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A semi-infinite ferromagnetic simple cubic Ising lattice which has nonmagnetic impurities substi-
tuted for the magnetic species only at the surface is investigated with the use of a new type of
effective-field theory with correlation. The surface magnetism is examined as a function of modified
exchange J;=J(1+A) and concentration P of magnetic atoms at the surface. The critical value A,
transition temperatures T, and phase diagram for surface ordering are obtained as functions of P
and A. The reduced magnetization curves of surface and bulk are also studied. We obtain some
characteristic behaviors of magnetism at the diluted surface.

I. INTRODUCTION

The problems of surface magnetism have been investi-
gated for many years. Among them the effects of surfaces
on phase transitions have received much attention and
have been studied by using a variety of approximations
and mathematical techniques.!~®
these investigations Mills! assumed a model in which the
spins in the free surface interact among one another with
an exchange parameter J; which is different from the bulk
exchange J. For this simple model with modified ex-
change only at the surface, it was pointed out on the basis
of the traditional mean-field approximation (MFA) that
for J; greater than a critical value J, the system would
order on the surface before it ordered in the bulk. This
MFA prediction is found to be qualitatively correct and

quantitative improvement on the critical value
JMFA_1.25J have been obtained by using sophisticated
techniques.3—>

On the other hand, in the previous works”~? some of
the present authors have shown that a simple effective-
field theory with correlation developed by Kaneyoshi et
al.'% leads to quite satisfactory results for surface magne-
tism. In fact, the critical value A,=J,/J—1 was ob-
tained to be 0.3068 which is in excellent agreement with
the renormalization-group (RG) approach result
(ARG =0.307) as reported in Ref. 5. The qualitative
shortcoming of the MFA theory occurring when the ex-
change coupling between the surface and the second layer
is allowed to be different from the bulk exchange parame-
ter® was also removed by the simple theory.

Now, the theory of surface with a disordered magnetic
composition seems to be far from complete, although
some progress has been noted recently.!'~13 In particular,
it is interesting both theoretically and experimentally to
ask whether a system with magnetic atoms randomly dis-
tributed only at the surface can exhibit surface magnetism
in the Mills’s sense. This model may have experimental
relevances with an amorphous magnetic layer deposited on
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a ferromagnetic crystalline system and ferromagnetic ma-
terials in which surface dilution can be produced artificial-
ly, e.g., by coating or ion implantation.

The subject of cooperative behavior of surface has obvi-
ous relations to various regions of condensed matters, so
that even simple ideas like mean-field approximation have
been discovered again and again. In this work, surface
magnetic properties of the Ising model with magnetic
atoms randomly distributed only at the surface are studied
by using the simple effective-field theory with correlation.
The critical value A, is then obtained as a function of con-
centration P of surface magnetic atoms. In the pure sur-
face with P=1, as mentioned above, the critical value A,
is given by A,=0.3068. The transition temperatures for
surface ordering are investigated as functions of P and
A=J;/J—1. We are also able to obtain the phase dia-
gram characterizing the state of the magnetic surface as a
function of P.

The outline of our paper is as follows. In Sec. II, we
briefly review the basic points of the simple effective-field
theory with correlation, when it is applied to the problem
of a diluted surface. In Sec. III, we examine the phase di-
agram and the transition temperatures as functions of P
and A. In Sec. IV, in order to compare the magnetic prop-
erties of diluted surface states with those of the purely
two-dimensional diluted ferromagnet, within the formal-
ism the diluted square lattice is investigated. Some in-
teresting behaviors of normalized magnetization are
found. In Sec. V, the reduced magnetization curves of
surface and bulk are examined for two cases, namely
A>A,(P=1) and A<A.(P=1). The reduced surface
magnetization curves, when the concentration P of surface
magnetic atoms is changed, are obtained for each case. In
this work, we obtain some characteristic behaviors of
magnetization at the diluted surface.

