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A calculation in renormalized perturbation theory, to one-loop order, in d=6 —e dimensions,
shows that quadratic-symmetry breaking (QSB) in a continuum-field p-state Potts model yields a
further distinction between the usual first-order and a "near-spinodal first-order" transition with a
metastable state: Whereas the latter can cross over to a continuous transition at a tricritical point
with arbitrarily small but finite QSB, the former one requires a QSB aboue a threshold ualue. Specif-
ic results for the three- and four-state Potts model suggest that this could be used to distinguish ex-
perimentally between the two first-order transitions.

In recent work on the p-state Potts model, ' Pytte found
the very interesting result that, depending on the value of
p, there appear to be two distinct types of first-order tran-
sitions. One is the usual first-order (FO) transition that is
thought to be associated with a renormalization-group
fixed-point runaway that takes place when p & —", . The
other, which appears for 2 &p & —", , in spite of an access-
ibl=- and stable fixed point, occurs near a spinodal point of
a metastable state in which the small-order parameter
(Q =0) is not an absolute minimum. We refer in the fol-
lowing to this second type of transition as a "near-
spinodal first-order" (NS-FO) transition, to distinguish it
from the usual one. Both transitions are supposed to be
characterized by a finite discontinuity of the order param-
eter at the transition. Technically, however, since there is
an available fixed point for the NS-FO transition, a low-
order renormalization-group (RG) perturbation expansion
can be carried out which, at least for p & 2, also turns out
to be an expansion in powers of the fluctuating field
Q(x). This is similar to the familiar expansion for a
second-order transition, and consequently, for small posi-
tive (p —2), the NS-FO looks like an almost continuous
first-order transition.

More recently we showed that, even for a given p, the
Potts model can have both a NS-FO and a FO transition.
This is the case for all p & —', due to the presence of a new
accessible and stable, nonsymmetric fixed point for
2.2 (p ( Do ~

Since a metastable state is not directly accessible experi-
mentally, at least in static phenomena, one may first ask
the question: How does one distinguish practically be-

I

tween the equilibrium properties of NS-FO and FO transi-
tions? The extent to which these are really two different
transitions remains to be investigated and one of the pur-
poses of this paper is to motivate this search. This can be
of considerable interest in view of the important physical
realizations especially of the three- and four-state Potts
model. These are known to describe various magnetic and
structural phase transitions.

The purpose of this paper is to suggest that experimen-
tally accessible anisotropies can be used to distinguish be-
tween NS-FO and FO transitions. We can show that
quadratic-symmetry breaking (QSB) in a continuum-field
version of the p-state Potts model that can be traced back
to an anisotropic coupling between the components of the
Potts vectors in the discrete model, leads to a clear
theoretical distinction of a NS-FO and a usual FO transi-
tion. Our demonstration consists of two parts. One is a
mean-field argument on the free energy, used before by
Blankschtein and Aharony " for the three-state Potts
model, that helps to search for a crossover between a first-
and a second-order transition at a tricritical point. In the
second part we resort to a RG calculation that accounts
for fluctuations in order to demonstrate that the crossover
from the NS-FO transition takes place for arbitrarily
small QSB, while the usual FO transition requires a finite
QSB above a threshold Ualue. This is the mechanism that
enables one to distinguish between the two transitions.
Technically, the latter is necessary in order to suppress the
runaway and restore a stable and accessible fixed point.

