), which satisfies

Mzz (co ) —co V
G(co) =I,
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TABLE I. Quasiparticle spectrum for the exact and approximate solutions (see text) of an atom
chemisorbed on a three-atom chain for V= 1, T= 1, and U= 8 (all in eV).

Exact
Level Weight
E,h, ———O.S78S

+ 0.3397 0.1124

+ 1.4250 4.1 &&
10-'

+ 1.7768 0.0341

3.1806 0.0034

4.2852 0.0009
4.5871 0.0040

4.8361 0.3337

6.2267 0.0102

This method
Level Weight
E,h, ———0.5836

0.4027 0.1593

1.4700 0.0117

5.0672 0.3291

Ref. 9
Level Weight

E,h, ———0.5770

0.3470 0.1176

1.4408 2.67 & 10

2.2835 0.03394

3.5641 0.03980

4.7032 . 0.0844

5.1736 0.2216

Ref. 7
Level Weight
E,h, = —O.S445

0.3131 0.0921

1.2171 0.0433

1.S426 0.0451

5.1030 0.3195

self-energy produces the main groups of peaks of the pro-
jected adatom density of states and that the successive ap-
proximations simply introduce additional structures in
each group of peaks. This is confirmed by the numerical
applications of the next section.

In the present paper we restrict ourselves to approxima-
tions (8) and (9) because they already produce quite good
results. Note that M~~(co) gives the exact solution to
Hamiltonian (2) and that our approximate solution to
Hamiltonian (l) consists in taking for this Hamiltonian
the same self-energy. With this approximation we au-
tomatically recover the exact solutions in the following
limits: (i) U going to zero, (ii) V going to zero, and (iii) the
bandwidth going to zero.

III. RESULTS AND COMMENTS

In order to check the accuracy of the proposed solution
we have chosen to compare our results with some calcula-
tions ' based on the chain model and with the exact cal-
culations of Zavadil et al. "

We have solved the case of an adatom adsorbed on a
metal chain of three atoms. We have obtained the exact
results for different parameters and the approximate solu-
tions with the method proposed by Brenig and
Schonhammer and Martin-Rodero et aI.

In this model the fundamental parameters are V, the in-
teraction between the adatom and the last atom of the
metal, U, the intra-atomic interaction, T, the hopping in-
tegral between nearest neighbors in the metal, and eH, the

adatom level. In our calculations we have only considered
the symmetric case eH ———U/2; then, the solutions pro-
posed in Refs. 9 and 10 coincide.

In Tables I—III we give the quasiparticle levels for posi-
tive energies (electrons) obtained with the different
methods, and their weights on the adatom. The energy of
chemisorption is also given.

Results of Tables I—III show that our method gives
quite good results, better than the results obtained using
Brenig and Schonhammer's procedure, although slightly
worse than the ones obtained with the method of Martin-
Rodero et al. The advantage of the method given here
compared with the last one resides in the simplicity of the
calculations; this is reAected in the smaller numbers of
levels displayed in Tables I—III for the present method
and in the simple self-energy (8).

The three levels obtained in the present method mimic
very accurately the main levels of the exact solution. Gn
the other hand, the chemisorption energy can be taken as
a good measure of the accuracy of each solution. Values
given in Tables I—III confirm the accuracy of our
method.

It could be worth commenting that for typical chem-
isorption cases ( V ranging from 3 to 5) our simple solution
has an accuracy around 99.9 Jo. We note that in this
range of V values the rebonded surface-complex picture
applies well. However, as already mentioned, our model
gives the exact limit for small V.

We have also compared our results with the exact calcu-
lations of Zavadil et aI." These authors have schema-
tized the substrate band with a three-levels substrate.
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TABLE II. Same as Table I for V=3, T=1 and, U=8 (all in eV).

