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Theory of many-body diffusion by the path-probability method: Conversion from ensemble
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The formalism of the path-probability method {PPM) of irreversible statistical mechanics as ap-
plied to transport processes is examined in connection with the calculation of the "correlation fac-
tor" in many-body diffusion problems. Tracer diffusion in disordered binary alloys is taken as an
example for this treatment. The essential characteristic of the PPM is to evaluate the evolution of
state with time under nonequilibrium conditions with the use of ensemble averaging at an instant in
time. It is pointed out that time averaging rather than ensemble averaging is to be taken in order to
evaluate the time correlation of the motion of a small number of particles necessary for the calcula-
tion of properties such as the correlation factor in tracer diffusion and the flow of particles in gen-
eral. The conversion from ensemble averaging to time averaging is made in the "linear range, " in
which the Onsager equations are valid, without changing the nature of approximation of the treat-
ment. Comparisons of results in these two different averaging methods are thus given. In particu-
lar, the percolation sensitivity of tracer diffusion in the time average is discussed.

I. INTRODUCTION

The role of irreversible statistical mechanics such as the
path-probability method' (PPM) in transport phenomena
is to derive analytically the Onsager equations (for dif-
fusion) based on atomistic models. From the knowledge
of the kinetic matrix, one can draw conclusions with
respect to observable quantities such as the correlation fac-
tor for tracer diffusion and ionic conductivity under ap-
propriate boundary conditions in many-body diffusion
problems. We call any general diffusion problem, except
those such as self-diffusion in nearly perfect crystals, a
many-body diffusion problem because diffusing atoms or
ions cannot be considered independent of surroundings
due to mutual interactions with surroundings. So far, sys-
tematic treatments of many-body diffusion problems other
than the PPM are lacking.

In the pair approximation of the PPM, the tracer dif-
fusion coefficient DT (in the limit of negligible concentra-
tion of tracer ions) and the ionic conductivity o. for
many-body diffusion problems in fast ionic conductors
with a single diffusing constituent, ' for example, were
found to be represented by

DT ——a ~5 exp( —Pu) VWf (la)

o.= a @exp( —Pu)VWft .
kT

Here, a is a numerical factor related to the jump distance
and the dimensionality of the crystal lattice, P=(kT)
and 5 exp( —Pu) gives the basic jump frequency of an
atom of an ion to be observed. Also, in Eq. (1b), n is the
number of ions per unit volume and e is the charge on the
ion. The factors V, W, and f or ft represent the many-
body effect; V is related to the vacancy (vacant available

site) distribution with respect to a diffusing atom and is
called the vacancy availability factor, and 8' is related to
the effect of interaction with neighboring atoms on the
jump frequency and is called the effective jump-frequency
factor. These two factors are determined by the distribu-
tion of atoms and @exp( —Pu) VW represents the jump
frequency in the statistically averaged system. The factors
f and ft then are interpreted to represent the efficiency of
motion of tracer atoms and the total assembly of atoms,
respectively, toward long-range diffusion relative to the
random-walk motion in the statistically averaged system
represented by its jump frequency w =5 exp( —pu ) VW.
The factors f and fq are thus defined as the generalized
correlation factor by Eq. (1). In the limit of self-diffusion
of nearly perfect crystals, the definition off becomes iden-
tical to the correlation factor customarily defined. The
difference between f and ft is due to the fact that the
number of tracer atoms is far smaller than the number of
the total assembly of atoms and f/ft has been referred to
by the present authors as the geometrical correlation fac-
tor fG while ft is referred to as the physical correlation
factor. The ratio f/ft ftt represents t—h—e Haven ratio.

Although the PPM is very versatile in dealing with
many-body diffusion problems, unsatisfactory features in
connection with the calculation of the correlation factor
have been noticed. In the first place, the numerical values
for the correlation factor calculated by the PPM have been
found to be rather unsatisfactory for the degree of approx-
imation utilized if judged relative to the random-walk
theory of diffusion, ' which is capable of giving exact
values of f for simple cases such as self-diffusion. Fur-
ther, the pair approximation of the PPM predicts the
value of f in self-diffusion for the vacancy mechanism (in
nearly perfect crystals) to be (2to —1)/(2co+ 1), where 2co
is the coordination number of the lattice. However, an ap-
propriate value of f by the pair approximation of the
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PPM should rather be (2' —2)/2' based on the predic-
tion of the percolation limit at 2co=2 by the pair approxi-
mation of the cluster-variation method' (CVM), which is
the static version of the PPM (diffusion is essentially a
dynamical percolation problem and diffusion has to stop
at the percolation limit predicted by static statistical
mechanics). The work has since been examined by the
Monte Carlo method under a similar condition. "' These
results clearly showed that, although the values for V and
W agreed very well with those of the simulation, a marked
but systematic discrepancy in the values of f was found
between the results of these two methods. We also showed
that, in the "ideally disordered" binary alloys (in which no
interactions among atoms are assumed, so that the alloys
are always in the completely disordered state), f predicted
by the PPM shows a systematic deviation from that ob-
tained by the extension of the random-walk theory' in its
composition dependence if the relative jump frequencies of
constituent atoms deviate strongly from unity, and the
pair approximation of the PPM is even found to be incap-
able of predicting the percolation limit suggested by the
pair approximation of the CVM. 3 Among V, W, and f,
which indicate many-body effects in diffusion, V and 8'
are essentially determined by the equilibrium distribution
of atoms and vacancies on the crystal lattice sites and they
(and hence the averaged jump frequency) can be calculated
by the application of the CVM only, ' '6 while f is calcu-
lated through the nonequilibrium process of the PPM.
Therefore, the problem should be connected to the process
of extending the CVM to include the time dependence.
On the other hand, the application of the pair approxima-
tion of the PPM to other kinetic processes such as the ki-
netics of the order-disorder transformation in alloys has
been shown to give results compatible with the pair ap-
proximation of the CVM. ' This discrepancy in behavior
of the PPM in predicting kinetic processes has prompted
us to reexamine the formalism of the PPM as applied to
the transport processes.

