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A calculation in renormalized perturbation theory, to one-loop order, in d =6—¢€ dimensions,
shows that quadratic-symmetry breaking (QSB) in a continuum-field p-state Potts model yields a
further distinction between the usual first-order and a ‘“near-spinodal first-order” transition with a
metastable state: Whereas the latter can cross over to a continuous transition at a tricritical point
with arbitrarily small but finite QSB, the former one requires a QSB above a threshold value. Specif-
ic results for the three- and four-state Potts model suggest that this could be used to distinguish ex-

perimentally between the two first-order transitions.

In recent work on the p-state Potts model,! Pytte found
the very interesting result that, depending on the value of
D, there appear to be two distinct types of first-order tran-
sitions.? One is the usual first-order (FO) transition that is
thought to be associated with a renormalization-group
fixed-point runaway that takes place when p > 1—30. The
other, which appears for 2 <p < -2, in spite of an access-
ible and stable fixed point, occurs near a spinodal point of
a metastable state in which the small-order parameter
(Q =0) is not an absolute minimum. We refer in the fol-
lowing to this second type of transition as a “near-
spinodal first-order” (NS-FO) transition, to distinguish it
from the usual one. Both transitions are supposed to be
characterized by a finite discontinuity of the order param-
eter at the transition. Technically, however, since there is
an available fixed point for the NS-FO transition, a low-
order renormalization-group (RG) perturbation expansion
can be carried out which, at least for p >2, also turns out
to be an expansion in powers of the fluctuating field
Q(X).2 This is similar to the familiar expansion for a
second-order transition,’ and consequently, for small posi-
tive (p —2), the NS-FO looks like an almost continuous
first-order transition.

More recently we showed that, even for a given p, the
Potts model can have both a NS-FO and a FO transition.
This is the case for all p > % due to the presence of a new
accessible and stable, nonsymmetric fixed point for
22<p< o A

Since a metastable state is not directly accessible experi-
mentally, at least in static phenomena, one may first ask
the question: How does one distinguish practically be]

tween the equilibrium properties of NS-FO and FO transi-
tions? The extent to which these are really two different
transitions remains to be investigated and one of the pur-
poses of this paper is to motivate this search. This can be
of considerable interest in view of the important physical
realizations especially of the three- and four-state Potts
model. These are known to describe various magnetic and
structural phase transitions.

The purpose of this paper is to suggest that experimen-
tally accessible anisotropies can be used to distinguish be-
tween NS-FO and FO transitions. We can show that
quadratic-symmetry breaking (QSB) in a continuum-field
version of the p-state Potts model that can be traced back
to an anisotropic coupling between the components of the
Potts vectors in the discrete model, leads to a clear
theoretical distinction of a NS-FO and a usual FO transi-
tion. Our demonstration consists of two parts. One is a
mean-field argument on the free energy, used before by
Blankschtein and Aharony®® for the three-state Potts
model, that helps to search for a crossover between a first-
and a second-order transition at a tricritical point. In the
second part we resort to a RG calculation that accounts
for fluctuations in order to demonstrate that the crossover
from the NS-FO transition takes place for arbitrarily
small QSB, while the usual FO transition requires a finite
QSB above a threshold value. This is the mechanism that
enables one to distinguish between the two transitions.
Technically, the latter is necessary in order to suppress the
runaway and restore a stable and accessible fixed point.’

Our calculations are based on the effective Hamiltoni-

an4,8,9

= [, %[k2A2+tA2+r’n*2A2(2)]+%K"zuo S DuyAud.A,

®,v,7
+ 560 3, DygrdAgA, + %K‘/Zwo > D, A4A, A+ quartic terms | , (1)
®n.q,r * q,r,s

which is a generalization of that by Priest and Lubensky,'? where the integrations are over all momenta K ind =6—e di-

mensions. The p —1 fields 4,(k), a=1, ..

