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Jahn-Teller polaron resonances localized on 4,B,4_, clusters provide a microscopic basis for two-
level tunneling centers and for nonmagnetic Kondo anomalies in amorphous metals. The most ac-
tive tunneling centers belong to a mixed-valence regime, while in a different regime, the model gives
a pseudospin Kondo Hamiltonian with a cutoff ~wp. The virtual-state model is used to obtain an-
alytic expressions for the adiabatic polaron potentials.

I. INTRODUCTION

The low-temperature properties of amorphous solids are
universally consistent with a distribution of intrinsic two-
level tunneling centers of unknown origin.!® Many
amorphous metals are further characterized by a resistivi-
ty varying as —InT over some temperature range
0<T<0® p.!~3 This logarithmic anomaly is apparently of
a nonmagnetic origin3~> (it exists even in amorphous
ferromagnets'® well below T¢) in spite of the fact that
such behavior has been established only for isolated mag-
netic impurities (i.e., the Kondo problem®). It is known
that the “noncommutative” model for scattering of con-
duction electrons by two-level centers gives a nonmagnetic
Kondo effect.” The essential feature of this model is the
assumption of a conduction-electron assisted tunneling
process which is additional to the coupling due to scatter-
ing amplitude variation with tunneling-center configura-
tion. But in the absence of a microscopic model for the
tunneling centers, these couplings can only be guessed at
and a key physical feature of the problem may well be
overlooked.

The concept of Jahn-Teller (JT) polaron resonances was
recently introduced® to explain the behavior of hydrogen
in the group-Vb metals (V,Nb,Ta). Subsequent studies’
revealed the indirect role of hydrogen and suggested that
JT polaron resonances might be an intrinsic feature of
transition metals. A model Hamiltonian representing a
single JT center coupled to conduction-band states was
seen to be analogous to the Anderson Hamiltonian for
magnetic impurities in metals.!°® An important difference
is that the JT model is characterized not by a localized
magnetic moment, but by a localized symmetry-lowering
distortion corresponding to a small polaron with an inter-
nal degree of freedom. Such a center might thus give rise
to a nonmagnetic Kondo effect. The model also gives a
multiple-well potential for the polaron resonance and
therefore provides a possible microscopic basis for the ex-
istence of tunneling centers in amorphous metals.

This paper presents various adiabatic potential func-
tions for the JT polaron based on the intermediate-
coupling virtual-state model.! These potentials reveal an
interesting range of possibilities in relation to the proper-
ties of amorphous metals. We also present arguments
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showing that the JT Hamiltonian is usually equivalent to
a nonmagnetic pseudospin Kondo Hamiltonian with a
cutoff for spin-flip scattering given approximately by the
Debye energy kp®p.

II. THE JT HAMILTONIAN

We start with the following Hamiltonian:
Hyr= 3 €xngo+€q X nag+Mng . —ng_)Q

k,o o

+ (P24 u%0%Q%) /2u

+ S (VigCloscaos +H.c.) , (1)

k,o,s
with
_ T
njo= 2 CjosCjos »
s

where j=k or d, s=1 or | is the electron spin, and
o= + or — labels the orbital partners of the degenerate
I'(E) representation. The different terms in H corre-
spond, respectively, to (i) the I'(E)-band kinetic energy, (ii)
a degenerate set of localized orbitals orthogonal to the
band states, (iii) the JT coupling of the degenerate orbitals
to a local shear coordinate Q, (iv) an Einstein-oscillator
representation of the local coordinate with reduced mass u
and frequency w~(wp=kz®p/#) and (v) a hopping in-
teraction between local and band states which we call
H,.,.. We assume Coulombic interactions are fully
screened. The localized orbitals were originally pictured®
as a combination of atomic d orbitals belonging to the de-
generate I'(E) representation of a tetragonal M,H cluster
embedded in a bcc lattice of metal atoms M. It was pro-
posed that the hydrogen potential (which is directly cou-
pled only to metal states belonging to the fully symmetric
representation) modifies the local parameters of (1), result-
ing in the stabilization of a JT polaron resonance localized
on the M H cluster. In this article, we associate the local-
ized orbitals with any nominally tetragonal 4,B,_, clus-
ter in a disordered metallic system. The index o of Eq. (1)
labels the nominally degenerate pair of cluster orbitals ac-
cording to whether they are symmetric or antisymmetric
with respect to one of the C) operations of the tetragonal
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(D,g4) point group. We assume that the band states in a
disordered system may be meaningfully classified in the
same way, such that states strongly scattered by one of the
degenerate polaron configurations are, in lowest order,
orthogonal to those scattered by the other polaron config-
uration. This orthogonality may be understood in terms
of the nodal patterns associated with the projection of the
relevant band states onto a local combination of tight-
binding orbitals adjacent to and interacting with the T'(E)
cluster orbitals.