The result of the analysis of the PPM clearly indicates
that the difficulty in the calculation of f by the PPM is
due to its formalism in evaluating the flow. The PPM
works out how the system changes with time and is based
on the contention that the most probable change of state is
the one observed macroscopically. ' The PPM thus starts
with the path-probability function, which represents the
probability that a specified path. i.e., a change of state,
occurs. This probability is calculated using the combina-
torial counting in an ensemble which is made of a large
number of replicas of the paths. Because of mathematical
restrictions, the path-probability function is formulated
for a short-time interval b, t only. Therefore, a path treat-
ed by the PPM has the meaning of a change of state of a
single system only for the short-time span At. Further, in
evaluating the time sequence, the state at each time instant
is represented by an ensemble of systems in the same
fashion as the CVM. Hence, the time correlation calculat-
ed by the PPM is that of the average of the system. In
other words, the flow of individual particles is not fol-
lowed by the PPM. Because of this situation, the result of
the PPM becomes especially unsatisfactory when the time
correlation of the motion of a small number of particles

has to be followed for a long time: for example, in the
case of calculating the correlation factor in tracer dif-
fusion. In order to calculate properties such as the corre-
lation factor, one has to follow the time evolution of a sin-
gle system rather than following the time evolution of an
ensemble of states.

The recognition of the difficulty of the PPM in predict-
ing the long-time behavior has led us to convert the results
of the PPM in the ensemble average at each time instant
into those of the time average by following the time evolu-
tion of a single system without changing the degree of ap-
proximation. This has added a further versatility to the
treatment by the PPM. At the same time, a clear recogni-
tion of the two different statistical averages with respect
to the derivation of the correlation factor enables us to
judge the validity of predictions based on these two types
of averaging methods relative to individual experimental
techniques. The conversion process will be explained for
diffusion in disordered binary alloys as an example. A
brief but systematic derivation of the correlation factor in
disordered binary alloys in the pair approximation of the
original PPM is presented in the Appendix as a basis for
explaining the conversion process.

II. EXAMINATION OF RESULTS
BY THE ORIGINAL PPM

In this section, pertinent results concerning flows of
particles obtained by the original PPM are explained as
the basis for the conversion into the time average. In or-
der to predict the properties at time t+At based on the
properties at time t (At is a short-time interval during
which, at most, one unit process can occur as defined by
the PPM), the PPM considers an ensemble of paths in a
single system during At. ' Because the state at each time
instant is represented in terms of an ensemble of systems
similar to the CVM, the paths are eventually those which
connect the states in the ensemble at time t to those in the
ensemble at time t +ht, which are accessible, at most, by a
unit process. Such paths are expressed by the path vari-
ables such as Y,„;~(t,t+b, t) (Appendix, Sec. 3). The pro-
cedure of selecting the most probable path, which makes
the "path-probability function" maximum (Appendix, Sec.
3), corresponds to the process of selecting the most prob-
able values of state variables, which make the free energy
a minimum in the CVM. Based on this relation, the pre-
diction of the time evolution of the state by the ensemble
averaging method at an instant in time is called the en-
semble averaging method.

The Onsager equations for diffusion are linear equations
which relate the flows of particles of individual species
and the respective chemical-potential gradients as conju-
gate driving forces. The Onsager equations are defined
across a reference plane and at a time instant t by the
PPM. Flows of particles are evaluated in terms of the
path variables which represent the exchange of particles
across the reference plane (Appendix, Sec. 3). For the
tracer diffusion by the vacancy mechanism in disordered
binary alloys composed of 2, B, and B* with the composi-
tions xz, xz, and x, (species 1, 2, and 3 where B' is an

isotope atom of B used as a tracer), the Onsager equations
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IJ LJl 7 (2b)

where aJ signifies the gradient of aJ, and N; is the flow of
the ith species across the reference plane and is defined by
Eq. (A7) as @;= Y+;—1';, where 1'+; are path variables
and represent the flow of the ith particles across the refer-
ence plane to the +x direction and to the —x direction,
respectively [Eq. (A4)].

The elements of the kinetic matrix, L,J's derived by the
PPM are thus expressed in terms of the probable paths of
path variables given in the ensemble average at time t.
Furthermore, in the linear range in which the Onsager
equations are valid, L,J's are expressed in terms of the
equilibrium values which represent those of the reference
plane. Therefore, the derivation of the correlation factor
by the PPM is essentially the evaluation of the self-
correlation function of the motion of a particle in equili-
brium but at a time interval At.

In order to derive the correlation factor, the Onsager
equations, Eqs. (2), are transformed, under an appropriate
boundary condition, to a one-variable equation of the form
(see Appendix, Sec. 5)

are expressed in terms of three chemical potentials p&, p2,
and p3 (or in a s) defined by Pp; =a;:

N;= QLqaj,
J

concentration gradient of 8* atoins (Table I). In terms of
3 and rewriting x3 in terms of a3 [Eq. (A28)], Eq. (3b)

can be rewritten as

D3b, t = —(cga /x3 ) Y3ql3/a3 . (3c)

The quantity E'3 represents the jump probability of a B*
atom under equilibrium in the statistically averaged solid
and can be related to the jump frequency of a B* atom w 3
(or w3 if the effect of surroundings is included) [see Eq.
(A14)]. Therefore, if the diffusion coefficient represented
by the random walk of the jump probability Y3 is denoted
by D», then

D3ght =(Cua /X3)E'3 . (3d)

D3/D3tt ———0 3/a3 f~ . —— (3e)

It is clear that this definition agrees with the one com-
monly given in the self-diffusion (f~ for x„=O).

The correlation factor fit is then obtained from (3a) as

where

(2' —1)Z
2+(2n~ —3)Z ' (4a)

The correlation factor fs is defined as the ratio of
D3 /D3tt (Appendix, Sec. 4) or as the efficiency of the
motion of B* atoms with respect to the random walk as

(2~ —1)Z03= —M363=—2+ (2' —3)Z
CX3 (3a) Xg Wg X~g W~gZ= + +

Wg +W g Wg +W~g W~g+ W@y
utilizing the normalized flow 4'3 defined as %3—43/E3
[Eq. (All)], where I'3 is the value of 1'+3 or I'

3 under
the equilibrium condition. The diffusion coefficient of
tracer atoms DT(=D3) is defined in (A23) as

Q)a C3 ———D3X3kt

for the ideally disordered alloys [Eq. (A31)] and, more
generally, for disordered alloys with short-range order in
terms of effective jump-frequency parameters w; [Eq.
(A14)] as

where 2' is the coordination number and ~a N3
represents the flow of B* atoms per unit area. x3 is the

j=1,2, and 3.
J' W3+ WJ

(4c)

K;J =KJ; =exp( —pe,j ).