II. THEORY

We consider a model system, which is described by the
Hamiltonian with nearest-neighbor interaction J in the
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FIG. 1. Part of a two-dimensional cross section through a
semi-infinite Ising lattice. Black points denote lattice positions,
which are occupied by spins u;=+1. White points are nonmag-
netic atoms. Full lines indicate exchange coupling J, while wavy
lines indicate surface exchange couplings J,=(1+A).

bulk of a simple cubic lattice, while the corresponding in-
teraction in the surface place is J; and magnetic atoms on
the surface are randomly distributed (Fig. 1 shows a two-
dimensional cross section of this system),

H=—7 ZIyuts; (1)
ij
where p; = *1 is the usual Ising variable, and Jj; is the ex-
change interaction between spins at sites i and j, which
takes the value J; if both occupied spins lie on the surface,
and the bulk value J otherwise.

Formal identities for the correlation functions of the Is-
ing model have appeared in the literature for some time.!*
The starting point for the statistics of our spin system is
the exact relation due to Callen'®

(,u,-):<tanh [B?J,»j,u,jp , (2)

where the angular bracket indicates the usual ensemble
average

(- Y=Trlexp(—B5F) - |/ Trexp(—B5F) ,

and B=(ksT)~'. Here, in order to write the identity (2)
in a form which is particularly amenable to approxima-
tion, let us introduce the differential operator technique
proposed by Honmura and Kaneyoshi as follows:

g; = <,Uq ) =<exp {D 2 tl'j“‘j }> tanhx ' x =0
J
=< I1 [ cosh(Dt;;) +u; sinh(Dt;; )]) tanhx |, ¢ , 3)
j
where D =0/0x is a differential operator, t; =BJ;, and o;

means the magnetization of an atom lying in the ith layer.
]
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By assuming the statistical independence of lattice site,
namely

Cpapj =y = Yy - ()
Eq. (3) may be rewritten as
o;= [1 [ cosh(Dt;; 5)+0; ssinh(Dr;;  5)] tanhx | . _o ,

5
(4)

where 8 only takes nearest neighbors of a site in the ith
layer. The approximation led, in spite of its simplicity, to
quite satisfactory results. In fact, the approximation
essentially corresponds to the Zernike approximation!® in
the bulk problem, as will be also shown in Sec. V. The
formalism has been applied to disordered magnetic sys-
tems, such as spin-glasses,'” dilute and amorphous fer-
romagnets,'”!® and systems with competing interactions.!®
As discussed in Refs. 8 and 9, when it was applied to the
pure surface problem, the critical value A, was obtained to
be 0.3068, which is in excellent agreement with the RG re-
sult (AR9=0.307) as reported in Ref. 5. Phase diagrams,
magnetization curves, susceptibilities, and specific heats of
surface and bulk were successfully obtained by means of
the approximation. In this work some of them will be
rederived, in order to complete our understanding.

In the present system the magnetic atoms are randomly
distributed on the surface. In order to take account of the
fact explicitly, Eq. (4) can be also represented as

o;= [T {& 15l cosh(Dy; ; 5)+0; 4 ssinh(Dr; ;4 5)]
5
+(1—§;45)} tanhx |, o, (5)

where §; | 5 is a random variable which takes a value 1 or 0
depending on whether or not a magnetic atom on the sur-
facz% is occupied, and otherwise must take the value of uni-
ty.

Now, let us apply Eq. (5) to our layered simple cubic
system with a diluted (1,0,0) surface. Performing the ran-
dom average ( --- ), and noting that {(&;),=P, for the
surface magnetization o, Eq. (5) yields

oy={ P[cosh(Dt,)+ o sinh(Dt,)]+(1—P)}*
X [cosh(Dt) 4o, sinh(Dt)] tanhx | . ¢ , (6)

where t,=J;/kpT and t=J/kpzT. For the magnetization
o, of the second layer we have

o= {P[cosh(Dt)+osinh(Dt)]+(1 —P)}
X [cosh(Dt) + o, sinh(Dt) J*
X [cosh(Dt) + o3 sinh(Dt)] tanhx | , ¢ . (7)

