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Validity of the long-range expansion in the n-vector model
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The critical behavior of an n-component system in d dimensions with long-range (LR) interactions de-

caying as I/~ r ~d+, for ~ ) 0, is reexamined near the crossover to short-range (SR) behavior, where
a. =2, by means of renormalized perturbation theory in e'=2o- —d. It is pointed out that 2 —a- should not
be viewed as an expansion parameter, and consequently the critical exponents turn out to be discontinuous

at cr =2 without the intermediate region of weakly LR interactions found earlier by Sak. For any o- & 2 it

is shown that (i) the LR expansion is stable to weak SR perturbations and (ii) the SR expansion in

e = 4 —d breaks down under a weak LR perturbation.

The critical behavior for a d-dimensional system with an
n-component order parameter and long-range (LR) interac-
tions decaying as I/~ r

~

+, for rr ) 0, has already been
studied for some time. Fisher, Ma, and Nickel first
showed, through a renormaiization-group (RG) expansion
in e' = 2o- —d, that even in the nonclassical regime, e' & 0,
the critical exponent q "sticks" to the "classical" value g
= 2 —o- with no corrections at least to 0 (e' ), for any fixed
o- ( 2, while the remaining exponents have a nonclassical
dependence on o-. Similar results were obtained by Suzuki,
Yamazaki, and Igarashi. When o- & 2 the exponents for a
short-range (SR) system were obtained for all d, in agree-
ment with results on the spherical model. ' If q=2 —o- uni-
formly in e' and for any a- ( 2, this would imply the ex-
istence of a discontinuity at a-=2, since qsR &0. Soon
thereafter Sak ' suggested that q=2 —a- only as long as
2 —o- & ps~ and that, for 2 —a ~ qsR, there should be a re-
gion of weakly LR potentials for which q = qsR, implying a
continuity in all critical exponents.

In the case of LR interactions there are two independent
parameters corresponding to a- and d, one of which is e',
and the other one can be chosen as a=4 —d. The purpose
of this paper is to draw attention to the fact that if one
wants to study the crossover to SR behavior under varying
o- close to 2 one has to fix d, i.e., keep e fixed. Then it fol-
lows from

0=2 +
2 2

in which e' ~ e, that by letting e' become arbitrarily smail in
order of the RG expansion in e' to make sense, 2 —o- will
become bounded by the fixed e/2. The crucial point that we
make here, distinct from most previous authors, is that
2 —o- is not an expansion parameter, although it can be
made arbitrarily small with e, as long as e ~ e'. For a given
d one can, of course, choose e' such that 2 —rr =0(e' ).
However, when ~' is made arbitrarily small, 2 —cr will not
follow the variation of e'. This means, as will be discussed
next, that the LR expansion that one has for any fixed
o. ( 2 remains valid up to o. =2 =lim(2 —5) as 5 0+,
with q(2 ) =0, whereas ri=rlstt when rr is replaced by 2, in
accordance with the old conjecture of a discontinuity in q at
a-=2. We can show explicitly that the LR expansion in e' is
stable to weak SR perturbations for any 0 ( cr ( 2, no
matter how close o- comes to 2, whereas already a weak LR

perturbation yields infrared divergences in the free-field lim-
it which signals the breakdown of the SR expansion.

The results reported here are in contrast to recent work
by Yamazaki who suggested a double expansion in e and
e', with either e ~ e' or e ~ e', that leads to multiple expres-
sions for the critical exponents between which a choice has
to be made. There is a recent rigorous proof by van Enter
that a system with SR interactions and broken rotational
symmetry (the XI' model) has a phase transition that is un-
stable to weak LR perturbations in dimension d & 3.

The bare effective Hamiltonian for the rotationally invari-
ant n-vector model in momentum space may be written as

Ho= —,
'

Jl [G'(k, mo)]

(2)

and with this we do renormaiized perturbation theory with
dimensional regularization. As usual, with the renormaliza-
tion at the critical theory, one can leave aside the mass term
mp in the free-field propagator, and we assume either of two
forms:

Gs (k ) =.(k'+ vok )

for a LR perturbation in a SR system (case A), or

G,', (k) = (k + w, k') -'

for a SR perturbation in a LR system (case B), in which is
and ~p denote bare dimensional coupling parameters that
will be assumed to be of the same order of magnitude as up.
The one-particle irreducible two- and four-point vertex
functions I ' i(k) and I' t '([k,}) are constructed to O(uc),
the same order as in the work of previous authors.