Qt =qt—

TABLE I. Glossary.

Probability of having constituent i on a lattice site. In disordered alloys, x; indicates the density
of ith species.
Probability of having a constituent i on a lattice site and a constituent j on a nearest-neighbor lat-
tice site.
Index for a plane through lattice points perpendicular to the concentration gradient, in the [100]
direction of the bcc lattice (atomic plane) (see Fig. 8).
Index for a plane through the center of two atomic planes v and v+ l (bond plane) (see Fig. 8).
Interaction energy between a nearest-neighbor pair of constituents i and j.
ex~ +ca~ —2e~a

1

4 (e» —e~z); we assume e;, =0 and U=O.
(kT) '; k is the Boltzmann constant, T the absolute temperature.
Density of species i; in dealing with alloys, we assume that p„=O. p&+p + or p~ then specifies

the composition of the system.
Concentration gradient of constituent i due to the existence of the concentration gradient 8

~ —1

3'g =%qJ

&s —=PPf ~ p; represents the chemical potential of the ith species. a; is given by Eq. (A16a); it is also used
to specify state variables in Sec. II.
Coordination number of the lattice. For bcc, 2co=8.
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Equation (4) gives for self-diffusion (xz ——0)

f~ — =—for 2co=g .2' —1 7

2'+ 1 9
(4d)

Qi is a quantity which specifies the probability of finding
a species j neighboring to a vacancy as calculated by the
CVM (Appendix, Sec. 2 and Table I). It also can be uti-
lized to specify the same quantity next to a specific lattice
point.

It is to be noted that, although the formulation of
DT —D3 was made for any concentration of 8", f~ ob-
tained in Eqs. (3) and (4),

[(2'—1)Z]/[2+ (2' —3)Z],
is independent of the composition (Appendix, Sec. 5).
This is due to the specific boundary conditions adopted
for calculating DT (Appendix, Sec. 6).

For the purpose of future use, let us examine the physi-
cal meaning of Z derived in (A27) and given in Eq. (4).
As is explained in Sec. 4 of the Appendix and as is seen in
Fig. 1, which illustrates the physical situation expressed in
Eq. (4c), Z can be interpreted as the probability that an
atom which may be represented by 3, B, or B* across a
vacancy at the nearest neighbor of a tagged B* atom
jumps into the vacancy in competition with the tagged B*
atom under the equilibrium condition. As Eq. (A21) indi-
cates, in calculating the flow of ql;, i atoms (8') are to be
hereafter interpreted as individually tagged. The situation
is also explained in Sec. 4 of the Appendix. The recogni-
tion of the tagging process in the calculation of 4; is quite
important and this procedure plays an important role in
the conversion process as will be shown later. Moreover,
if Z is to be interpreted as a competition between a tagged
atom and an atom across a vacancy, the situation indicat-
ed in Fig. 1 [and hence Eq. (4c)] is to be interpreted to
represent an instant immediately after the tagged atom has
replaced the vacancy (Appendix, Sec. 5). Therefore, here

the probability of its jumping back of the tagged atom into
the vacancy it has just replaced is being calculated. The
quantity 1 —Z thus represents the jump-back probability
of the tagged atom (which corresponds to the return prob-
ability P, in the random-walk theory), while Z is the prob-
ability that any other atom which forms a pair with the
tagged atom B* across the vacancy jumps into the vacan-
cy [which corresponds to the escape probability
P, =(2' —1)Z in the random-walk theory].

There are 2u —1 pairs of atoms with respect to the
tagged atom across the vacancy. Therefore, the normal-
ized probability ~ of jumping back of the tagged atom in
competing with 2' —1 atoms is defined as

1 —Z
1+(2' —2)Z

In other words, in terms of Z it is possible to specify the
probability among possible jumps which contribute to the
drift as 1 —r. Utilizing r, the efficiency f of the drift of
the tagged atom is then

1 —r 1 —r (2') —1)Z
2r+ ( 1 r) 1+r —2+ (2(o —3)Z

(6)

Equation (6) coincides with the definition of f~ given by
Eq. (4). In the random-walk theory, the defimtion of the
correlation factor is given in terms of similarly defined ~
as in Eq. (6) and the relation between the PPM and the
random-walk theory in calculating the correlation factor is
now clear. However, in the random-walk theory, w is cal-
culated for an infinite span of time, while in the PPM, ~ is
an efficiency of a jump at a time instant t.

In Z defined in (4c), a 8* atom is interpreted as tagged
even if a large number of B* atoms can exist (Appendix,
Sec. 4). Let us denote Z, therefore, as Z~, in this case. In

general, however, any species i can be taken as a tagged
species. Therefore, it is possible to define Zz and Zz,
likewise, and hence the jump-back probabilities ~z, ~z, or
~, of an 2, B, or a B*.atom, in disordered binary alloys,
can be defined in terms of Z; as

where Z; is defined in terms of Y s [Eq. (A31b)],

Y /Q; ~ YJ
' Y;/Q;+Y)/Q, , ( Y, /Q;+YJ/QJ

FIG. 1. Definition of Z in terms of P, and P„.

In terms of Z, it is easy to show how the ensemble

average is responsible for the lack of the percolation limit,
the presence of which is expected when only one (B) of the
constituent species can move. As is shown in Fig. 1, Z ~

represents the probability of jump of the nearest-
neighboring atoms in competition with the tagged B
atom. Because the ensemble average is utilized, Z derived

by the PPM indicates that the atom to which the vacancy
escapes (away from the tagged 8' atom) can simultane-
ously be--an 3 atom or a B atom with probabilities xz and

xz, respectively„as shown in Fig. 2. Therefore, as long as
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FIG. 2. Graphical representation of Z in the ensemble
averaging at a time instant t.

time ensemble

the concentration of 8 (& and/or 8 ) is finite, »ndica«s
that there is a finite probability of having a 8 atom (or 8 )

competing with the (tagged) 8 atom opposite the vacan-
cy, and an escape path for the vacancy is always provided
however small the concentration of 8 atoms may be.

ble at a time instant

As explained earlier, the PPM is designed to follow the
motion only during At and not to follow the motion of
particles for a long time. In the pair approximation, this
situation leads to a result which can be described as the
"superposition relation"' and the change (or the most
probable path) is determined solely by the condition at
time t (the initial condition). In other words, in the PPM,
the calculated tracer diffusion coefficient DT corresponds
to DT( ~ ) or the diffusion coefficient measured in the lim-
it of infinite frequency. On the other hand, the so-called
correlation factor is a time correlation of the motion of a
single (tagged) particle for a long time. Under such a con-
dition, rather than the ensemble averaging process at a
time instant, the averaging of jumps over a long-tiIne
period or the time averaging process should be taken. In
contrast to DT( co), it is therefore necessary to calculate
Dr(0) to obtain the correlation factor.

