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Finite-size scaling for directed self-avoiding walks
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A directed self-avoiding walk model is solved exactly for a finite cylinder geometry where the cylinder's
axis is parallel to the directed axis of the walk. The finite-size scaling behavior of the longitudinal and
transverse correlation lengths is examined. Although the infinite system has a continuous transition, one
of the scaling variables for the finite system varies exponentially with the cylinder circumference, which is

reminiscent of finite-size effects at first-order transitions in scalar-spin systems.

Finite-size scaling theory' is a topic of appreciable
theoretical interest (see Ref. 3 for a review). Precise esti-
mates of critical exponents for various two-dimensional lat-
tice models have been obtained by applying this theory to
transfer-matrix calculations (see Ref. 4 for a review). The
finite-size behavior at normal critical or continuous transi-
tion points can be derived in a simplified way' by regarding
the inverse lengths 1/L; as extra scaling fields. For exam-
ple, for the order parameter m of a spatially anisotropic
two-dimensional system on an L II

& Lq lattice, one obtains

m(T;L~~, Lq) =m (T)M Lii Lq

as the reduced temperature t = ( T, —T)/T, 0+ at order-
ing field H=—0: Here m, g~~, and gq are the bulk or-
der parameter and correlation lengths, which vary as t~,

"
Il

V

t 'I, and t ~, respectively, near the bulk critical tempera-
ture T= T,. We shall refer to (1) as a strong scaling hy-
pothesis. More elaborate renormalization-group analysis
suggests that for, say, the case L II =L~ —= L, L should prob-
ably be regarded not as the inverse of a standard scaling
field but as a renormalization-group flow parameter. The
leading scaling relation (1) has been confirmed in many
cases, although there are difficulties with the systematic
analysis of correction terms.

Recently, a scaling theory of finite-size effects at first
order transitions has been developed. ' In two dimensions,
it prescribes that the two arguments of relation (1) be re-
placed by the single scaling variable combination L ~~L~/lH,
where

is a "phase persistence length" whose divergence at H 0
for T ( T, fixed reflects the occurrence of long-range order
in the correlation functions that distinguish the two, coexist-
ing, oppositely magnetized phases at the first-order transi-
tion. In addition, it is found' that in the limit LII )& Lg
(where the lattice becomes a "strip"), a new length,
l(Lq, T), also enters the finite-size scaling forms. Fluctua-
tions break the ferromagnetic strip at H =0 into segments of
oppositely magnetized domains: l II represents the charac-
teristic longitudinal extent of one of these single-phase
domains. As such, it is proportional to the finite-strip longi-
tudinal correlation length at the bulk first-order transition
and varies' " as

(3)

where o.(T) =—X(T)/kit T is the reduced surface tension of
the transverse domain walls. Thus, a new argument
L ~~/i~~(L&), which depends exponentially on Lq, must be
included in the finite-size scaling relation for the first-order
transition, which may then be written

1

m(TH;L((, Lg) = m (T)M
iH T i II

(4)

as 0 0 at T & T, fixed. For further details and a discus-
sion of the difficulties associated with the derivation of
finite-size scaling for first-order transitions from renormal-
ization-group analyses, ' ' the reader should consult Ref.
10.

By adopting a more general notation in which (~~ and
are taken to represent the bulk correlation lengths in

the case of a continuous transition but the phase persistence
lengths in the case of a first-order transition, one can sub-
sume both scaling relations (1) and (4) under the single re-
lation

i

m(TH;L~~, Lq) =m (T)X
ill LJ

We shall refer to (5) as a weak scaling hypothesis: Note, in
particular, that it generalizes the usual finite-size scaling re-

lation (1) to include the length i ll (Lq) —e ~ . For con-
tinuous bulk transitions, this new length is not normally ex-
pected, but it does in fact arise in the model that will now
be discussed.

Our model is a directed self-avoiding walk on a finite
square lattice of L il

& L g sites' ': This problem was first
studied (for infinite lattices) by Fisher and Sykes, '4 and for
finite lattices by Redner. '5 It is a self-avoiding walk subject
to the additional constraint that steps along one "directed"
axis (taken here to be the x axis) may be in only one direc-
tion (here, +x). We consider periodic boundary conditions
in the y direction, so that the walk is actually on a cylinder
of length L~~ and circumference Lq. (Here and henceforth
we assume the lattice constant a to be unity. ) Assign
weights zii, z+, and z, respectively, to every horizontal
(+x), upward (+y), and downward ( —y) step, and let
G„t~~„(L~~, Lq) denote the number of ¹tepwalks which

start at the origin (x=O,y=0) and have n+ upward and
n downward steps.

Consider first the case L II
= ~. Then the generating

function for these walks is' ' '
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G(z)),z+,z;~,Li) —= g G„' '„(~,Lj)z)I + z+ z =H[1+z)IH+(z)IH) +(z))H) + . . ] =H/(1 —z))H)
N, n+, n

(6)

H(z+, z;Li) = 1+(z++z+ + +z+i )
D,f—= (I/f) z'

Bz+

I

where H denotes the generating function for a walk parallel where
to the y axis:

6 6+2z
BZ z+ II +

+(z +z'+ . +z' )

J.Z+ Z+ Z Z-=1+ +
1 —z+ 1 —z

(7)

X(z;~,L2) —= G(z, zz;~, Li) = g c~(~,L2)z
N-0

The total number of ¹tep walks, ' c)v(~,Li), is then
generated from the "susceptibility"

(16)

[Note that according to the convention adopted here, a walk
with a total of, say, 2L& —1 upward steps and no downward
steps is regarded as having a transverse displacement of
2L2 —1 from its origin (not 1, as measured from the shor-
test path back to the origin). This convention is mathemati-
cally convenient and, in the limit Li ~, reduces to the
usual bulk definition of transverse displacement. ] Thus one
readily finds

