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Superfluid solitons in 4He films
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It is shown that in two-dimensional superfluid 4He films the one-dimensional solitons do not represent
stable states in general. The system, however, admits of nonlinear excitations which are localized two-
dimensional "lumps" consisting of superfluid condensate and which share many properties common with

solitons. These objects should be experimentally observable in rnonolayer superfluid 4He films at very low

temperature. For thick films where the finite thickness effect dominates over the surface term in the
dispersion and changes its sign and solitons are stable with respect to transverse perturbations and may
represent the dominant mode of nonlinear long-wave excitations.

Two-dimensional He films has attracted much attention
of both experimentalists and theorists during the recent
years. A good deal of understanding of these systems has
been achieved through the study of third-sound
phenomenon originally proposed by Atkins. ' Third-sound
excitations have been investigated with great accuracy by
Rutledge et al. ' These authors studied monolayer super-
fluid He films and found positive dispersion for the surface
modes, together with a roton branch that becomes excited
above 0.6 K. The correct dispersion relation and tempera-
ture dependence of these rhodes was then derived in the
linear regime by using a two-dimensional formulation of
Landau's quantum hydrodynamics. Several experiments
on third-sound propagation, however, have revealed finite-
amplitude effects that cannot be explained in terms of the
linearized theory. In these experiments there are indica-
tions of having undistorted-wave propagation in thin films
at very low temperature. Recently, a theoretical formalism
for the possible nonlinear excitations in monolayer super-
fluid He films has been developed by Huberman on the
basis of a conjectured nonlinear superfiuid density equation.
It was found that the nonlinear effects can lead to existence
of gapless solitons made up of superfluid condensate. Start-
ing from the phenomenological Hamiltonian suggested by
Rutiedge et al. , Biswas and Warke' derived systematically a
nonlinear superfiuid density equation and theoretically con-
firmed the prediction by Huberman about the existence of
superfluid solitons. A detailed experimental study of the

I

type of possible nonlinear excitations in superfluid He films
is, ho~ever, yet to be made. The theory of these possible
nonlinear excitations discussed so far has been restricted to
one spatial dimension. Considering its theoretical and ex-
perimental interest and the fact that the problem is in fact a
two-dimensional one we study in this Brief Report: (i) the
physical relevance of the one-dimensional solitons in the
two-dimensional system and (ii) the possibility of having
two-dimensional nonlinear excitations in a thin superfluid
He film. We start from the following phenomenoiogical

equation of motion for the monolayer superfiuid motion as
proposed by Rutiege et al. ,

'
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where p(x, t) is the condensate wave function, m is the
mass of the helium atom, A and a (A = 14 K and a = 1.2
atomic layers) are constants of van der Waal's interaction,
and p, and 8 are the chemical potential and surface tension
constants, respectively. The vector x = (x,y ) is a two-
dimensional vector in the monolayer superfluid helium film.
The superfluid surface density is p(x, t) = lP(x, t) l2. With
the chosen form of

y(x, t) = [p(x, t) j't'exp[i@(x, t) j

where p and $ are real functions one easily derives equa-
tions of motion for p and P from Eq. (1),
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We now define the superfluid velocity v = (tt/m ) V @= (u„, v~). From (3) we derive
t
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Using Eqs. (2) and (4) we intend to study the evolution of
a localized initial disturbance consisting primarily of nearly-
one-dimensional long waves of small amplitude. Let us
orient the horizontal coordinate system such that the x
direction is the principal direction of wave propagation.

We make the following coordinate transforrnation6:

X =x+ C3t,

and use the method of multiple scaling. '
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We make the scaling transformation

x=~'"X, y=&y, (6)

p = p(l+ ep((xy, t) + e'p3(x y, t) +

v„=oui(xy t)+e'u2(xy, t)+
vy=6 [E v((xyt)+6 v2(xy t)+ ' ' ' ]

(7)

The expansion of v~ is made consistent with
Bvy/Bx=Bv„/By. Using Eqs. (5)—(7) in (2) and (4) and
equating to zero the coefficients of the three lowest terms

, and 6 we have

The solution we are looking for is corresponding to a uni-
form superfluid helium density pp at rest on the average su-
perimposed on it a characteristic collective density oscillation
mode propagating through the two-dimensional liquid. The
long-wavelength approximations of (2) and (4) can be car-
ried out by expanding p and v in powers of the small
parameter e consistent with the above restrictions. We write

which the solution evolves, as they are in the one-
dimensional problem. It is however interesting to note, as
pointed out by Ablowitz and Segur, ' that the two-
dirnensional KdV equation, in this case, admits of "lump"
solutions which share many of the important properties of
solitons:

(i) Each is a permanent wave whose speed, relative to the
linearized speed C3 can be made proportional to its ampli-
tude.