In general, the magnetization o, of the nth layer is given
by

o =[cosh(D1) + 0, sinh(D1)]*[cosh(Dt) + 0, _ sinh(Dr)][cosh(Dt)+ o 1 sinh(Dr)] tanhx | .o, n>3 ®

where o, _; and o, .| are the magnetizations in the (# — 1)th and (# + 1)th layers, respectively.
In the following sections, we use Eq. (6)—(8) to examine the phase diagrams characterizing the state of the magnetic
surface, transition temperatures of surface and bulk, and the temperature dependences of surface or bulk magnetization.
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III. TRANSITION TEMPERATURES AND PHASE DIAGRAM

In this section we are concerned with the calculations of the critical temperature and the critical value A, for surface
ordering as functions of P and A. The usual argument that o; tends to zero as the temperature approaches a critical tem-
perature allows us to consider only terms linear in o;, because higher order terms tend to zero faster than o; on approach-
ing a critical temperature. Near the critical points, therefore, we can linearize Egs. (6)—(8) and we find

0‘1=P4(4A10'1 +A202)+4P3( 1 ——P)(3A301+A4(72)+6P2( 1 —P)2(2A50'1+A60'2)

+4P(1—P)A70,+A30,)+(1—P)* 440, ,
02=PB1(40'2+0'1+0'3)+(1—P)B2(40'2+0'3) N

and

o'n=C(0',,_1+40’,,+0',,_1), n23 (11)

where the coefficients 4, (v=1,2,...,9), B,(v=1,2), and
C are given in Appendix. By applying a mathematical re-
lation, i.e., e®® f(x)= f(x +a), all the coefficients can be
expressed as a sum of transcendental functions tanhX with
an appropriate argument X. For instance, the coefficient
A is given by

A = cosh®(Dt,) sinh(Dt,) cosh(Dt) tanhx | ,
= 1¢[ tanh(1+4%)t +2 tanh(1+29)z
—2tanh(1—27)t — tanh(1—47)t],

where n=J,/J=1+A.

According to Ref. 3, let us assume that o, ,;=a0, for
n>2, e.g., the magnetization o, of each layer with n
larger than n=2 decreases exponentially into the bulk.
Equations (9) and (10) then yield the following secular
equation:

(] (1]

D,,D,
= |Ds,D,

) oy
with
D, =4P*4,+12P3(1—P) A3+ 12PX(1—P)*4;
+4P(1—P)°4,—1,
D,=P*4,+4P*1—P)4,+6PX1—P)*4,

+4P(1—P)A4g+(1—P)*4y ,

(13)
D3:PBI’
D,=4PB,+4(1—P)B,+a[PB,+(1—P)B,]—1.
The parameter a is given by, upon using (11),
_ (1 —4C)2 427172
a=(1 4C)—[(1—-4C)"—4C“] . (14)

2C

Thus, the critical ferromagnetic frontiers can be derived
from the condition det M =0, namely

D\D4—D,D;=0. (15)

From the formal solutions of Eq. (15) we choose those
corresponding to the highest possible transition tempera-
ture 7, which is the temperature for surface ordering. In
our present treatment the bulk transition temperature T

9)
(10)

I
can be determined by putting 0, =0, _;=0,,;=0 into
Eq. (11), which is given by

tt= Lb =0.197

kB Tc
(see also Sec. V). This is an improvement on the tradition-
al MFA, which provides tMF4=0.167.

In the previous work with a pure free surface® the criti-
cal value A, for surface ordering was found to be 0.3068,
compared to the mean-field value of 0.25. For A> A,
there is a temperature region in which the surface behaves
like a bulk two-dimensional Ising model near its phase
transition, and for A < A, the surface only orders when the
bulk does. The previous result of A, =0.3068 can be easi-
ly derived in this work on assuming o,=0,=0 in Eq. (9)
and putting P =1 and t2=0.1971. In order to clarify the
results of present work, in Fig. 2 we show again the phase
diagram characterizing the state of the pure magnetic sur-
face, which was obtained in Ref. 8 and is also derived
from Eq. (15) on putting P=1. In the figure, we denote
the paramagnetic, bulk-ferromagnetic, and surface-
ferromagnetic phases by PM, BF, and SF, respectively,
and SB denotes the multicritical point of the surface-bulk
transition. The critical value A,=0.3068 is in excellent
agreement with the result obtained by Burkhardt and
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FIG. 2. Phase diagram in the (T',A) space for the simple cu-
bic Ising model with P=1 and enhanced surface coupling
J;=J(1+A). For comparison, the MFA and SE results (Refs. 1
and 3) are also plotted as a function of A. The paramagnetic,
bulk-ferromagnetic, and surface-ferromagnetic phases are indi-
cated by PM, BF, and SF, respectively.
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FIG. 3. Critical value A, for surface ordering is plotted as a
function of concentration P of magnetic atoms at the surface.