= (1+z —2z )/(1 —2z —z +2z ) (8)

(See Refs. 20 and 21 for discussions of the analogy between
the self-avoiding walk problem and ferromagnetic models
exhibiting continuous transitions. ) For the infinite lattice
(Li = ~), the singularity of X nearest the origin is a simple
pole at

(2 (z;oo, Li ) = [$))(z;oo,L2 ) + I ]D iH(z+, z;Li )

where

DiH(z+, z;Li) =2z/(1 z) +O(Ljz i)

Therefore, in the bulk system, one has

1 2@i 1
g2i(z ~, ~) = — r i with v2 ———

2

(17)

(18)

(19)
z=z, = J2 —1 (9)

1

LJ.) g c)V(R II )z
N 0

t i

9 ln6=Z
8Z II z

II
z z -z

1

g c~z~
N 0

t

Thus, from (6) and (8) one obtains the simple result

g)I(z;~, L2) =zX(z;~,L2) (12)

which represents a bulk critical point near which X(z;~, ~)
behaves as (z, —z) 2' with y= l. The mean horizontal dis-
placement of X-step walks is defined by

(R)t '(~,Li)) =—c)v
' g (N —n+ —n ) G„' '„, (10)

n+, n

in terms of which one then defines the longitudinal correla-
tion length as

—1 2 I'Iz=zo(L ) =z, [1+2 'i z, +O(L z, 2)] (20)

It follows that ar z = z„(II diverges exponentially with L 2 .'

g (z ~L )=2 '~2z (21)

Therefore, as the finite system approaches bulk criticality
(z z, ,L2 ~), this new length scale appears in addi-
tion to the usual diverging length scales set by the system
dimensions L II q and the bulk correlation lengths
()) i (z;~, ~). Accordingly, in order to cast the scaling
form of ))')) near bulk criticality in the same form as the
scaling hypothesis (5), it proves convenient to set
c —= —lnz, & 0 and define an exponentially divergent length

Now let us examine the behavior of these results (12)
and (17) for the correlation lengths when Li is finite. In
that case, (8) implies that gII and (i still diverge (again with
exponents v II

= 1, vi =
2 ), but at a shifted critical point

Defining t = (z, —z)/z„one then has, in the bulk system, cLi —Li
/I) (L, ) =—e ' = z, ' —()) (z,;,L, ) . (22)

]I(II (Z;oo, oo) =
2

r With V)) = 1 (13)

The (squared) transverse correlation length is similarly de-
fined in terms of the mean-square transverse displacement
of X-step walks,

g)I (Z;oo, L&) =—W'[2rl)I(L Z) ]
1

2t
where

(23)

From (12) and (8), the exact result for (II can then be writ-
ten asymptotically as

([82'~'(, L, ) l') —= civ
' g (n+ —n )'G„' '„

n+, n

as

(14) II'(v) —= v/J2+ v)

By virtue of (13), this is equivalent to

(24)

(2(z ~ ~ I ) = g c ((g(N) )2)zN
N-0

DG2( zzI)z+, ; ~, iL)

f

civz~
N 0

(15)

r

I )I (L l )
()I(Z;oo, L2) = ()I(Z;oo, oo) 8'

z

One can now recognize (25) as a special form of the weak
scaling hypothesis (5), where for this problem the scaling
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function X(x,y, z) is reduced to a single-variable function
W(x/z) at L

~~
~. However, (25) does nor have the

form of the strong scaling hypothesis (1) that one might ex-
pect to hold for this system with a continuous bulk transi-
tion. Instead, the scaling form (25) involves the additional
length I~~(Lq) which varies asymptotically with Lq in a
manner similar to the longitudinal correlation length (3) for
first-order systems. [Clearly, by virtue of (17) and (18),
the same conclusions apply to (q. ] Notice that the strong
scaling hypothesis for the correlation lengths in the case
L ]]

= ~ can be rewritten

where

L~
Ho =H(z, z;L ) = (I +z —2z ~)/(I —z)

Its asymptotic form near bulk criticality is

1
g ii (z;L ii, L i) =—W(2tL ii, 2tl p )

2t

with scaling function

(30)

(31)

g, (r;~,L~) =L~' ~Y(L~r ~), i = il or z (26) W(u, v) =—W(v) —u/(e"~ '"' —1)

whereas (22) and (23) imply that for this directed self-
avoiding walk model,

$~~( zoo, Lg) e Y(e r ") (27)

= H[1 (z~~H) ]/(1 z~~H)

whence g~~ defined as in (11) is found to be

L ii (ZHp)
g (z;L,L ) =g (z;,L )—

[1—(zH, )] ~~

(28)

(29)

with a similar result for gq. This anomalous dependence on
L q is clearly a consequence of the extreme asymptotic an-
isotropy of the model, although it is worth noting that for
another anisotropic problem, namely, directed percolation
(see Ref. 22 for a review), no discrepancies were observed
when the strong scaling hypotheses (26) were employed in
numerical calculations. 22 23

The behavior for L ]] finite, which we now outline briefly,
is similar. The generating function (6) becomes

G(zii, z~,z;L ii, Li)
2 L][ —1=H[1+ziiH +(ziiH) + +(ziiH) ]

which again has the form of the weak but not the strong
scaling hypothesis. The transverse correlation length is still
given by (17) (but with L

~~
(~), so that in the scaling re-

gion, one has

(g(z;L )),L i) = (1/z, ) gw (z;L ii, L ~) (33)

In summary, this simple soluble model demonstrates that
the conventional finite-size scaling relation (I), which
breaks down at first-order transitions, ' should also be used
with caution in models with continuous transitions which
exhibit anisotropic divergence of critical correlations.
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