28

., p —1 are split into m “longitudinal” and (n —m) “transverse” components,
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with n =p —1 and (u,v,n) < m, while (g,7,s) indicate transverse components and 4 2=A%1)+A4%2),

m n—m
A= I A.(k), A*2)= 3 4jk), 2)
=1 g=1
and the tensorial coefficients are*
—1 ifa<B=y
Dyg,=[(p —a)p —a+1D]"V2x {(p —a—1) if a=B=y 3)

0 otherwise .

The arbitrary momentum-scale parameter « is introduced
to have dimensionless trilinear bare couplings ug, vg, and
wg, which are not assumed to be the same. The reduced
temperature is proportional to t =T —T,(/%2), and the
square of the noncritical mass, 72, is a measure of QSB
that is related, to lowest order, to the strength g of the
more conventional symmetry-breaking term,!!

1 < 42 S 42
%g=—78 fk (n—m)uglA”—m q;]Aq N 4)

by #i’=g +O0 (ug,v0,wy). For simplicity, we assume a
single longitudinal component m =1, suitable for uniaxial
ordering when g >0. In the presence of a magnetic field
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FIG. 1. Dependence of the dimensionless renormalized
fixed-point couplings u* and v*, in units of €!/2, for the three-
state Potts model with the dimensionless mass parameter
[=m /K, as a measure of quadratic-symmetry breaking.

Ihl( k) in the direction of 4 (k) there is an additional term
—A(k)h (k) in Eq. (1).

The mean-field free energy that follows from Eq. (1)
leaving aside fluctuation terms can be written as

F(p=3)= 3rd*—3g(4}—43)

+ul|A}—34,42+3 [1_% A,A2

+ quartic terms—A4 1A, (5)

for the three-state model, where « is absorbed in the trilin-
ear couplings, and r =T —T,(0). Except for the term in
(1—v/u), Eq. (5) is essentially the same as in Ref. 6(a).
For g =h;=0 and (1—v/u) <0, because of the trilinear
term, Eq. (5) favors a first-order transition with 4;520.*
As long as (1 —v /u) remains nonpositive, as confirmed by
the RG (Fig. 1) there is a competition between the linear
term which favors 4,=0 and the trilinear term that
prefers 4,540, whenever A, >0 for g =0 and one should
expect a crossover between a first- and a second-order
transition at a tricritical point that will be enhanced by
g>0. The result is qualitatively similar to Fig. 1(d) of
Ref. 6(a).

The mean-field free energy of the four-state Potts model
becomes

F(p=4)= 374’ — 7g[24] —(45+43)]
3 v 2 2, w 2 2
+u A1—3uA1(A2+A3)+ uAZ(AZ—A3)

+ quartic terms—A4 1A, . (6)

There are now four distinct phases: a disordered phase (I)
in which 4,5£0, 4,=0=A4;, with 4,—0 as h;—0, and
three ordered phases, (II) 4,540, 4, =0=A43, but 4, 40 as
hy—0, (IIT) 4,540, A,£0, A3=0, and (IV) 4,540, 4,40,
A3#0.12 If A,~A5, which is reasonable to assume since
the ordering is uniaxial along A4, then there is a competi-
tion between the trilinear term that favors 4, ~A4;540 and
the linear term for A; >0 that prefers 4,=A4;=0. One
should then expect a crossover to a second-order transition
at a tricritical point on the surface I—IV of first-order
transitions, as shown on Fig. 2.
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FIG. 2. Schematic part of the phase diagram for the four-
state Potts model, illustrating the crossover from the surface
I-1IV of first-order transitions (solid line) to the critical line
(dashed line) at the tricritical point (TCP), for g =0.