To simplify the discussion and to provide analytic re-
sults, we use the virtual-state model!® for the projection of
the total density of ['(E) states onto a spin state of the lo-
cal orbital |do ), i.e.,

Tpacl€,Eg)=A/[(e—E,)?+A?], )

where A=7(V?),,p and p is the density of the I'(E) band
states (assumed constant). The strength of the lattice cou-
pling is given by the parameter C =A?/uw? when C >>A,
the uncoupled conduction band plus impurity provides a
meaningful zeroth-order description.

Figure 1 is a configurational representation of the iso-
lated four-atom cluster or “molecule” showing schemati-
cally the adiabatic, noncrossing energy surfaces for the
various molecular states based on the I'(E) orbitals. The
potentials are labeled by the corresponding total occupan-
cy n=ng,+ny_ and pseudospin S=|ny, —ny_|/2.
The n=1,3 potential implies a Coulomb repulsion for
these charge states, but we expect that Coulombic
effects will be largely screened out in the intermediate-
coupling regime. Beneath the minima at S,=0, +1
[S,=(ny,—ny_)/2] are shown the molecular structures
corresponding to Q,=0,F2C/A. The lowest few oscilla-
tor levels in the S, = —1 well are also depicted. The solid
and dashed arrows represent two quite distinct kinds of
transitions that are possible for this molecular system
The solid arrow corresponds to a Franck-Condon (verti

ut (2,0)

(1,1/2),

—2Cn 0 2CI Q

FIG. 1. Schematic potential surfaces for the different elec-
tronic configurations based on the I'(E) orbitals of an isolated
M, cluster (n=n4,+ny_, 28=|n4,—n4_|, and 28,
=ng4—ng_). Cluster geometries at the S; =0, +1 minima are
viewed along the unique twofold axis. Open and closed circles
represent M atoms above and below the figure plane.
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cal) process for which the excitation frequency is much
larger than w; the transition takes place in such a short in-
terval that structural relaxation is not possible. Vertical
transitions cannot provide intermediate states for the
pseudospin-flip process (S,=+1—S,=7F1). The dashed
arrows, on the other hand, correspond to processes for
which the excitation frequency is much smaller than w;
the structure relaxes adiabatically to the corresponding
minimum. These slow processes do provide intermediate
states for the pseudospin flip, and thus are of special in-
terest in this study. The Born-Oppenheimer or adiabatic
approximation ignores these latter processes which, al-
though contributing insignificantly to the total interac-
tion, may in certain cases profoundly alter the ground
state (e.g., as in the theory of superconductivity!!).