Eisenriegler’ by using an RG approach within their first-
order cumulant approximation (AR®=0.307). For very
large A, T.(A) becomes asymptotic to the two-dimensional
transition temperature 3.0898(14A). For comparison the
results obtained from MFA and high-temperature series
expansion (SE) method are also plotted.

Now, we are in a position to examine the effects of
magnetic atoms randomly distributed at the surface on the
critical value A, transition temperatures, and phase dia-
gram. The effects can be obtained by solving Eq. (15) nu-

25
keTS/J
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FIG. 4. Transition temperatures T, for surface ordering are
plotted as a function of surface concentration P. The values A
taken are larger than the critical value A..
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FIG. 5. Phase diagrams in the (7T',A) space, when the concen-
tration P of magnetic atoms at the surface is changed.

merically. In Fig. 3 the critical value A, for surface or-
dering is shown as a function of concentration P of mag-
netic atoms on the surface. The A, starts at the value of
0.3068 for P =1 and then rapidly increases, when the con-
centration of magnetic atoms decreases. At the critical
value of P given by P,=0.4094 the A, diverges to infinite.
In other words it implies that the surface magnetism is
impossible below the P, in the Mills’s sense. In relation to
the result it is worth noting that, as will be discussed in
the next section, the usual critical percolation concentra-
tion C* in a dilute ferromagnetic Ising square lattice is
within the present formalism given by C*=0.4284, e.g.,
T.(C)=0 at C=C*=0.4284. Thus, it is an interesting
problem whether or not the surface magnetism exists at
the range of concentration between C* and P.. In a case'’
there exists the surface magnetism even below the bulk
critical concentration Cj.

For A>A,, the surface orders at a temperature T
which is higher than the bulk 72. In Fig. 4 the transition
temperatures, 7 for surface ordering are depicted for
some cases with A > A, as a function of concentration P of
magnetic atoms at the surface. A characteristic behavior
of the result is that near the T? the curves of T: have all
downward curvatures, in comparison with the usual 7,.(C)
curve in the dilution problem, which has an upward cur-
vature near the critical concentration Cj (see the next sec-
tion and Ref. 21). Another characteristic is that the
curves, as a function of P, at first show weak downward
curvature for small A and then change to weak upward
curvature on increasing A, in contrast to the result (Fig. 6)
of a dilute ferromagnetic changing linearly with C.

In Fig. 5, phase diagrams with enhanced surface cou-
pling J,=J(1+A) are depicted for some cases of surface
concentration P. The phase diagram for P =1 is the same
as that of Ref. 8 (or Fig. 2). Decreasing the surface con-
centration P, the surface ferromagnetic phase can be ob-
tained only for cases with large values of A, in accordance
with the result of Fig. 3.
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IV. A DILUTE FERROMAGNETIC
SQUARE LATTICE

As discussed in the preceding section, it will be
worthwhile to examine a two-dimensional dilute ferromag-
net within the present approximation, in order to compare
the magnetic behaviors of the diluted surface with those of
such a system in which magnetic atoms are randomly dis-
tributed on a square lattice. The magnetization o of such
a two-dimensional dilute ferromagnet is easily derived
from Eq. (6), on putting J=0 (or ¢ =0) into Eq. (6) as fol-
lows:

o= {C[ cosh(Dty)+0o sinh(Dty)]+(1—C)}*tanhx | . _ ,
(16)
with
Jo
to=——
0 kBT ’
where J, and C=(§&; ), are the exchange coupling for

nearest neighbors and the concentration of magnetic
J
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atoms, respectively. We here changed the notations, in or-
der to avoid the confusion between surface and bulk prob-
lems. Expanding Eq. (16), the magnetization o is given by

0=C*40K | +40°K,)+4C3(1—-C)30K;+0°K,)