The expansion parameter depends on the propagator to be
used. For case A, u p = K u p, whereas for case 8,
up= K up, in which K is an arbitrary momentum-scale
parameter and u p is the dimensionless quartic coupling.
This leads to the expansions in either e or e', respectively.
Renormalization of the vertex functions consists in the re-
moval of dimensional poles in I functions either in e or in

In calculating the first-order contribution of 6p to the
one-loop integral in I ' t({k;[), for case A, one finds that

6545 1983 The American Physical Society



6546 BRIEF REPORTS

this is given by

S,")({k,)) = —— ' / —,[{k,+ k, ~-"-'-'+ . ]
(r I'(2 —(r/2)

Consider next the terms 82 'up and 83' 'up in Eq. (6).
The parts that are relevant near cr =2 in the limit e' 0
are given by

n + 2 I'(o-)
I

o-

72 I'(3~/2) (13)
to leading order in e, where the ellipsis includes also two
other terms generated by permutations. In the free-field
limit, where a=0, this leads to the infrared divergence for
any o- ( 2, and a similar behavior is found in higher powers
of 6p. This suggests that there is no region of competing SR
and LR interactions where the LR part is irrelevant.

Turning next to case 8, the bare vertex functions are, to
first order in ~p,

C k 1
(())( I —8,("..'+ 8,(')«,' )

+ —wp(1 —82"'u p )
K)

(6)

K I ({k ))=up(1 A) up 2) upwp+A2 up ) (7)

in terms of the dimensionless l4'p=K Np, where AL and
BL are the contributions from the L-loop diagrams of jth
order in ~p. Renormalized couplings u and ~ are intro-
duced through

u() = u (1+a )"'u + a )"'uw + a 2 "u')

w() = w (1+b,"'u') .

(8)

(9)

Noting that

()) n+8 ((r —1)
3(r I (o-/2)

cxr —1+ +
2

I

({k, + k, {"-'-''+ )

(10)

(where the ellipsis includes two other terms generated by
permutations) does not have a pole for any o- ( 2, one finds
that a)(') =0 and Eq. (8) is the same as for pure LR interac-
tions. This implies that the fixed-point coupling u', which
is a zero of the Wilson P function, P„=—)(()u/(1K at fixed up
and ~p, is that for LR interactions given here by

6, 'I + 2(5n + 22) 5 ( ), + 0 (e'), (l l)n+8 (n+8)'

in which a factor I(.'d ——[2d '7r i'I (d/2)] ' is, as usual, ab-
sorbed in u, S((r) —= ([)(I)—2$((r/2) + (t(((r), where ([((z) is
the logarithmic derivative of the r function. Calculation of
I (2)(k) shows that there is no need for wave-function re-
normalization, provided that b2' in Eq. (9) is chosen as

with Z~=1, and this yields the known g=2 —0, for any
o (2.

to cancel the dimensional pole in B2' . The renormalized
vertex functions are

I „'n'({kl);u, w) =Z "I' '({k ).u w())

and

8 (()) (n + 2) (n + 8) I'(o-)
~

o.8 =
432, r(3./2)

r
2

+3
2 ]k

QWp
K

, u, w

'''g-, l
+ )8„

BQ ~~ 8K ~g

= w[(2 —~) —2P„b2 "u(1 —b2 "u')]

Clearly, w'=0, and since (1P /Bw = 2 —o. & 0 at the fixed
point, where P„=O, the LR fixed point is stable to SR per-
turbations for any o- ( 2. This, together with Eq. (11), is
the basis for our calculation that yields LR critical exponents
for any a- «2 . So far, we referred only to q, but calcula-
tion of y'q—= )((1 lnZ 2/(1K, at the fixed point, where Z 2 is

the renormalization constant for a @ insertion into the N
point vertex function, yields the known values of the critical
exponents'2 through v ' = 2 —~ —y'2 and y = (2 —r)) v.

The main consequence of the fact that 2 —0- is not an ex-
pansion parameter is that if one sets o-=2 in the coeffi-
cients of a given vertex function one has to everywhere else
replace a- by 2. When one sets a-=2, however, e has to
coincide with e' in accordance with Eq. (1). Thus e be-
comes the SR expansion parameter taking the place of e'.
At the same time there is a new term appearing in the coef-
ficient a2 in Eq. (8) which now requires wave-function re-
normalization. Then it follows that y@ takes its SR value
y~(SR) and Eq. (15) yields r) = y@(SR) = r)sa.

Taking the limit e' 0 for fixed a- will lead to coefficients
in the terms 82( )u and (83( ) —2a) )82 )u in the renor-
malized two-point vertex which develop poles in the I func-
tions only when o- becomes 2, and it is then that the LR ex-
pansion breaks down. It is interesting to note here that if
one sets 0-=2 only in the integrals before taking the limit
e' 0, one needs wave-function renormalization which
yields the erroneous result

(15)

by means of the usual scaling argument, " in which
y@—= K(linZ&/ (1((at the fixed point, where y&=0(e'~). '

Then q would reach the classical value 2 —o- only asymptot-
ically as 2 —o. » O(e'). This seems to be in clear contra-
diction with the early result of Fisher, Ma, and Nickel.
The reason why a y~ that is different from zero in Eq. (15)
is incorrect is because in deriving it one fails to recognize
that 2 —cr is not an expansion parameter. We come back to
this point later.