Thc Aow 0;, from which thc dlffus1on cocfflc1cnt 1s de-
rived [Eq. (A21)], is obtained directly from the most-
probable-path expressions derived in the PPM in the en-
semble average. If these expressions can be converted in
the time average, the Aow 4'; is also converted to that in
the time average. Therefore, the aim of the present sec-
tion is to convert the expressions of the most probable
path into the time averaging.

Under the equilibrium condition, the time averaging is
generally replaced by the ensemble averaging. In such a
case, the ensemble averaging is taken independent of time
and there is no distinction between the two averaging pro-
cesses. In the derivation of the time correlation by the
PPM, the ensemble is defined at each time instant t and
the averaging process based on this definition of ensemble
is called the ensemble averaging. If measurements are
made over a long period of time, on the other hand, the
system observed changes with time. The assembly of the
states created by the evolution of a single system with time
is thus called the time ensemble in the present paper (Fig.
3). The average taken with respect to the time ensemble is
then called the time average. Under the nonequilibrium
condition, the ensemble average and the time average thus
defined are not the same and the conversion from the one
to the other is generally not possible.

FIG. 3. Relation between the ensemble taken by the PPM and
the time ensemble. Each square represents a single system.

In the linear range in which the Onsager equations are
valid, on the other hand, the most-probable-path expres-
sions of the PPM ar= eventually expanded linearly with
respect to the chemical-potential gradients, and the ele-
ments of the kinetic matrix are expressed in terms of
equilibrium values (Appendix). In other words, the
evaluation of Aows are eventually made based on the
motions of particles under the equilibrium condition. If
this is so, the ensemble of states defined at each time in-
stant t is equivalent to the content of the equilibrium en-
semble. The situation is the same for the time ensemble.
In other words, except for the fact that the one refers to a
time instant while the other refers to an infinite span of
time, the content in these two types of ensembles are
equivalent. This equivalence allows us to convert the re-
sults in the ensemble average at a time instant into those
in the time average uniquely.

The ensemble of paths represented by a path variable
YJ;„(t,t +At) in the PPM, in its original form, refers to a
single system. However, since a state at each time instant
is represented by an ensemble of systems in evaluating the
time correlation, in the most probable path found by max-
imizing the path-probability function, the i-j pair at time t
and the i-v pair at time t +At do not necessarily belong to
the same single system. This is the trouble with the PPM
in finding the time correlation in a single system as ex-
plained earlier.

Let us define the corresponding expression of the path
variable Fz,„(t',t'+At) at a time instant t' in the time
ensemble. If we adopt the same definition of At during
which only one jump can occur, Fz,„(t',t' +At)
represents a single path in the time ensemble and, more-
over, the i-j pair at time t' and the pair i-v at t'+At be-
long to the same system. The assembly of Yz,„(t',t' +b, t)
for an infinite period of time, [YJ;„(t',t' +Et)], thus cor-
responds to Fz,.„(t,t +At) of the PPM. Since the
equivalent ensembles are utilized, the F~;„(t,t+b, t) and
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[Yj;„(t',t'+At}] are equivalent as long as the ensemble
of paths is considered. Therefore, it is meaningful to cal-
culate the most probable path in [Yj,„(t',.t'+b, t}] in ex-
actly the same fashion as that in Yj,„(t,t+b, t}. The
difference between the most probable paths in the PPM
and those referring to the time ensemble is that, in the
former, they are represented by the ensemble average in
the choice of i-j pairs at a time instant t, but there is no
guarantee that the pairs i-j and i-U belong to the same sys-
tem, while in the latter, they are represented by the aver-
age in the choice of pairs for an infinite period of time,
but the i-j pair and the i-U pair should belong to the same
system. The task is to find the correspondence of the two
kinds of the most probable paths knowing that they both
are found by the same mathematical procedure because
Yj,„(t,t+bt} and [Yj;„(t',t'+At}] are equivalent as far
as the ensemble of paths is concerned.

In evaluating the flow of i, the most probable path
Yj,„(t.,t+b, t}, etc. , are eventually calculated by fixing i as
emphasized earlier. In other words, i atoms are tagged in-
dividually at a time instant. The corresponding situation
in [Yj,„(t.', t'+At}] is that an individual i atom is tagged
for a long-time span. From here, it direet1y follows that
the motion of a single particle is followed for a long-time
span in the time averaging process. For a particular
tagged i atom, possibilities exist that a different species j
(j =1, 2, or 3} comes to its neighbor in the course of time.
The selection of the most probable path in Yj,„(t,t +At)
or in [Yj,„(t'.,t'+ j&&t}] means that, with respect to the
choice of i-j, the probability of the choice of a particular j
among all other possibilities is to be found. In the ensem-
ble average, all the possibilities are found at a time instant.
In the time ensemble, these possibilities appear as time
evolves. In [Yj;,(t', t'+bt}], therefore, the species of j

TABLE II. Path variables and most-probable-path expressions. Path variable column can be continued with i and j indices inter-
changeable.

Path variables

~(n)
Yij,uj;+i

Relations with Y+ s

(n) gyil' lj (n)

X 3'j"'«j
j=l

First-order expression of the most probable path

Q, Y; 1+51n

g 3'ij«'j
j=l

(n)
yij It,J.

4

g 3'ij «j
j=l

ylJ +ij
Q Y, 1+51n „~' '

g 3'ji&ij
j= 1

——4,- ——ln Y,-
n

(n)
yuJ Y(n —1)

(v) +'
Xu

QjY, 1+51n " + z+; — 1nY;
dn

yuJ
j=l

(n)
Y(.)