+12CH1—C)0Ks+4C(1—C)oKg , 17
with

K, = sinh(Dt,) cosh®(Dt,) tanhx | . _¢ ,

K, =sinh®(Dt,) cosh(Dt,) tanhx |, o ,

K3 =sinh(Dt,) cosh?(Dt,) tanhx | . _¢ ,

K 4= sinh®(Dty) tanhx |, _o ,

K 5= cosh(Dtg) sinh(Dtj) tanhx | . _g ,

K¢ =sinh(Dtg) tanhx |, —o ,

where the coefficients K, (u=1—6) can be also evaluated
in terms of a mathematical relation e®? f(x)= f(x +a).
In this case, the critical temperature T,.(C) is determined
from

4CK | +12C3(1—C)K3+12CH1—C)*Ks+4C(1—C)’K¢=1

or

+C*[ tanh(4t4)+2 tanh(2ty)]+ 5 C3*(1—C)[ tanh(3ty) + tanh(z,)]+ 5+ CX1—C)? tanh(2¢,)+ C(1—C)* tanh(zy) =+ ,

which is equivalent to the result derived by Matsudaira.??

For clarification, in Fig. 6 the T.(C) is depicted as a func-
tion of concentration C. The critical concentration C* is
then given by C*=0.4284, as noted in the preceding sec-
tion.

By using Eq. (17), let us now investigate the reduced
magnetization curves of the dilute ferromagnetic square
lattice, in order to compare the magnetic behaviors of the
diluted surface with those of the purely two-dimensional
dilute ferromagnet. In Fig. 7, the temperature depen-
dences of the reduced magnetization are shown for some
values of concentration C. The effect of decreasing the
concentration of magnetic atoms is an increase in the
depression of magnetization over the entire temperature
range for T < T,, which phenomenon is generally observed
in diluted and amorphous ferromagnets. Very near the
critical concentration C*, however, the behavior of the re-
duced magnetization curve is rather different. The curve
of C =0.43 is over that of C =1 (pure case) and shows an
abrupt increase from the T /T, =1 on decreasing the tem-
perature. The result reminds us that of the reduced mag-
netization curve of a quasi-one-dimensional ferromagnet®3;
near the critical concentration the magnetic behavior of a
diluted two-dimensional ferromagnet becomes like that of
a one-dimensional system.

The above results in the diluted two-dimensional system
have been discussed in some literatures. However, replot-
ting the reduced magnetization as a function of concentra-
tion C for a fixed temperature, we found an interesting

(18)

I

fact shown in Fig. 8. The reduced magnetization at abso-
lute zero, as expected, takes a value of unity, independent
of C until the critical concentration C*. On the other
hand, the reduced magnetization at a finite temperature at
first decreases on decreasing the concentration and shows
a minimum at a particular concentration. On passing the
concentration, the curve then increases to a finite value at
the critical concentration and at the point the reduced
magnetization suddenly disappears, as expected in Fig. 7.

10
Te/ Teo
o8

Z-4
Cc*- 04284
Teo= 30898 J/kg

ost
MFA (C*-0,Teo= 4/ ks )
04t
oz
0.0 1 1 1 -
10 08 06 Toa 02 00
c* C

FIG. 6. Concentration dependence of the Curie temperature
for the diluted square lattice. For comparison, the MFA result
is also depicted.



6496

zZ-4
i c*-0.4284
02
0 1 1 1 1 1 1 1 1 n
(0] 02 04 06 0.8 1.0
T/Te

FIG. 7. Reduced magnetization curves vs the concentration C
of magnetic atoms for the square lattice.

Approaching the critical temperature, the specific concen-
tration showing a minimum in the curve gradually de-
creases to the critical concentration. To our knowledge
the result is the first time. This may be found experimen-
tally by replotting the available data of magnetization in
dilute ferromagnets.

V. REDUCED MAGNETIZATION CURVES
OF DILUTED SURFACE

In this section, let us again examine the magnetic
behaviors of the Ising model with diluted (1,0,0) surface in
a simple cubic lattice.