The fixed point w' follows as the zero of Wilson's P
function for ~,

Ie'
K

CIK r)p +()
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When one does not ignore that 2 —o- is not an expansion
parameter, calculation of the exact RG recursion rela-
tions" ' yields

2 2 cJa'=s ~ a —A„4 2 ——3a lns —R (a-)bN b4 2 (J'
(17)

br 2 —cr —gb (18)

qsR(e') = e' (n + 2)/2 (n + 8)

follows from the fixed-point value u'= 27r'e'b"/(n +8), to
the order needed here. A nonzero a shows that iteration
of the recursion relations generates SR interactions for
nonzero b even if the initial a = 0, in accordance with
current expectations. However, as long as a'/b' remains
finite, as in our case, a nonzero a' (in contrast to w'=0)
does not change the critical behavior for fixed o- & 2.

Since we cannot resum the terms in the recursion relation
for a to all orders in a/b without setting a-=2, our result
cannot be directly compared with Sak's Eq. (10), which
may be written as

a'= a —7ia lns +gsa(a + b) lns

for fixed a. ( 2 and first order in a/b when the free-field
propagator is written as G (k) = (ak~+bk ) ', and mo-
mentum-shell integrations are done over s ' (

~
k

~
& I,

while A„ is a constant that depends only on n and R (a)
tends to 1 as o- 2. The fixed point comes from the last
term in Eq. (17) which, together with Eq. (18), yields

a"/b =R (a.)gsR(e')/(2 —a. )

in which b'=const~0 and at the same time q=2 —a-,
while

Nevertheless, it is interesting to note that Eq. (19) is ob-
tained assuming that q=2 —a- is small, so that s ~ is ex-
pandable in powers of q, with a- = 2 in the integral that goes
into the last term and e' being replaced by e. Accordingly,
Eq. (18) yields b'= b —the second of Sak's recursion
relations —and with this, a'= gsRb'/(q —gsR), which lead
Sak to conclude that the LR expansion breaks down when

We argue that if there is a breakdown of the
latter, this should be detected within the e' expansion. In
contrast, the logarithmic terms in Eq. (19), which appear
only in expansion in powers of (2 —a-), already assume that
e is vanishingly small. It seems, therefore, that Eq. (19) is
valid only in the limit a. 2, where b'=0 from Eq. (18)
and g = qsR with a = const & 0.

We conclude that there is a discontinuity of critical ex-
ponents at a-= 2. Although the discussion presented here is
in dimension d =2o- —e', we expect to reach the same con-
clusion through the low-temperature RG in d = o +e', as
well as for other models with LR interactions decaying as
I/~ r

~
+, basically because what should be common to all

of them is that 2 —a- is not an expansion parameter, which
is the crucial point of our argument.

ACKNOWLEDGMENTS

We thank Alba Theurnann for discussions and for a read-
ing of the manuscript and Per Bak for a useful critical con-
versation. The interesting and stimulating comments by M.
E. Fisher and J. Sak on the results of this work are grateful-
ly acknowledged. This work was supported in part by Con-
selho Nacional de Desenvolvimento Cientifico e
Tecnologico (CNPq) and Financiadora de Estudos e Projetos
(FINEP), Brasil.

M. E. Fisher, S.-K. Ma, and B. G. Nickel, Phys. Rev. Lett. 29, 917
(1972).

2M. Suzuki, Y. Yamazaki, and G. Igarashi, Phys. Lett. 42A, 313
(1972); Y. Yamazaki and M. Suzuki, Prog. Theor. Phys. 57, 1886
(1977).

3G. S. Joyce, Phys. Rev. 146, 349 (1966).
4J. Sak, Phys. Rev. B 8, 281 (1973).
5J. Sak, Phys. Rev. B 15, 4344 (1977).
Y. Yamazaki, Nuovo Cimento A55, 59 (1980).
A. C. D. van Enter, Phys. Rev. B 26, 1336 (1982).

~D. J. Am it, Field Theory, the Renormalization Group and Critical

Phenomena (McGraw-Hill, New York, 1978).
9E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions

and Critical Phenomena, Vol. 6, edited by C. Domb and M. S.
Green (Academic, New York, 1976).

' Some of the results of Yamazaki, Ref. 6, are precisely of this
form.

' K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972);
K. G. Wilson, ibid. 28, 548 (1972); K. G. Wilson and J. B. Ko-
gut, Phys. Rep. 12C, 75 (1974).

'2For the application to LR interactions in which a- is not replaced
by 2, see A. Theumann, J. Phys. A 14, 2759 (1981).


