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New experimental data are presented which show a periodic variation of the resistance of two-
dimensional arrays of superconductor—-normal-metal-superconductor Josephson weak links with the mag-
netic flux per cell in units of the flux quantum, including a secondary minimum at the half-quantum
points. Also presented is a simple model which accounts for the existence, shape, and magnitude of this

periodic variation in terms of vortex core energies.

Voss and Webb! have reported a periodic variation of the
resistance of large arrays of Josephson junctions with nor-
mal magnetic field, with resistance minima for integral
numbers of flux quanta per unit cell of the array. Subse-
quently, Webb, Voss, Grinstein, and Horn? have observed
secondary minima at the half-quantum field values, an ob-
servation which we have confirmed, as reported below.
Monte Carlo simulations by Teitel and Jayaprakash® of
phase transitions in frustrated two-dimensional X-Y models
for a few flux values are consistent with these observations,
but do not provide a general result. In this Communication,
we present our measurements of the effect of normal mag-
netic fields on the resistance of Pb-Cu-Pb proximity-effect
junction arrays. We show that the resistance modulation
can be attributed to a periodic, field-dependent 7,, and we
present a simple analytic model which accounts for the dis-
tinctive form of the periodic resistance variation, as well as
its numerical magnitude.

The measurements reported here were made on samples
similar to those discussed in a previous publication.* A typi-
cal sample, formed of 2000-A-thick PbBigos squares on a
1500-A-thick Cu film, is shown in Fig. 1(a). Samples were
measured in a vacuum can, with electronic temperature re-
gulation stable to 1 mK. Residual magnetic fields were re-
duced below 5 mG by means of two layers of mumetal; resi-
dual normal magnetic fields down to 1 mG could be detect-
ed and compensated for, with use of the sample itself as a
magnetometer.

Upon cooling the samples below the island transition tem-
perature T, ( ~7.3 K), the resistance dropped gradually as
described previously.* As the transition to zero resistance at
T. was approached, oscillations in sample voltage versus
magnetic field for fixed measuring current were observed in
a narrow temperature rahge above 7,. Data for one sample
are displayed in Fig. 2, showing sharp minima at integer
flux values and secondary dips at the half integers in the
traces with best signal-to-noise ratio. As shown in Fig. 3,
AR(T), defined as the peak-to-peak amplitude of the
periodic resistance modulation near zero applied field, close-
ly follows the shape of dR/dT over most’ of the resistive
transition. Such a correspondence follows quite simply if we
assume that 7, is a periodic function of applied magnetic
field, as in the analysis®’ of the Little-Parks experiment on
quantization in superconducting cylinders. Then, the con-
stant of proportionality between AR and dR/dT is the shift
in 7. due to the magnetic field; for the sample of Fig. 3,
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this shift is 0.075 K. Our model calculation (below) pro-
vides a simple phenomenological interpretation of this
periodic modulation of T..

Our basic approach in modeling these effects is to assume
that 7. scales with a ‘‘doubly renormalized’® mean coupling
energy E,, which includes a flux-dependent renormalization
due to the phase deviations imposed by the field, in addition
to the usual renormalization by random thermal fluctuations
of the phases which takes EJ into E;. This reduction of the
problem to consideration of an equilibrium quantity rather
than a kinetic one obviously offers great simplification in
analysis.

In the resistive state, macroscopic screening currents
should be negligible, so that the flux per unit cell has a uni-
form value f®, for all cells of the array. Here f= Ba%/®,
is the flux per cell in units of the flux quantum, also termed
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FIG. 1. (a) Micrograph of segment of typical 1000 x1000 array,
showing lead squares on copper film. (b) Schematic diagram, show-
ing contours used in obtaining Eq. (2).
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FIG. 2. Magnetic field dependence of resistance observed at vari-
ous temperatures within the resistive transition of a two-
dimensional array of superconductor—normal-metal-superconductor
junctions.
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FIG. 3. Comparison of observed temperature dependences of the
amplitude of the periodic resistance change AR and of dR/dT.
(These data are from a different sample than those in Fig. 2.)