In the previous work for pure surface (P=1),” some of
the present authors have discussed the temperature depen-
dences of magnetizations o, given by Egs. (6)—(8) by solv-

1.0
T/Tc= 00

M/Mo F

T/T.= 06

F c*o04284

1
1.0 08 c 06 o4

FIG. 8. Concentration dependence of the normalized magnet-
ization for the diluted square lattice, in which the temperature is
fixed at a given value. M, is the magnetization at absolute zero.
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FIG. 9. Reduced magnetization curves of surface and bulk
for A=0, when the concentration P of magnetic atoms at the
surface is change.

0] 02 o4

ing them numerically until eleven layers (n=11). After-
wards we also studied Egs. (6)—(8) with P=1 numerically
under the assumption that surface magnetization could be
determined with enough precision even by terminating
them at n=3.> From these works we found that even if
we terminate them at n =3, the surface magnetization can
be obtained with enough precision, while the bulk magnet-
ization cannot precisely be estimated especially near the
critical temperature. Therefore, for the evaluation of sur-
face magnetization we here assume that from the third
layer, the magnetization of each layer can be approximat-
ed by the bulk value, which is given by, on putting
0,=0,,1=0,_1=0 into Eq. (8),

o=[ cosh(Dt)+ o sinh(Dt)]®tanhx | . _g . (19)

The transition temperature TP of the bulk can be
evaluated from

1=6sini(Dt?) cosh®(Dt?) tanhx |  _,

= 2 [ tanh(6t2)+4 tanh(4z%)+ 5tanh(2:2)],  (20)

with
b J
te=—"—""%,
kpT;

which is nothing but the Zernike equation obtained for a
ferromagnetic simple cubic Ising lattice.!® The Curie tem-
perature of (20) is given by (kp T?)/J =5.076, which is not
close to the series value 4.5 for the simple cubic lattice, but
to the value 4.933 for the Bethe method.?*

Now, in order to evaluate the surface magnetization
05 =0}, it is necessary to solve the coupled equations (6),
(7), and (19) numerically, under the assumption of o;=o0.
The numerical results are shown in Figs. 9 and 10. As



28 SURFACE MAGNETIC PROPERTIES OF THE ISING MODEL ...
10}
Os
0.8
06
o4
R (A) =0.5344
02
—====-= bulk
0 L 1 L I L 1 L
(0] 0.2 04 06 0.8 1.0

T/ T¢

FIG. 10. Reduced magnetization curves of surface and bulk
for A=3. The critical value P,(A)=0.5344 is determined from
the relation A.(P)=3, as shown in Fig. 3.

noted in Sec. III, for A> A, (P) the surface behaves like a
bulk two-dimensional Ising system and for A <A (P) the
surface orders when the bulk does. Therefore, the reduced
magnetization curves of surface are investigated for some
fixed concentrations of surface magnetic atoms and espe-
cially for two cases, namely A=3 and A=0. In the fig-
ures, dashed lines express the reduced magnetization curve
of bulk given by Eq. (19).

As understood from Figs. 3 and 5, for the case of A=0
(or Fig. 9) the surface magnetic ordering is only possible
when the bulk orders. Especially for P =1, the effect of
surface is the depression of magnetization over the entire
temperature range for T'< T, in comparison with that of
bulk. Decreasing the concentration P of surface magnetic
atoms, the magnetization shows a larger depression and
almost the linear temperature dependence of surface mag-
netization is observed until rather low temperatures, in
contrast with the behavior of the pure two-dimensional
case (or Fig. 7). Experimentally, the linear temperature
dependence of surface magnetization near a critical tem-
perature has been found by means of low-energy electron
diffraction (LEED), for instance, in antiferromagnetic
NiO.% Thus, such a linear behavior of surface magnetiza-
tion may be more preferably found on diluting the surface.

Here, especial attention should be paid for the case of
A=3 (Fig. 10), since, as shown in Fig. 3, surface magne-
tism is possible wuntil the critical concentration
P.(A)=0.5344 determined by the relation A,(P)=A=3
and the surface may behave like a two-dimensional Ising
model for P> P,(A). In fact, the reduced magnetization
curve for pure surface with P =1 in Fig. 10 and that for
the two-dimensional ferromagnet with P =1 in Fig. 7 are
equivalent to each other within their numerical errors,
which implies that, as expected from Fig. 2, the pure sur-
face with the restriction of A> A, behaves like a two-
dimensional Ising model. However, the effect of surface
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concentration P on their reduced magnetization curves is
rather different from that of two-dimensional systems.