Our calculations are based on the effective Hamiltoni-
an4, 8,9

A = I , [k A +tA +m A (2—)]+—,a'~ uo g Dp~A„AQq
p, v, 'g

+ &
a Uo g D&q+&AqA„+ lr wo g Dq~AqA„A, +quartic terms

p, ,q, r q, r, s

which is a generalization of that by Priest and Lubensky, ' where the integrations are over all momenta k in d =6—e di-
mensions. The p —1 fields A (k), a= l, . . . , p —1 are split into m "longitudinal" and (n —m) "transverse" components,
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with n =p —1 and (p, v, g) & m, while (q, r,s) indicate transverse components and A =A (1)+A (2),

A (1)= g A~(k), A (2)= g Aq(k),
p=l q=l

and the tensorial coefficients are"

(2)

—1 if a&P=y
D pr=[(p —a)(p —a+1)] '~'&& (p —a —1) if a=p=y

0 otherwise .
(3)

The arbitrary momentum-scale parameter ~ is introduced
to have dimensionless trilinear bare couplings uo vo and
wo, which are not assumed to be the same. The reduced
temperature is proportional to t =T —T, (m ), and the
square of the noncritical mass, m, is a measure of QSB
that is related, to lowest order, to the strength g of the
more conventional symmetry-breaking term, "

n —m

A g
————,g n —m A& —m

p=l q=l

by m =g+0(uo, uo, wo). For simplicity, we assume a
single longitudinal component m = 1, suitable for uniaxial
ordering when g &0. In the presence of a magnetic field

4.0—

t

h ~(k) in the direction of A ~(k) there is an additional term
—A, (k)h&(k) in Eq. (1).

The mean-field free energy that follows from Eq. (1)
leaving aside fluctuation terms can be written as

F(p =3)= —,rA ——,g(A f —Az)

+u 3 l
—3A lA2+3 1 ——AlA2

3 2 V

+quartic terms —3 l h l

for the three-state model, where ~ is absorbed in the trilin-
ear couplings, and r = T —T, (0). Except for the term in
(1—U/u), Eq. (S) is essentially the same as in Ref. 6(a).
For g =h~ ——0 and (1—U/u) &0, because of the trilinear
term, Eq. (5) favors a first-order transition with A&&0.
As long as (1—U/u) remains nonpositive, as confirmed by
the RG (Fig. 1) there is a competition between the linear
term which favors A2 ——0 and the trilinear term that
prefers Az&0, whenever h»0 for g =0 and one should
expect a crossover between a first- and a second-order
transition at a tricritical point that will be enhanced by
g&0. The result is qualitatively similar to Fig. 1(d) of
Ref. 6(a).

The mean-field free energy of the four-state Potts model
becomes

F(p =4)= ,
'

rA ——,g[2A (
——(Az+A3)]

50— +u A) —3—A)(Az+A3)+ —Az(Az —A3)
3 V 2 2 W 2

Q Q

2.45
+quartic terms —Alhl . (6)
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FIG. 1. Dependence of the dimensionless renormalized

fixed-point couplings u* and v, in units of e', for the three-
state Potts model with the dimensionless mass parameter
p =m /~, as a measure of quadratic-symmetry breaking.

There are now four distinct phases: a disordered phase (I)
in which A&&0, Az ——O=A3, with A&~0 as h&~0, and
three ordered phases, (II) A»0, A z

——0=A 3, but A, ~~0 as
h ) ~0, (III) A ) &0, Az&0, A3 ——0, and (IV) A, &0, Az~O,
A 3+0 If A z A 3 which is reasonable to assume since
the ordering is uniaxial- along 2 l, then there is a competi-
tion between the trilinear term that favors Az-A 3&0 and
the linear term for h»0 that prefers A2 ——A3 ——0. One
should then expect a crossover to a second-order transition
at a tricritical point on the surface I—IV of first-order
transitions, as shown on Fig. 2.
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FICx. 2. Schematic part of the phase diagram for the four-
state Potts model, illustrating the crossover from the surface
I—IV of first-order transitions (solid linc) to the critical line
(dashed line) at the tricritical point {TCP), for g =0.
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The RG calculation described below yields three sets of
nontrivial fixed-point lines for the scaled couplings:

0.001 0.002
1
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u'(P) =u'/(1+P')'
v'(P)=v'/(1+P )'

w'(P)=w'/(1+P )'