RAPID COMMUNICATIONS

6579

the lattice frustration. As in SQUID’s (superconducting
quantum interference devices),® the requirement that the
phase of the superconducting wave function must vary
through an integral multiple of 27 in going around a closed
contour implies a constraint

4
S 0= —2mf (mod2w) =2a(m—f) . (@))

i=1

Here the 6, are the phase differences across the four Joseph-
son links traversed in following around the perimeter of a
unit cell, and the fluxoid quantum number m normaliy
takes the integer value giving the lowest free energy. (Our
analysis is given for a square lattice, in which each plaquette
contains four Josephson junctions; similar behavior is found
for a triangular lattice.)

If we consider an array of N cells, there are 2N phase
difference variables #; and N such constraints, leaving N
(not 2N) degrees of freedom for fluctuations. If f=B=0,
all ;=0 in the ground state. Taking account of thermal
fluctuations, the mean coupling energy per link — EJ cos#;
is reduced to — E;= — E{cos80). When kT << E), one
can evaluate {cosd6) by using the equipartition theorem in
N quadratic degrees of freedom, reproducing the known’®
result £, = EP — kT/4.

In the presence of a magnetic field, f # 0, and the 6, are
constrained to take values differing from zero. For any sin-
gle cell, the lowest free-energy configuration (at least for
| £ <%) is seen to be that in which (1) is satisfied by
0;=2mw(m — £)/4 for all i, so that the phase gradient is uni-
form around the ring. In an array, this prescription is not
consistent with the constraints on neighboring cells (frustra-
tion), and more general solutions must be found to minim-
ize the free energy. However, an important general obser-
vation can be made without explicit solutions: Given a con-
figuration of 6; satisfying (1) for a given f, exactly the same
0; (and hence free energies) obtain if f changes by an in-
teger and all m values change by the same integer. Hence,
apart from finite junction size effects which make E; field
dependent and cause the quadratic background in Fig. 2, the
free energy of the system will be strictly periodic in f. Since
energies do not depend on the sign of phase differences, the
free energy must also be even in f. Accordingly, the entire
periodic dependence can be found from the variation from
f=0to %, and we restrict our attention to that range.

If the constraint (1) is summed over all cells in an array,
all 9; on internal links cancel since each appears twice, with
opposite sign. Thus, to avoid having a macroscopic circulat-
ing screening current, it must be that m = f, where m is
averaged over all cells. Since we expect minimum energy
when |f—m| is as small as possible (to minimize phase
differences), this implies that for 0 < f < %, a fraction f of
the cells have m =1 and a fraction (1 — f) have m =0.

When f <<1, each m=1 cell is surrounded by many
m=0 cells, and we can treat the array as composed of
blocks containing 1/f cells with an m =1 cell in the center.
For simplicity, consider nested p Xp square contours cen-
tered on the m =1 cell, of area p?, where p=1,3,5, ... as
illustrated in Fig. 1(b). The phase sum 3 6; around such a
contour is 27 (1 — fp?), as is seen by summing (1) for all
cells within the contour, or 8,=(27/4p) (1 — fp?) per link,
assuming all 9; are the same in the pth contour. Thus, the
total energy increase relative to the field-free ground state
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summed over the links in these contours is

pmax
AE=E; 3 4p(1-—cosé,)
p=135
=8E; 3, psin’lw(1—fp*)/4p] . 2)
P

Note that ppax = 12 in order that m = f; accordingly, the
terms in the sum corresponding to the outer contours in the
block where p approaches pn,.x are small because
(1—fp*) — 0, as well as because of the p in the denomina-
tor when the sine is expanded. Because of this property,
our results are rather insensitive to how the blocks of cells
fit together, so that square, round, hexagonal, or irregularly
shaped blocks would make little difference. [The same con-
sideration explains why the difference in free energy of
square and triangular flux arrays in type-II superconductors
is so very small ( ~2%).] Thus we expect our method to
be reasonably accurate despite its crudeness. This is con-
firmed by the fact that the vortex energy between contours
at p; and p; given by (2) in the field-free case (f=0) ap-
proaches (72/4)E;In(p,/p\) for pi,p, >>1, which differs
from the exact result'® for this case, w£,In(p,/p,), only by
a factor of w/4.