Decreasing the concentration P of surface magnetic
atoms, the reduced magnetization curve at first shows a
weak depression of magnetization, in comparison with
that of pure surface with P =1. Approaching the critical
concentration P,(A)=0.5344, on the other hand, the curve
of surface rapidly increases near the transition tempera-
ture, like that of the two-dimensional system, namely the
curve of C=0.43 in Fig. 7. But at low temperatures the
curve more swiftly decreases than that of bulk or pure sur-
face, on increasing the temperature from absolute zero.
Below the critical concentration P.(A)=0.5344, the sur-
face magnetism is impossible in the Mills’s sense. The
surface only orders when the bulk does. Therefore, below
the P.(A) the behavior of the reduced surface magnetiza-
tion curve is similar to that of Fig. 9. In contrast with
Fig. 9, the reduced magnetization curve for P =1 in Fig.
10 is over that of bulk, since the surface orders before the
bulk does and the surface behaves like a two-dimensional
ferromagnet. Thus, for the case of A> A, we may find
experimentally some interesting results of surface magnet-
ization in the problem of surface dilution.

VI. CONCLUDING REMARKS

Our discussion has revealed some characteristic
behaviors of magnetism in the Ising model with various
concentrations of magnetic atoms at the surface. On dilu-
tion at the surface, the critical value A.(P) showed an in-
teresting behavior in the Mills’s sense; the critical value P,
determined from the divergence of A.(P) was not equal to
the percolation concentration C* of two-dimensional sys-
tems. Theoretically it is interesting to study what happens
at the surface in the region of concentration between P,
and C*. The concentration dependence of the transition
temperature 7, for surface ordering was different from
that of bulk. For the dilution at the surface the reduced
magnetization curve of surface also exhibited some pecu-
liar behaviors in comparison with that of bulk.

The theory of surface with randomly distributed mag-
netic atoms has not been studied in many papers, although
there is a long history of research for the dilution of mag-
netic atoms in the bulk.?® Most of the theoretical work on
surface magnetism has been concerned with the tempera-
ture dependence of magnetization at the pure surface near
the critical temperature, namely critical exponent 5. Our
theory is, however, based on the effective-field theory with
correlation, so that it is impossible to discuss such a criti-
cal phenomenon at the diluted surface, which will be an
another interesting problem.

Experimentally, our model may have some relevances
with an amorphous magnetic layer deposited on a fer-
romagnetic crystalline system and ferromagnetic materials
in which surface dilution can be produced artificially, e.g.,
by coating or ion implantation.

Finally, we hope that our study will stimulate further
experimental and theoretical works on the system con-
sidered here. A comparison of our work with experiment
should be worthwhile.
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APPENDIX
The coefficients 4, (v=1-9), B, (v=1-2), and C in
Eqgs. (9)—(11) are given as follows:
A= cosh®(Dt;) sinh(Dt;) cosh(Dt) tanhx | _g ,
A= cosh*(Dt;) sinh(D¢) tanhx |, _, ,
A= cosh*(Dt,)sinh(Dt,) cosh(Dt) tanhx | , _ ,
A4 = cosh?(Dt;)sinh(Dt) tanhx |, _, ,
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A5 = cosh(Dt,) sinh(Dt,) cosh(Dt) tanhx | , g ,
Ag= cosh?(Dt,) sinh(Dt) tanhx | . _, ,

A4 = sinh(Dt,) cosh(Dt) tanhx | , _g ,

Ag = cosh(Dt,) sinh(Dt) tanhx | ,_ ,
Ag=sinh(Dt) tanhx |, _, ,

B, = cosh®(Dt)sinh(Dt) tanhx |, _g ,

B, = cosh*(Dt) sinh(D¢) tanhx | x—o0 >

and

C:Bl .

The coefficients can easily be calculated by applying a
mathematical relation, e®? f(x)= f(x +a).
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