III. ADIABATIC POLARON POTENTIALS

Before considering the ground-state implications of the
nonvertical processes, we discuss Hyy in the adiabatic ap-
proximation, which treats Q as a parameter. Green’s-
function methods'® now give the result (2), with a self-
energy term that depends explicitly on Q, i.e.,
E,=¢c;+0AQ. To analyze the Q dependence of the total
energy, we apply the Hellman-Feynman theorem to Hjp
with the result!?

aU, €p
a0 2t J__lpaileca+rQ)
—Pa-(€,6,—AQ)lde+pa®Q .  (3)
Thus, extrema of the potential surface U, satisfy
C<nd+_nd—)=_}"Qel ’ 4)

where (ng,) =2 f i Paosde is the mean occupancy of the
local orbital |do), which is implicitly a function of Q.
Equation (4) is always satisfied at Q=0; it may also have
solutions at Q =+Q,; corresponding to formation of a
polaron resonance in a double-well potential. The sym-
metric limit of the virtual-state model (i.e., €¢;=¢€F) has
(ng+ng_)=2 for any Q, and the condition for polaron
formation is 4C/wA>1. This paper is concerned pri-
marily with the intermediate-coupling regime, i.e., C~A
for which polaron formation is a borderline proposition.
We suppose that an amorphous metal may be considered
as an array of distinct four-atom clusters which, because
of chemical disorder, are characterized by a reasonably
smooth distribution for the local parameters €; and C.
We assume that Hyr has the same kind of significance
here as does the single local-moment model for the theory
of local magnetic moments in transition metals.!* If the
parameter distribution is not too sharp, the concentration
of polaron-resonance centers should be relatively small.
For the sake of concreteness, we take the rectangular dis-
tributions |€;—€r| <2A and A/2<C <2A. In this re-
gion of parameter space, the virtual-state model reveals an
interesting diversity. To see this, first note that the mean
occupancy is explicitly'®

m{ng,) =2cot™[(e;—ep+0aAQ)/A] . (5)

Substituting Eq. (5) into Eq. (3) and integrating the result-
ing expression with respect to Q gives
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7U(q)/C =mq*/2+p{In[p*+(x —g)*]+In[p*+(x +¢)*]—21In(p?+x?)}
—2{(x —g@)tan"[(x —q)/p]+(x +¢)tan"[(x +¢)/p] —2x tan" ! (x /p)} , (6)

with ¢ =AQ/C, p=A/C, x =(e;—¢€r)/C, and U(0)=0.
The distributions for the reduced local parameters are
|x | <2p and 5 <p <2. In the limit p—0, Eq. (6) goes
over to an Anderson “negative-U” model'* (without the
Hubbard electronic repulsion) symmetric about g=0. In
this limit the double-well polaron (g, = *2) is stable rela-
tive to the (metastable) g=0 configuration for |x | <1,
while it is metastable in the range 1< |x | <2 and un-
stable when |x | >2. For the intermediate-coupling re-
gime (p ~ 1), these boundaries are diminished and the re-
gion of metastability is sharply compressed.

The energy scale is also appreciably reduced. This is il-
lustrated in Fig. 2, which shows U, vs g for several values
of x in the range 0.6—0.9. Comparison of curve d (p=0.5,
x=0.6) with the dashed curve (p=0.7, x=0.6) shows the
sharp reduction of the energy scale with increasing p.
When p=0.7, the region of metastability is practically
nonexistent. The potential barriers in the triple-well po-
tentials (b) and (c¢) of Fig. 2 are on the order of 0.05C.
This is sufficient to localize the 4,B,_, oscillator in one
of the wells, under the reasonable assumption that C is on
the order of 1 eV and w is on the order of 0.01 eV. Using
Eq. (5), it can be shown that for the potentials (b) and (c)
the total occupancy ({ny, +ng_)) changes by about one
electron in going from the well at g=0 to one of the wells
at *|g.|. The region of metastability is therefore a
valence-fluctuation regime. In the presence of static ran-
dom strain, a certain fraction of those centers character-
ized by triple-well potentials should exhibit tunneling be-
tween the g=0 configuration and one of the off-center
configurations, due to a coincidence of the corresponding
minima. A broad, relatively uniform distribution of tun-
neling and energy-level parameters should follow as a
consequence of the very strong dependence of U, on p and
x, as illustrated in Fig. 2.