Exact
Level Weight

E,h, ———3.7583

This method
Level Weight

E,h, ———3.7622

Ref. 9
Level Weight

E,h, ——3.7584

Ref. 7
Level Weight

E,h, ———3.7481

0.9301

2.7383

2.9173

4.4343

8.8880

10.5216

0.0608

0.0804

0.2401

0.0106

0.0538

0.0401

0.9322

2.9165

9.9310

0.0607

0.3426

0.0967

0.9302

2.7820

2.9225

5.1281
7.5658

10.2135

0.0608

0.1089

0.2148

0.0120
0.0286

0.0749

0.8803

1.0431

2.9488

9.9720

0.0433

0.0158

0.3460

0.0949

VA'th Zavadil et al. " we assume that the adatom ioniza-
tion level is 4 eV below the center of the "band" and that
U= 8 eV. If we represent the substrate band with one lev-
el [corresponding to SO(4) dynamical symmetry in our
model] we predict two localized levels. We report the re-
sults for V=0.5, 1, and 1.5 in Fig. 1 in comparison with
the exact calculations of Zavadil et al. " Of course, the
exact solution" is richer than the unperturbed SO(4) solu-

tion. However, the two main SO(4) peaks reproduce both
the centroids and total strengths of the two main groups
of states of the exact calculations very well. This clearly
displays the underlying approximate SO(4) symmetry of
the Newns-Anderson Hamiltonian. We have also con-
sidered in our method the nondegenerate three-level case
according to the scheme of the preceding section.

The substrate "conduction band" is assumed to be 2 eV

TABLE III. Same as Table I for V=S, T=l, and U=8 (all in eV).

Exact
Level Weight

E,h ———7.5395

This method
Level Weight

E,h,
———7.5410

Ref. 9
Level Weight

E h, ———75395

Ref. 7
Level Weight

E,h, ———7.5364

0.9783

2.9346

4.8996

6.6926

9.6989

13.0748

15.9347

0.0208

1.5 ~10-'

0.4323

2.1X 10-'

0.0029

0.0087

0.0321

0.9784

4.9192

15.5835

0.0208

0.4386

0.0406

0.9783

2.9395

4.9011

7.0721

11.2731

15.8205

0.0208

0.4331

2.26' 10-'

8.23 X 10-'

0.0356

0.9591

1.0164

4.9274

15.6131

0.0143

6.4 && 10-'

0.4390

0.0403
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FIG. 1. Density of states in the adatom of the SO(4) approxi-
mation {dotted lines) according to the Newns-Anderson Hamil-
tonian compared with the exact calculation (solid line). Abscis-
sae are in eV. Values of the parameters are U=8 eV and
V=0.5, 1, and 1.5 eV. Splitting of the schematic crystal levels
in the exact calculation is 1 eV.

FICx. 2. Density of states in the adatom of the perturbated
SO(4) approximation (dotted lines) according to the scheme
described in the text compared with the exact calculation (solid
lines). Abscissae are in eV. Values of the parameters are U=8
eV, he= 1 eV, and V=0.5, 1, and 1.5 eV.

wide. The results for V=0.5, 1, and 1.5 are reported in
Fig. 2, again in comparison with the exact calculations of
Zavadil et al. ". Gur solution gives three localized levels
which resemble in an impressive way the exact results.

We stress again that the model is still completely analyti-
cal. The simplicity of our method and its accuracy give
some hope that it can be used for typical three-
dimensional chemisorption problems with confidence.
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APPENDIX

The commutation relations of the K operators intro-
duced in Eq. (4) with the operators A and 8 are

[K3 A~ 1=—
z 5~~A~ [K3»~ ]= z 5

[K„A ]=—,'5—,8, [K, ,B,]=

[I,A ]=—A, [I,B ]=

Thus one easily gets

(Al)

[H

Acr�]

(eH P U)A —VB ——, U[( ,
' I +K3+—+K3 )A +A ( ,' I +K3+—+K3)], [HB ]= —VA (A2)

From Eq. (A2) it follows that the two Green's func-
tions,

G~(t, t') = i (T—[A (t)A (t')]),
G»(t, t') = i (T[—8(t)A (t')]),

(A3)

satisfy a closed set of equations of motion whose frequen-
cy Fourier transform can be written in matrix form ac-
cording to Eq. (7) where j(:—(1, 0).