We now observe that, although the long-range logarithmic
energy effects are crucial for the ideal Kosterlitz-Thouless
transition in zero field, for the case at hand the dominant
energetic effect comes from the core plaquette because the
range of the logarithm is cut off by the (1 — fp?)? factor in
(2) 10 & pmax = 1/2. Numerical examination of (2) shows
that, even for f as small as 0.01, the core term contributes
% of the total energy shift, for f=0.05 the core contributes

over 85%, while for £ =0.1 the core contribution is essen-
tially 100%. Accordingly, apart from a small underestimate
of the steepness of the initial rise within a few percent of
the integer f values, the core contribution alone should give
a good account of the experimentally observable effect of a
magnetic field. Retaining only the core (p =1) term in (2),
and normalizing to the total binding energy per vortex core,
namely, (2/f)E;, we obtain the average fractional reduction
of the coupling energy by magnetic renormalization,

AE/E=4fsin’a(1—f)/4 . 3)

The function (3) is not monotonic in the range
0<f< ;—, but rises linearly at first, reaches a maximum of

0.334 at f=0.354, and then drops to 0.293 at f=~. When

reflected about /=0, and extended periodically, one obtains
a form (see Fig. 4) which strikingly resembles the experi-
mental data on AR (B) obtained in our laboratory (Fig. 2),
and also by Webb ef al.? on an array of tunnel junctions. In
particular, (3) predicts a sharp dip by ~ 12% to a secondary
minimum at the half-integer values of f. Physically, this
general shape results from the competition between a linear
factor in f, proportional to the number of cores produced,
and a factor falling roughly as (1 — )2, which reflects the
reduction of the energy shift for each core as more of the
fluxoid quantum is taken up by flux, leaving less for phase
difference across the junctions.

Although (3) considers only core energies, it is readily
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FIG. 4. Theoretical periodic dependence on magnetic flux per
unit cell of fractional reduction in average coupling energy, as given
by Eq. (3).

. 1 .
seen to be exact for the special case of f =+, where a sim-

ple ‘“‘checkerboard’ superlattice structure forms the ground
state, and all links are core links for one, and only one, cell.
As shown by Teitel and Jayaprakash,® more complex super-
lattice structures can be found to optimize the ground-state
energies at other rational values of f. However, we argue
that these higher superlattice effects only involve adjusting
the small noncore energies, and hence that the resulting
structure should be smaller than that given by (3). This
conclusion is consistent with the results of the Teitel and
Jayaprakash report of unpublished work, and with the pre-
dictions of Simonin, Wiecko, and Lopez,!! for arrays of wire
loops, both of which give results similar to our prediction
(Fig. 4) apart from the addition of minor structure. Hence
we expect that more complex superlattice effects will be
much harder to observe.

Turning to the magnitude of the effect, we noted above
that the measured amplitude of the periodic AR of one sam-
ple implied a periodic A7,=0.075 K at 7T.,~4.2 K. This
amplitude ratio AT,/7.=0.018 is much less than our calcu-
lated AE/E, but that is expected because the exponential
variation of the coupling energy with T in our proximity ef-
fect bridges reduces AT,/T, relative to the equivalent AE/E
by a factor of (1+d/2¢x) ™!, where d is the length of nor-
mal metal separating superconducting islands, and ¢y is its
coherence length. [Use of this conversion factor is essen-
tially equivalent to use of the dimensionless temperature
T'=kT/E,(T) introduced in Ref. 10 to take account of the
strong temperature dependence of the coupling energy.]
For the measured parameters of our sample, the predicted
AE/E of ~0.3 scales down to a predicted AT./T, of
~0.024, close to the observed value of 0.018. This ob-
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served value is actually a lower limit, since AR was found to
be substantially larger in the limited amount of data taken at
lower measuring currents. Considering the simplified na-
ture of the model and the limitations of the available data,
we consider this degree of consistency very satisfactory.
After this paper was submitted, B. Pannetier, J. Chaussy,
and R. Rammal reported [J. Phys. (Paris) Lett. (in press)]
experimental and theoretical work on a honeycomb lattice of
superconducting wires, showing a feature at f=%. In our
model, this feature arises for the honeycomb lattice (but not
in square or triangular lattices) because in it, for f > %, ad-
jacent cells must be occupied. When our summation of in-
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dividual core energies is augmented by inclusion of the
resulting clusters, a marked feature is found at f = % De-
tails will be reported in a later publication.
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FIG. 1. (a) Micrograph of segment of typical 1000x1000 array,
showing lead squares on copper film. (b) Schematic diagram, show-
ing contours used in obtaining Eq. (2).