This model thus seems able to reproduce the essential

u,/c

0.1+

0.0

I

-0.1

0 1.0 2.0 1Q/C

FIG. 2. Adiabatic virtual-state-model JT polaron potentials,
illustrating region of metastability for intermediate coupling.
Solid curves have p=0.5 and (a) x=0.9, (b) x=0.8, (c) x=0.75,
(d) x=0.6. Dashed curve has p=0.7 and x=0.6
[U(—-Q)=U(Q)].
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features of the phenomenological Anderson-Halperin-
Varma-Phillips (AHVP) two-level tunneling model,"
which has been so successful in decreasing the low-
temperature properties of amorphous materials. The JT
polaron model provides as well a basis for metastability
and slow relaxation effects, which are also characteristic
features of the amorphous state.

IV. KONDO REGIME

What about those four-atom centers for which the
double-well polaron resonance is strongly stabilized, as in
curve d of Fig. 2? We will attempt to show that for inter-
mediate coupling, this is a Kondo regime. To simplify the
discussion, we consider only the particle-hole symmetric
case (€ =€f).

It can be anticipated from the orthogonality catastrophe
theorem!® that at sufficiently low temperatures the above
description breaks down. In fact, the adiabatic approxi-
mation is not a good starting point for a correct descrip-
tion of the true ground state of Hyr. To show why this
approach ultimately fails, we go back to the original Ham-
iltonian (1) and apply the Schrieffer-Wolff (SW) transfor-
mation,!” treating H ;. (the last term in Hjy) as a pertur-
bation. Referring back to Fig. 1, we now want to deter-
mine the role of the slow or nonvertical processes that
were previously ignored. The perturbation (H ;,) couples
the distinct manifolds associated with S, =0,++,%1; but
now in doing perturbation theory, it is important to distin-
guish between virtual excited states corresponding on the
one hand to fast (vertical) processes and on the other to
slow processes. As in the theory of superconductivity,!!
we assume that excitations with |e; —é€x'| < are slow
processes during which the molecule relaxes adiabatically
to its corresponding excited-state minimum (inverse adia-
batic approximation). If C >>A, the rest of the interaction
will not substantially alter the energy surfaces of Fig. 1.
In this limit two distinct slow steps are required for the
spin flip: one for S,=+1-—S,=0, and the other for
S,=0—S,=TF1. The effective operator corresponding to
the pseudospin-flip process is thus a two-body term rather
than the one-body term of the Kondo Hamiltonian. Thus,
the regime C >>A gives an effective two-body interaction
between |k + ) and |k — ) particles, but it does not give
an effective Kondo Hamiltonian.

How do we attack the problem in the intermediate-
coupling regime, i.e., when C~A? The above procedure
ignores the major part of the interaction and focuses en-
tirely on pseudospin-flip scattering processes. But when
C~A, the isolated-molecule energy surfaces of Fig. 1 may
no longer be relevant to a discussion of these slow process-
es. To determine the appropriate adiabatic surfaces for
pseudospin-flip scattering, we assume that the adiabatic
solution described by Egs. (3) and (4) is usually adequate.
We suppose that the polaron resonance is in its
pseudospin-down configuration (S, <0) for which the



28 JAHN-TELLER A4,B,_, RESONANCE POLARON MODEL FOR AMORPHOUS METALS

average occupancy of the |d +) state is small but
nonzero. We now imagine a slow scattering event in
which an electron hops from a state | ks 4 ) near the Fer-
mi level into one of the |d + ) levels at ;. =€;+AQ
with Q@ >0. That level is then temporarily unavailable for
conduction-band mixing, but the remaining impurity
channels are open. The resulting slow occupancy drives
the molecule impurity toward a new configuration (as for
the S,= —1 to S, = — + transition of Fig. 1), but now we
allow the remaining electrons to adjust adiabatically to
any change in Q through their coupling with the available
impurity channels. The Hellman-Feynman theorem now
gives for Q>0

AU,
aQ

=A+A [ [pileea+1Q)

—2p_(€6,64—AQ)lde+pua®Q . (7)

The first term is the energy to transfer an electron from
the Fermi level to the local state |ds + ) for unit value of
Q. The integral term now involves only the three impuri-
ty levels available for mixing during the slow process.
Equation (7) is not valid for Q=0 because the degeneracy
of |d+) and |d — ) in that case precludes assigning the
“slow” electron exclusively to | ds + ).