(v) —i
Xu

Q, Y, 1+51n „"'
yuJ

j=l

(n)~
yil+iJ (n+1)Y-j

g 3'i~j~ «j
Q; Yj 1+51n ' + 2 &Ijj+ In Yj

dn
X yij+ij

(n) g
yi J lJ (n)

3lj «j
j=l X 3'ij«j

~(n)
+ tu&tj&+ J

(n)
yiu Y(n)

Xu
(v+1) +J Q; Yj. 1+51n '" + z %'j

(n)
Y(n+1)

(v+ 1)
Xu

Q; Yj 1+51n

yJU
j=l

lnYd
2 J d J
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which pairs with the tagged i atom can be different at
each time instant t, but, after a long-time span, the proba-
bility of the appearance of a particular j should be speci-
fied by its (time) average and is the same as the ensemble
average. In the most-probable-path expression, the speci-
fication of j in YJ;„{t,t+ht) appears in the form of Q; YJ
or Q;QJ(YJ/QJ) (Table II). In other words, when an i
atom is tagged, the contribution of j atoms at a time in-
stant is Q J( Y~/Q~), where YJ/QJ is proportional to the
jump frequency of a j atom. If the species of j is to be
averaged over a long-time span, the time average of the
jump frequency is then the weighted average of YJ /QJ or

g Qk( Yk/Qk )
k

In other words, in the most-probable-path expressions, ÃJ.

is to be replaced by QJ gk Yk in the time average. Be-
cause the time average is exactly the same as the ensemble
average under the equilibrium condition for the state vari-
ables, it, is not necessary to change expressions for the state
variables which appear in the linearly expanded part of the
most-probable-path expressions. Rather, the requirement
that the average values (with respect to space) are the same
in both averaging methods thus introduces the proper time
correlation consistent with the approximation in the time
averaging through the relation above.

Let us look into the second type of correspondence be-
tween the ensemble averaging and the time averaging by
using 7,.„;J-(t,t +At), for example. That an i atom is
tagged for a long-time span while j should represent the
average of species over a long-time span in
[Y;„;J(t',r'+Et)] is explained above. Now, Y;„;~{t,t+At)
indicates the probability that a j atom jumps into a vacan-
cy which happens to be neighboring with a tagged ith
atom at a time 1nstant t. The vacancy indicated in
7;„,J.(t, t+At) is the vacancy which has just exchanged
places with the tagged atom, and t indicates the time the
tagged atom is about to jump back into the vacancy as ex-
plained earlier. Therefore, here the jump of the jth atom
into the vacancy is a forward jump which contributes to
the drift motion. In the preceding section, we have de-
fined the forward jump probability for a j atom at the
time instant as 1 —wJ. in the ensemble average in Eq. (7).
In the time average, as in the species of atoms, the time
average over a long time of the jump of the jth atom
should be utilized rather than the jump at a time instant
t'. In other words, the time average of the forward jump
probability of the jth atom YJ.(1—&rz &) should be thus
used rather than the instantaneous value FJ as in the en-
semble average. The quantity &r/ & indicates the time
average of ~J.

Combining the two processes described above with
respect to the correspondence concerning the most prob-
able path in the two kinds of averages, the conversion pro-
cess is summarized as follows. First, the most-probable-
path expressions are given in the PPM and these are then
expanded linearly with respect to chemical-potential gra-
dients. The coefficients of the gradients thus indicate the
most probable path evaluated based on the equilibrium en-
sernble and are given in the ensemble average. In the

linearly expanded part of the most-probable-path expres-
sions (Table II), Y~ in the ensemble average is to be re-
placed by

Equation (9b) is directly obtained by introducing Eq. (9a)
into Eqs. (7) and (8). This procedure converts ~g and Zg
into their time averages, &rk & and &Zk &. In &rk & and
&Zk &, the species A: is tagged. More specifically

1 —&Z„&

1+(2 —2)&Z„&
(10a)

3

g Y.(1—&. &)

&Zk&=

Yk/Qk+ g Y (1 —&r &)
m=1

Equations (9a) and (9b) combined thus constitute the con-
version relations. On the other hand, &rk & has to be ob-
tained from Eqs. (10a) and (10b) self-consistently. Because
of this self-consistency, the conversion relations, Eqs. (9),
have been called the space and the time consistency rela-
tions and &~k & are the time consistency parameters for
short. ' The conversion is to be used in Eq. (A21) {and in
the steady-state relations to be used there) in summing
over j where the meaning of tagging of the ith species be-
comes apparent.

The quantity 1 —Z; indicates the probability that the
single (tagged) i atom jumps back into the neighboring va-
cancy under the equilibrium condition as explained earlier
through Fig. 2 and, In the time averaging, 1 —&Z; & indi-
cates the probability that a tagged atom jumps back into
the original vacancy in a long-time span. In Fig. 4, the
physical situation represented by Eqs. (10) in ideally disor-
dered binary alloys with composition xz and xz is shown.
Here, a central site and its nearest-neighboring sites are
depicted in which the centrally located (tagged} 8* has ex-
changed position with a vacancy at its nearest-neighboring
site and is about to jump back into the central site. As in-
dicated by Eq. (10a), this situation physically shows how
the jump-back probability w, in competition with other
atoms on the neighboring sites is calculated. This situa-
tion is to be compared with Fig. 2 which shows the same
relation by the ensemble averaging. The species of atoms
on the nearest-neighboring sites is represented by the same

(10b)

(9a)

The species i is tagged in this case. Therefore, F; is not
averaged and hence is not involved in the conversion.
State variables are the same in the ensemble average and in
the time average under the equilibrium condition and are
to be kept the same in the conversion process. The quanti-
ty &rk & in Eq. (9a) is the time average of rk defined in Eq.
(5) in terms of Zk [refer also to Eq. (7)] and is given by

Yk/Qk
3

Yk/Qk+(2~ —1) g Y.(1 —&..&)
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IV. SUMMARY AND DISCUSSION

A general method of the conversion from the ensemble
average characteristic of the PPM into the time average in
evaluating a flow of particles is discussed. The impor-
tance of the time average in evaluating flow of particles is
emphasized. The calculation is specifically applied to the
calculation of the correlation factor of one of the constitu-
ent species in disordered binary alloys. It has been shown
that, by the conversion, the results of the PPM with
respect to flow agree with those derived by the random-
walk theory' ' ' ' and by computer simulations" ' for
corresponding cases.