FIG. 4. Dependence with quadratic-symmetry breaking
beyond threshold {dashed line) of the fixed-point couplings u
v*, and w*, in units of e', for the usual first-order transition in
the four-state Potts model.

as functions of the dimensionless noncritical mass

q+
—4.0

3.0

p=ni/x which plays the role of a crossover parameter.
These are given by (i) u &0, v &0, and iv'=0, shown in
Fig. 3 for small but arbitrary, including zero, QSB, which
is consistent with the mean-field prediction and it corres-
ponds to a NS-FO transition. Next, (ii) u &0, v'&0, and
w' &0 (the equality when p oo) for QSB larger than a
threshold value shown in Fig. 4; otherwise there is a
fixed-point runaway that yields the usual FO transition in
the four-state model. Finally, (iii) there is a fixed-point
line given by

w /(1+p ) =2(p —1)e'/(13 —3p) =6e for p =4

1.0 2.0 when P is arbitrary but finite, and u =0=v'. The mass

p is related to g through p =g/a, for small and finite K.
The asymptotic crossover behavior follows from a.—+0,
for small but finite g, whereas a threshold in p implies one
in g. We interpret the crossover to p=ao in the first two
fixed points as the crossover to the critical lines. Al-
though

0.6
I I I I 1

0 0.2 0.4 0.8 1.0 (1+}i } &

FICz. 3. Dependence with quadratic-symmetry breaking of
the dimensionless renormalized fixed-point couplings u and v,
in units of e', for the near-spinodal first-order transition in the
four-state Potts model.

u*(oo)=v'(oo)=w'(oo)=0

in both, u' and v* remain finite and this is responsible for
nonclassical exponents on the critical lines, as shown
below.

Next, we turn briefly to the RCk calculation. The zeros
of the Wilson P functions,
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p„=——u ——,(p —2) c u +a(p )[—,'(p —2)uu +u ],
2

p„=——u+ —,', (p 2—) c vu —a(p )I —,'[2——,'(p —2)]u + —,p(p —3)uw —(p —2)uv ],2
(10)

P„=——w —a(P )[—,wu ——,(13—3p)pw ]W

[here a(P )=c (1+P ) '], yield the fixed points dis-
cussed above for p =3 and 4. We also find (i) that there
are fixed-point lines that start at @=0 and end at finite P,
as shown here for p =3, whenever 2.62&p &3.27, and this
means that in this case a vanishingly small g is necessary
to see the crossover at all; (ii) there are lines of stable and
accessible fixed points (generalizing FP1 in I) of the kind
shown in Fig. 4 that require a threshold g for —', &p & —", ;
(iii) QSB always implies a break in trilinear symmetry.

The exponents g and v on the critical line —related by
5g=v ' —2 (Ref. 4)—turn out to be given by

for p =3
'/=6 and 'g~ 9

E' foI p =4 .

The first one differs from the usual q=e, ' but that is
without QSB on the spinodal point, and there is no reason
a priori for the exponent on the critical line to be the same.

Although the value of the exponents may not serve for
comparison with experiments in d =3, the fact that there
are two for p =4 is a consequence of trilinear-symmetry
breaking due to a break in quadratic symmetry and this is

a definite qualitative feature of the continuum Potts model
in d =6=a dimensions that may apply to d =3, and
which cannot be accounted for by the simpler RG calcula-
tion in d =4—e. Since an alignment of a quadratic aniso-
tropy (induced by an anisotropic stress, say) along an easy
axis is expected to yield a tricritical point, it should be
possible to test whether the crossover in the three-state
model takes place with small but finite g. This would be
consistent with the RG calculation in d =6—e dimensions
in that the model has a NS-FO and not a FO transition.
It would be interesting to see in physical realizations of
the four-state model if there is only a crossover from a FO
transition, with a threshold g, or if there is also a crossover
with arbitrarily small g that would imply a NS-FO transi-
tion presumably at a lower temperature than the FO tran-
sition.
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