The extremal condition for the adiabatic energy surface
U, of the excited impurity is (for Q > 0)

KQ92=C((nd_—nd+/2)—l). (8)

For p=A/C sufficiently small, Eq. (8) goes over to the
isolated-molecule result Q,,=C /A, corresponding to the
S =1 potential of Fig. 1. As p increases to some critical
value p., the minima of the S =< double-well potential
gradually disappear. Thus, in the range 4/7>p >p., the
system relaxes during a slow process to the high-lying
minimum at Q=0 of an S=0 potential before returning to
one of the ground-state minima. (For p >4/m, the
ground-state minimum is at Q=0.) In the virtual-state
model, the right-hand side of Eq. (8) is analytic and a
graphical solution gives p.~0.3 for the symmetric case.
Thus, in the intermediate-coupling regime (p~1), a sig-
nificant region of the relevant parameter space
(1.27>p>0.3) has only the one high-lying minimum at
0=0. As an example, Fig. 3 shows the fully (U,) and

u/iC

113+

-1/3 . .
0 1 2 1QIC
FIG. 3. Potential surfaces U; and U, corresponding to the
full and partial adiabatic approximation, respectively [Egs. (6)
and (9)], with x=0, p=0.7, and U,(0)=0.
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partially (U,) adiabatic-potential surfaces for the virtual-
state model with x=0 and p=0.7. The analytic expres-
sion for U, with x=0 is (for g >0)

27U,(q) 2wU,(0)

= 1
C C +mq(1+4+q)

+3pIn(1+42%/p*>)—6gtan~g/p), (9

where U,(0) is the zero of energy. At g=O0, the only
difference between U, and U, is that for U, one of the lo-
cal states does not mix with the band states, and thus'®

€

U,(0)= f_Fw (€5 —€)paolE,€q)de . (10)

This integral diverges using Eq. (2), but a realistic model
should give U,(0)~A=pC when €;=€p. This must be
added to the energy difference [U,(0)— U,(g,)=0.3C] be-
tween the minima in Fig. 3 [which for convenience has
U,(0)=0] to obtain the total energy difference between
ground- and excited-state minima. For the example
shown, this gives E, —E;~C, which is the characteristic
magnitude for the range 4/7>p >p.. In this range only a
single slow-scattering event (e.g., electron hops from
|ks +) to |ds +), then from |ds'—) to |k's’—) with
| €x —€x' | <w), with a virtual excitation energy C, is re-
quired for the pseudospin-flip process. Because of
particle-hole symmetry when x=0, we assume the same
virtual excitation energy applies when the above scattering
sequence is interchanged. If the problem for the sym-
metric case is now formally represented by the symmetric
Anderson model with U =2C, the SW transformation
gives!” an effective nonmagnetic Kondo Hamiltonian in
which the spin operators represent pseudospin rather than
electron spin, i.e.,

Hex: 2 kak'(W;'S'S:wks )(\sté\wds’) ’ (11
ks k's'
where \If}s_:.(cfm,c;m) with j=k ord,s=t1or |,0=—o,
and 25 are the Pauli matrices. The coupling constant is
Jiw=—(4VigVia /C)0( | € —€r | —o) . (12)