As mentioned in the Introduction, the character of the
PPM will eventually evaluate the statistical expectation
value at a time instant t by the technique of the CVM and,
then, will calculate the time correlation of this expectation
value. Therefore, if the problem requires obtaining the
time correlation of expectation values, such as that found
in the treatment of the relaxation of order, " the PPM
works very satisfactorily. This is why the specific disad-
vantage of the PPM or similar statistical methods in its
application to transport problems has not been detected.
This procedure of the PPM also results in calculating the
instantaneous response of the system. From this point of
view too, the procedure of the PPM is not very suitable to
calculate the time correlation of the motion of particles in-
volved in flow, especially that of a small number of parti-
cles for a long period of time, such as that required for the
calculation of the correlation factor. This is the reason
why the calculation has been converted into the time aver-
age. It is shown that, in the linear range in which the On-
sager equations for diffusion are applicable, the results
calculated in the ensemble average can be converted
uniquely into the time average without changing the na-
ture of approximation adopted. We have already treated a
variety of many-body diffusion problems by the PPM.
Conversion of these results into the time average is now in
order.

It is important to point out here that, in the calculation
of the flow of i atoms, i atoms are individually tagged. In
the ensemble average of the PPM, however, i and j appear
symmetric and this tagging process is not obvious until
the final result of the correlation factor [Eq. (4)] is ob-
tained. On the other hand, in evaluating the most prob-
able path in the time average, the species whose flow is ob-
served is tagged clearly, and hence i and j become asym-
metric. This is a direct consequence of following the flow
of a specific species of atoms for a long time.

The conversion to the time averaging is far more impor-
tant in the tracer diffusion than in the mass diffusion
where the motion of a large number of equivalent particles
is followed. Indeed, the original PPM describes well the
behavior of mass diffusion except in the neighborhood of
the percolation limit. The involvement of the time averag-
ing in tracer diffusion physically means that, for tracer
atoms to be detected, the tracer atoms should percolate
through the whole crystal because the number of tracer
atoms is small. This means that tracer diffusion or the
correlation factor is far more sensitive to the percolation
problem than the mass diffusion. The Haven ratio in ion-
ic conductors is the ratio of the tracer diffusion coefficient
and the charge diffusion coefficient (or the ionic conduc-

tivity). Here, for the latter, the "ensemble" averaging is
allowable except at the percolation limit and beyond, while
for the former, the time averaging has to be adopted. '

Because the tracer diffusion coefficient in the time averag-
ing is far more sensitive to the percolation problem than
the charge diffusion coefficient, the Haven ratio is expect-
ed to show an anomalous dip near the percolation limit.
An anomalous dip in the temperature dependence ob-
served in the Haven ratio in P-alumina is suggested by
the present author to be connected to the percolation prob-
lem 18,23

Comparison of treatments of diffusion by the PPM and
their statistical counterparts (treatments of the percolation
problem by the CVM) presents some interesting
correspondences. Specifically, the pair interaction among
nearest neighbors in the CVM, for example, corresponds
to the atomic exchange between nearest-neighboring sites
in the PPM. On the other hand, the percolation (a long-
range connection of jumps) of an atom in the PPM corre-
sponds to the long-range order in the CVM. The correla-
tion factor in the PPM is then related to the long-range
order in the CVM. Therefore, the onset of the percolation
and the onset of the phase transition is related and the
techniques utilized in (statical) percolation problems are
closely related to those in the theory of phase transitions.

The advantage of the PPM is that complicated many-
body diffusion problems can be treated generally and rela-
tively easily with a reasonable degree of approximation.
Therefore, the results allow straightforward interpreta-
tions. Furthermore, results obtained by the PPM in the
past can be readily converted into the corresponding re-
sults in the time average. Some of these are correlation
factors for high concentrations of tracer atoms, those for
cases in which a large number of vacancies are included
and for ordered alloys. Some simpler cases of such
many-body diffusion problems have been treated by the
extension of the customary random-walk approach and
similar results to the present treatment have been ob-
tained. ' ' ' ' However, these theories have to rely on
some ad hoc assumptions in the process of derivation
whose validity is not always clear. Furthelmore,
computer-simulation techniques compatible with the PPM
are now being developed. In complicated cases,
computer-simulation techniques sometimes provide nu-
merical results more easily than analytical derivations by
the PPM. Therefore, the combination of an analytical
technique based on the PPM and numerical results based
on computer-simulation techniques would be very useful
in understanding many-body diffusion problems such as
those in highly defective solids.
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APPENDIX: CORRELATION FACTOR
IN SUBSTITUTIONAL DIFFUSION

IN DISORDERED BINARY ALLOYS:
CALCULATED BY THE PAIR APPROXIMATION

OF THE PPM

In order to explain the basis of the conversion process
from the ensemble average (PPM) to the time average, key
steps of deriving the correlation factor in substitutional
diffusion (vacancy mechanism) in disordered binary alloys
in the pair approximation of the PPM are explained brief-
ly. Although the problem has been worked out in the
past, the treatment has been reorganized to make the con-
version process clearer and with enough details so that fu-
ture applications to more complicated cases can readily be
made.

1. Model

source
ot

crystal sink
ot

X~, XB, Xy, X,

FICr. 7. Model used for calculating the tracer diffusion coeffi-
cient of binary alloys. A and B are constituent atoms. B* indi-
cates the tracer atom of B and u indicates the vacancy. x&, etc. ,
indicate the concentrations of constituent species.

In Fig. 7, a homogeneous binary alloy of the bcc struc-
ture, composed of A and 8 atoms with concentration xz
and x~ (x~+x~ =1), is shown. The use of the bcc struc-
ture is to apply the pair approximation of the CVM and
the PPM, since the validity of the pair approximation of
the CVM for problems in the bcc lattice is well establish-
ed. ' On the left-hand side of the crystal (in the —x direc-
tion) a source of isotope atoms of 8 (8* atoms) is placed,
while on the right-hand side (in the +x direction) an in-
finite sink of 8* atoms is assumed. Because of the con-
centration gradient of 8*, 8* atoms would flow toward
the +x direction, but after some time, the steady state
would be reached, a certain concentration gradient of 8*
would be set up in the crystal, and 8* atoms would flow
without changing the distribution of atoms. The flow of
8 atoms in the reverse direction is allowed to keep the
concentration profile fixed. We will deal with such a
steady state in which the total concentration of 8 and 8'
atoms is kept constant at x~ (but with a sma11 concentra-
tion gradient of 8*) over the entire solid. Under the con-