(ii) Solitons are localized waves with exponential tails in
one dimension; lumps are localized waves with algebraic
tails in two dimensions.

(iii) Two solitons regain their original amplitudes and
speed after a collision, the final effect of a collison is a
phase shift of each soliton. Two lumps regain their original
amplitudes and speed after a collision and suffer no phase
shift.

For definiteness, let us assume that pp & 3a = 3.6 atomic
layers. We then make the following substitutions in Eq.
(12)

Qp] Bu &
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Then the equation transforms to
BP ~ BP2 OM2 QU~+C3 +p(j + (plul)+po =0
9t 9X 0X BX

(10a)
(14)

Bu] BM ~ QM2 3A ~P2 t ~ P&+M] +C3 +
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Using the boundary conditions from Eqs. (8) that both p l

and u ~ go to zero as x tends to infinity we get

82
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As discussed by Ablowitz and Segur' this equation has
m ulti pie-lum p solutions. The one-lump solution can be
written as

p& 3A p]
M~= —C3, M&=-

po mC3 (a + po)
(' = ( —(p'+q')~, q'= g+ 2pr (16)

3A pp
C3 =

m (a + po)'

Thus C3 + Co (Co ) 0), Co being the velocity of an or-
dinary dispersionless third-sound mode. Multiplying (10a)

C3 and (10b) by po and subtracting and then using (1 1)
and (9), we get the following equation for p(.

Bpl C3(po —3a ) Bpl tl + 4mBpo B pl+ — p)- +
Bx Bt 2po(a + po) Bx gm C3 Bx

C ' =0 . (12)
2

Equation (12) is a variation of the two-dimensional general-
ization of the Korteweg —de Vries (KdV) equation, first in-
troduced by Kadomtsev and Petviashvili who studied the
stability of one-dimensional solitons with respect to
transverse perturbations. From their work it is clear that
the solitons satisfying (12) are unstable with respect to
transverse perturbations. The solitons in this case therefore
cannot be viewed as the asymptotic (t = ~) states towards

Thus we have

24[ —(g'+ pg')'+q'v)'+ 3/q']
[(g'+ p q') '+ q'q'+ 3/q']' (17)

where p and q are dimensionless parameters depending on
initial perturbation. Thus we have a permanent lump solu-
tion decaying as (1/x', 1/y') for IxI, IyI- ~ and moving
with velocity v„= (p + q ) C3, and v~ = —2pC3/ J2. For
p =0, the speed is v„=q C3 which is proportional to the
amplitude of the lump, i.e.,

Ipo —3a I

vx = C3 ~ i I pl l amp(16pp(a + pp)

The above discussion also applies for pp) 3a. For pp —3a
the problem is essentially linear. It is thus expected that in
the two-dimensional superfluid helium at low temperatures
(below 0.4 K) one should be able to detect experimentally
two-dimensional lumps with the properties described
above. "

For thicker films the situation can be quite different. As
remarked by Huberman, in a thick film crossover to three-
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dimensional behavior may take place. In that case an equa-
tion for p~ can be written similar to Eq. (12) with the differ-
ence that the dispersion introduced by finite thickness can
overcome the surface term (C3/ko)8 p~/Bx and may be-
come negative. Then the equation has one-dimensionalaol-
iton solutions which are stable with respect to transverse
perturbations and hence can represent asymptotic states.

Thus we conclude that in monolayer superfluid He films
the two-dimensional localized waves (lumps) that decay
algebraically in all horizontal directions and interact like soli-

tons should be detectable at very low temperatures. For
thick films, however, one-dimensional solitons are expected
to be the corresponding dominant nonlinear modes of exci-
tation at very low temperature.
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