The RG calculation described below yields three sets of
nontrivial fixed-point lines for the scaled couplings:

2@ =u*/(1+EH2,
(@) =v* /(1 +aH'?, 7
(@) =w*/(1+7H)"%,

as functions of the dimensionless noncritical mass
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FIG. 3. Dependence with quadratic-symmetry breaking of
the dimensionless renormalized fixed-point couplings u* and v*,
in units of €'/2, for the near-spinodal first-order transition in the
four-state Potts model.
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FIG. 4. Dependence with quadratic-symmetry breaking

beyond threshold (dashed line) of the fixed-point couplings u*,
v*, and w*, in units of €'/2, for the usual first-order transition in
the four-state Potts model.

p=m/k which plays the role of a crossover parameter.
These are given by (i) u*s£0, v*540, and w* =0, shown in
Fig. 3 for small but arbitrary, including zero, QSB, which
is consistent with the mean-field prediction and it corres-
ponds to a NS-FO transition. Next, (i) u*5£0, v*5£0, and
w* >0 (the equality when i~ ) for QSB larger than a
threshold value shown in Fig. 4; otherwise there is a
fixed-point runaway that yields the usual FO transition in
the four-state model. Finally, (iii) there is a fixed-point
line given by

w*?/(1+@*=2(p —1)e/(13—3p)=6€ for p =4
(8)

when [ is arbitrary but finite, and u* =0=v*. The mass
fi is related to g through fi’~g /k?, for small and finite .
The asymptotic crossover behavior follows from k—0,3
for small but finite g, whereas a threshold in Z implies one
in g. We interpret the crossover to fi~oo in the first two
fixed points as the crossover to the critical lines. Al-
though '

T*(o0)=0*(00)=0"(0)=0

in both, #* and v* remain finite and this is responsible for
nonclassical exponents on the critical lines, as shown
below. _

Next, we turn briefly to the RG calculation.* The zeros
of the Wilson S functions,
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Bu= —%u —5(p —2Vc*uP+a (@) 4 (p —2)uw*+v’],

B,= _g—u +15(p —2Vc?vu’—a

Buw= —“§‘w —a (@[ Fwv?— (13— 3p)pw’]

[here a(E®)=c*1+%)""], yield the fixed points dis-
cussed above for p =3 and 4. We also find (i) that there
are fixed-point lines that start at Z =0 and end at finite {1,
as shown here for p =3, whenever 2.62 <p < 3.27, and this
means that in this case a vanishingly small g is necessary
to see the crossover at all; (ii) there are lines of stable and
accessible fixed points (generalizing FP1 in I) of the kind
shown in Fig. 4 that require a threshold g for % <p < 4;
(iii) QSB always implies a break in trilinear symmetry.
The exponents 17 and v on the critical line—related by
5n=v"1—2 (Ref. 4— turn out to be given by

137

N~=c€ forp=3

39 (12)
n=e€ and n~5¢€ forp=4.

The first one differs from the usual ’T]=6,2’10 but that is
without QSB on the spinodal point, and there is no reason
a priori for the exponent on the critical line to be the same.

Although the value of the exponents may not serve for
comparison with experiments in d =3, the fact that there
are two for p =4 is a consequence of trilinear-symmetry
breaking due to a break in quadratic symmetry and this is

@EH{+[2— 20 —2)3+2p(p — 3w —(p —2)uv?} ,
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(10)

(11)

I - . -
a definite qualitative feature of the continuum Potts model

in d =6=¢ dimensions that may apply to d =3, and
which cannot be accounted for by the simpler RG calcula-
tion in d =4—¢€'. Since an alignment of a quadratic aniso-
tropy (induced by an anisotropic stress, say) along an easy
axis is expected to yield a tricritical point,® it should be
possible to test whether the crossover in the three-state
model takes place with small but finite g. This would be
consistent with the RG calculation in d =6 — e dimensions
in that the model has a NS-FO and not a FO transition.
It would be interesting to see in physical realizations of
the four-state model if there is only a crossover from a FO
transition, with a threshold g, or if there is also a crossover
with arbitrarily small g that would imply a NS-FO transi-
tion presumably at a lower temperature than the FO tran-
sition.
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