2. Equilibrium distribution of atoms

In this section, pertinent results of the CVM (Refs.
14—16) are shown because the equilibrium treatment
essentially forms the basis for the calculation of the ele-
ments of the kinetic matrix of the Qnsager equations as
shown in Sec. 3. The bcc lattice (with the coordination
number 2co=8) can be divided into two simple cubic (sc)
sublattices and the nearest neighbors of an atom on a
given sublattice are all on the other sublattice. The atoms
on one (100) plane all belong to one sublattice and, hence
all the nearest-neighbor pairs bridge the gap between the
two (100) atomic planes. This is an important feature of

n-I
i g

.n n+I

/
~

~ ~ g

L

~ ~

)y

" '

I

FIG. 8. Nomenclature of atomic planes (v's} and bond planes
(n's).

dition of the steady state, the tracer diffusion coefficient
characteristic of the equilibrium binary alloy of a fixed
composition is calculated. In the steady state, the flow
rate of 8* along the x direction is independent of both
time and location, and the flow can be calculated across
any plane inside the crystal perpendicular to the concen-
tration gradient of 8 at any instant of time. The dif-
fusion coefficient of each constituent and hence the corre-
lation factor is calculated by deriving the Onsager equa-
tion with respect to flow.

In order to calculate flow, a plane midway between two
atomic planes (a bond plane) perpendicular to the x direc-
tion is taken as the reference plane. In the bcc lattice, the
[100] direction is taken conveniently as the +x direction
for the reason of symmetry. For the purpose of dealing
with problems with the concentration gradient, subsequent
equivalent (100) planes are numbered along the x direction
and the reference plane is taken as the nth plane. Parallel
(100) atomic planes are also numbered in a way that the
closest atomic plane to the left of the nth plane is the vth
atomic plane and that to the right is then the (v+ l)th
plane. The local atomic configuration is thus shown in
Fig. 8. The flow is defined as the deviation from the
equilibrium condition at the reference plane.
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the bcc lattice which makes the application of the pair ap-
proximation valid. The species of atoms A, B, 8*, and v

(vacant site) are denoted by i (i=1,2,3,4). (For the con-
venience of the treatment, we often use U instead of speci-
fying it as the fourth species in order to distinguish vacan-
cies from atoms. ) In disordered alloys, the two sublattices
are equivalent. Therefore, if the nearest-neighbor-pair in-
teraction model is adopted and the pair approximation is
used, the state variables required are x; s, which indicate
the probability of finding the ith species on one lattice
point, and y;J's (y;~ =yj;, j=1,2,3,4), which indicate the
probability of finding a pair of the ith species and the jth
species at the nearest-neighbor distance.

Pairwise interactions among atoms at the nearest-
neighbor distance are assumed. The interaction energy pa-
rameters are represented by e;j. Further, the interaction
with v is assumed to be zero (e;„=e„=0). Also, the in-
teraction energy parameters e and U are introduced as

46=Cgg +Cgg —2&gB

1U =
4 (EAA —EBB}

(Ala)

(A lb)

xi 9 (A2a}

4

xi —g ytij
j=1

i =1,2, 3,4 . (A2b)

The treatments of homogeneous alloys, both ordered and
disordered, including the present problem, by the CVM
are already described in many places, so it is not neces-
sary to describe them in detail here. The role of the CVM
is to determine y,j as a function of temperature in terms of
energy parameters at a fixed composition under the equili-
brium condition. The equilibrium state is given by those
state variables x s and y,z's, which make the free-energy
function minimum. In order to give the relation between
equilibrium values of state variables and temperature,
some parameters are introduced for convenience. Some
important ones used in the treatment of diffusion in disor-
dered alloys are given. These are

Although U does not affect the equilibrium distribution of
constituent atoms over the lattice sites, it can be important
for kinetic properties such as diffusion processes. In the
present derivation, however, U=O is assumed for the sake
of simplicity. Then, 14 state variables can be defined.
Among them, there are the following geometrical rela-
tions:

parameter to control the density constant to be determined
by Eqs. (A2). The quantities Q s thus represent effective
concentrations. Specifically, Q; indicates the probability
of finding an ith species next to a vacancy. At the same
time, it also indicates the same quantity next to any speci-
fied lattice site. The state variables and useful parameters
used are summarized in Table I.

3. The path variables and the most probable paths

4
Y Y~(n) ~(n) ~(n)"ij,vj;+i Yiu, ui =Y+i

j=1
(A4a)

The major step of the treatment is to calculate the flow
based on the PPM which deals with the change of state
described by the CVM. As described in Sec. 2 the first
step is to define path variables suitable for the problem.
The state variables are now given at time t by x;(t)'s and
y;j(t)'s based on the treatment of the CVM. When the
unit process of the change of state is due to the jump of an
atom into a vacancy at the nearest-neighbor distance, the
necessary path variables should be of the form of
X;„(t,t+ht) and YJ,„(t,t+bt}. Specifically, X;„(t,t+ht)
indicates the probability of finding a lattice site which is
occupied by an ith atom at t and a vacancy at t +At, and
Yi;„(t,t +At) indicates the probability of finding a lattice
pair which is i-j at t and i-U at t +At. These variables de-
pend on the position v or n, and thus we write them as
x "'(t) and YJ"„(t,t +At). In treating the flow of the ith
species across the nth plane, the basic quantities are Y„"„';
and Y„';";„. The former indicates the probability of the ex-
change of i and v across the nth plane with the flow of an
ith atom in the +x direction while the latter is that in the
—x direction, and hence these are specified as Y'+,' and
Y'"I (Fig. 9). Then, by geometry, these are related to X' ',
Xi"+'i, Yi"' Y'"+", and Y'" " as shown in Eqs. (A4).
In order to avoid confusion, we add the species of atoms
and its direction of flow such as +i to the notation of
path variables so that these appear as X; v. +,-, Yiu„..+i,
etc.:

4
~(v) ~ ~(n —1)
~i, u;+i ~ Yji,jv;+i

j=l

—1

yij =qiqj&sg

E,J =exp(Pe;J )

q;=x; ' " " ")exp(PA, ;),
' —14

Qj=li g Vi

(A3a)

(A3b)

(A3c)

(A3d)

j 1

! iI''. .i.
I

I

Here, q; and qj are introduced to represent y;j in the form
of multiplication of these quantities. For example, in
ideally disordered alloys (e,j ——0), we know y;1 =x;x&, and
thus in this limiting case, q; tends to x;. We especially use
Q; as normalized q; through Eq. (A3d) because in general
gq;&1. The quantity A,; introduced in Eq. (A3c) is the

planeI= O~

y (n) y(n)
-I

FIG. 9. Definition of the path variables F+;.
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j=l
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(v)
+v, i; —i =

4
(n)

+vj, ij; —i
j=l

4

Y~(n —1)
JV,JJ; —l

j=l
(n) (n)

Yvi, iU = Y—i {A4d)

4

g 3'ij ItiJ
j=l

X
( )

Xi

g O'J~i~ &Ji
j=l

(v)

The path variables with respect to the nth planes are listed
in Table II.