A crucial feature is the cutoff at w as given by the step
function © [O(x)=1 if x <0 and O(x)=0 if x>0].
While the formal representation as a symmetric Anderson
model is not strictly correct, the antiferromagnetic nature
of the interaction between the local and conduction-band
pseudospin follows from the same considerations'® that
give J <0 for the Hartree-Fock solution of the Anderson
model. Namely, the doubly occupied impurity pseudospin
state below €y is repulsive while the one above € is at-
tractive because it can be occupied by (either spin-up or
spin-down) band electrons having the same pseudospin (o)
as the empty impurity orbital. Given that the exchange
Hamiltonian (11) applies only to the intermediate-coupling
regime, it follows that p |J | ~A/C is on the order of uni-
ty. While this might appear to invalidate an SW perturba-
tion expansion,!’ it should be noted that the SW result for
the symmetric Anderson model is relevant even when
p|J | is not small.?°

An important feature of the JT Kondo Hamiltonian is
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that spin-up and spin-down electrons belonging to one of
the orbitally degenerate I'(E) band states have the same
antiferromagnetic interaction with the impurity pseudo-
spin. At temperatures well below T} ~w exp(1/pJ) there
should be'® a spin-pairing condensation of I'(E) band elec-
trons in the vicinity of the impurity, exactly compensating
the impurity pseudospin. The electron condensation
should in turn drive a relaxation of lattice phonons oppos-
ing that of the local phonon Q; this effect, however, is
beyond the scope of this study. The primary goal of this
section is to demonstrate that the single impurity JT pola-
ron model gives, for an appreciable range of the relevant
parameter space, an effective nonmagnetic Kondo Hamil-
tonian. The cutoff for this latter Hamiltonian is similar
to that used in the theory of superconductivity. It
represents an upper bound for electronic excitations that
allow relaxation (i.e., “tunneling”) of the local phonon Q
from one pseudospin configuration to the other. The im-
portant consequence of this cutoff is that the Kondo tem-
perature for the JT model scales down from w, which is
on the order of the Debye frequency.

V. CONCLUSION

The significance of this model is that it provides a mi-
croscopic basis for nonmagnetic Kondo phenomena in the
range T < ®p, and also for other properties of amorphous
metals as embodied in the AHVP model.!” Careful
analysis of particular transition-metal systems must go
beyond the virtual-state model used in this study, but the
crucial feature in the local density of states is undoubtedly
the existence of a relatively narrow peak containing an ap-
preciable fraction of the spectral density.

A more complete treatment would also include explicit-
ly the repulsive Coulombic interactions between electrons
in the local orbitals. Besides the kind of local minima
described here, such a model also gives a magnetic JT po-
laron resonance.”® The idea that four-atom JT polaron
resonances play a considerable role in determining
transition-metal properties must be considered as some-

G. C. ABELL 28

what speculative. In fact there is no direct and compel-
ling evidence for their existence in any particular system.
Perhaps the most promising systems for the purpose of es-
tablishing the existence of these centers are the dilute hy-
drides of the Vb metals, where the model® gives a polaron
resonance at every hydrogen site. We have already
proposed®® that a resistivity study of such a system
might show a hydrogen-related nonmagnetic Kondo ef-
fect. A recent low-temperature study?' of crystalline
NbTig os(H,D), revealed a hydrogen-induced, isotope-
independent, glasslike specific heat anomaly. This is con-
sistent with the original concept® of hydrogen-stabilized
JT polaron resonances, if the distribution of local hydro-
gen environments is not too narrow.

We conclude this article with a brief justification for
the special emphasis in this model on four-atom clusters.
It is well known in LCAO theories of small molecules that
certain orbital topologies are extremely unfavorable?? and
usually exist only as high-energy intermediates between
alternative  stable covalent-bonding configurations.
Foremost among these are symmetrical four-electron,
four-orbital topologies. The overwhelming ascendancy in
nature of the shared-pair covalent bond is, to a large ex-
tent, the nearly universal avoidance of this unfavorable in-
teraction topology. Close-packed metals are an exception -
to this rule; here the local instability of symmetrical four-
atom topologies relative to the covalent-bond topology is
offset by the kinetic energy stabilization of band forma-
tion. Under certain circumstances, the balance between
these opposing tendencies will be a delicate one; the four-
atom instability may manifest itself in unusual ways. We
assert that this model addresses the latter situation.
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