The remaining Green functions involving the other sub-
strate one-electron states orthogonal to the 8 state satisfy
an independent trivial set of equations of motion. Of
course, in the SO(4) limit, the ground state

I gp) is degen-
erate [the one-electron states orthogonal to 8 do not ap-
pear explicitly in the SO(4) Hamiltonian equation (6)].

Let us introduce the ground-state wave function
I gp),

I Pp) =[a~A+A +az(A+8 —A 8+ )+a38+8 ] I 0),
(A4)

with
I
0) the vacuum state. With the aid of relations (Al)

and (A4) one can easily obtain the effect of the application
of the Hamiltonian on the states A

I gp) and 8
I
Pp).

For instance, we have

( , I+K3++—K3)8+
I fp)

=2ai(yiA+
I
fp&+y'zB+

I
4p&)

(5iA+ I fp&+1'4+ I fp&»
2

(A5)

where y&, yz, and 5~ are readily obtainable in terms of a&,
a2, and n3.

Equation (A5), together with all the similar equations
allows us to construct two 2X2 matrices, C and D, which
describe the action of the Hamiltonian on the two subsets
of states,

l&&=(A'I @p&, 8'I @o)), I&'&=(A
I 4& 8

I @p&»

respectively.
By repeated applications of the matrices C and D, one

gets for the evolution operator U, applied to
I P ),

U,
I
p):—exp( iHt)

I p ) =exp[—( ——,iat)I][cos(pt)I —in. o. sin(pt)]
I p ),

where o. are the Pauli matrices and

(A7)

2 ir2 i 1=C))+Czz, P=[—,(C)) —Czz) +C)zCz)]', n—: (Clz+Cz)), (C)z —Cz)), (C)) —Czz)2P '2P '
2P (A8)

~ ~ ~ ~where C~~, C~z, Cz&, and Czz are matrix elements of the C matrix. A similar expression holds for U,
I P ').

Equation (A7) allows us to determine all the Green-function matrix elements. For instance

i l . 2 2(A+U, A+)=exp — at ~ —, exp(ipt) a3+—
2 2

1
1 — (C)) —Czz)

2P
A'2

(at+a3) C)2

2
1 A2+ —,exp( i pt) a3+—

2
1 Ci21+ (C) ) —Czz ) — (a(+a3)&2 (A9)

gy Fourier-transforming Eq. (A9) and similar equations
one can obtain the explicit expressions of the Green func-
tion G (co) in terms of U, V, a~, az, and a3.

In order to determine u~, a2, and a'3, we must solve, in

I

the symmetric case (eH = —
2 U), the set of equations

—A,a~+ v 2Vaz ——0, V 2Vaz —A,a3 ——0, af+az+a3 ——1,
(A10)
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M2V 0
det M2V eH —A, V2V =0.

0 ~2 V

(Al 1)

In this case we obtain

where A, is the ground-state energy determined by the sec-
ular equation

U2
+ +4V2

16

2U
16

' 1/2

i =1—4 (A15)

b =a /(4a —1) .

More general expressions, also valid for the asymmetric
case, are given in Ref. 13.

Equations (A14) allow us to determine the four poles of
G~~ as

V2V Eo
(E2+4V2)1/2 ' 2 (E2+4V2)1/2

(A12)

U2
+4V

16
U

0 4
(A13)

where Eo is the lowest solution of Eq. (Al 1),
1/2

and the corresponding residues,

R1 ——R3, R2 ——R4,
181+R2———,

U2
' —1/2

R, —R, =( —
3, U'+ V') +4V'

16

{A16)

(A17)

For the symmetric case the matrix elements of the C and
D matrices are

U2X, +V'
—1/2

(A18)

1 &0
C11 =D11———b U, C12 = —D12 ———— b U —V,

2 V
By using Eqs. (A15)—(A18) we obtain the explicit expres-
sion

1 Eo 1C21= —D21 ——— bU —V, C22 =D22 ————,U+bU
2 V

co(co —9V )

co —[(U /4)+10V ]co +9V
(A19)

where

{A14)
By comparing Eq. (A19) with Eq. (7) we obtain Eq. (8) of
the text.
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