In connection with a jump of a specific atom i, we as-
sume a specific jump frequency, iii; =8;exp( —Pu;), where
5; corresponds to the attempt frequency and u; is the ac-
tivation energy characteristic of the ith constituent atom.
The effect of surrounding due to the interaction with
nearest-neighboring atoms {which we call the bond break-
ing factor) is to be accounted for in addition to this factor
(see below).

The most probable path is defined by those values of the
path variables which make the path-probability function
maximum. This procedure is the counterpart of finding
the most probable state (the equilibrium state) as a
minimum of the free-energy function in the CVM. The
construction of the path-probability function in terms of
the path variables is the essence of the PPM and is the
counterpart of constructing the free-energy function in
terms of the state variables in the CVM. ' For the details
of the construction of the path-probability function and of
its maximization process for this particular problem one
should refer to Refs. 1 and 25.

A major consequence of maximizing the path-
probability function with respect to independent path vari-
ables in the pair approximation of the PPM is that super-
position relations hold in writing down the most probable
path. ' Therefore, the most-probable-path expression can
be obtained by inspection. In the case of an atomic jump
into a vacancy, this eventually means that a jump of an
atom solely depends on the initial condition or on the
direct surroundings of the particular jumping atom at
time t. In Fig. 10, the relation in which an ith atom is
about to jump across the reference plane into an adjacent
vacancy is schematically shown. By definition, the jurnp
represents Y+, . This is written down in the case of the
bcc lattice,

(n) ~"f (n)Y+; =5;e 'Aty;„"

FIG. 10. Effect of bond breaking as the ith atom on the vth
atomic plane jumps into a vacancy on the (v+1)th plane.
"Springs" indicate the bonds.

across the nth reference plane, is proportional to At, to the
jump frequency of the ith atom w; =0;exp( —Pu;), to the
probability of having a vacancy at its nearest-neighbor dis-
tance across the reference plane at time t, y,"'/x ' and to
the effect of breaking the bonds with the neighboring
atoms at time r [indicated by "springs" in Fig. 10 and the
last two terms in Eqs. (A4)]. Similarly, we also obtain

Y(n) y ~"fgt (n)
l VL

4

3'J(i~ Jl'

j=l
(v+1)

X;

(n+1)&
/J lJj=l
(v+1)
l

(n)~
Y(n —1)—l 4

O'I~J» +lJj=l
(n)

Y(n —1)
+~ (v) +'

XV

(n)
Yij, vj;

~(n)
VJ &J~

{Asd)

{A5e)

(n)
YUj ij;

(n)
yvj (n)

(v) Y—l
XU

(A5b)

Utilizing the geometrical relations (A4), the other path
variables are shown to be related to Y+ s:

(n)~
(n) y'l'J ij (n)

YiJ",Uj;+i =
4 Y+l (A5c)

g 3'ij &(j
j=l

This is called the superposition relation as indicated etc., and the most probable values of these path variables
above in a sense that Y+,'(t, t +br), a jump of an ith atom are known through 1'~+ s. These values determine the
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4. The definition of floor and the Onsager equations

Once the expectation values of the necessary path vari-
ables which indicate the change of state in the time inter-
val ht can be expressed in terms of the state variables at
time t, the time dependence of the state can be obtained.
The flow of the ith species of atoms across the nth plane,
4,'"', can be defined as

@(n) Y(n) Y(n)
l +l —l (A6)

Because in the steady state the flow is independent of the
location of the reference plane, the superscripts on N; can
be dropped as

path on the free-energy surface. These relations are also
listed in Table II. These expressions for the most probable
path of individual path variables are given in terms of en-
semble averaging at a time instant t.

Y(",) = Y,'"'(1+S lnY'",'), (A12a)

(n)~

gfJ Kfjj=i

Using this quantity, we can write the normalized flow +J"'
across the nth plane as

(n) (n) (n) (n)
( ) Nj Y+J —Y J Y+J0j: ( ): ( )

51n
( )

~ (A11)
Yfe" YJ,

n Y nJ

Then the most probable values of the path variables
connected to the flow of i referring to the nth plane can
now be expanded to first order based on Eqs. (AS), (A8),
and (A9):

(n) (n)
c
——Y+, —Y (A7) (A12b)

The derivation of the Onsager equations is then reduced to
the evaluation of N;, or the evaluation of Y+;, in the linear
range when the concentration gradient is small [see Eq.
(10)]. The deviation of the system from the equilibrium is
the existence of the concentration gradients of the constit-
uent species. Because the flow is evaluated across the nth
plane, the reference state should be the equilibrium state
of the alloy having the concentration corresponding to
that at the nth plane.

The next step is to express values of the state and the
path variables which appear in the most probable path
[Eqs. (AS)] in terms of the equilibrium values (at the nth
plane which is taken as the reference plane) under the con-
dition that the concentration gradient is small. For vari-
ables such as xi'"+ ' (m is an integer), the deviation from
the equilibrium value xJ,

" is determined by its location
only. Therefore, xJ'"+ ' is expanded around n as

+ 5ln Y'n'—
n

(n)
(n) (n) (n) yvJ

Y„j ij.+; ——Qj 1; 1+61n
(n)

i=1

+ 51n Y'",' — ln Y'",'
dn

(A12c)

(A12d)

(v+m) (n) 1+( )
)

d
1

(n)
Xj =Xje . 2 dn

IlXJe (A8)

dn

= YJe 11~ n Je +51nY
dn

(A9}

Here the symbol 5 refers to the deviation from the equili-
brium value (indicated by the subscript e) due to the con-
centration gradient, written specifically

(n) (n)
(n) +J Je5 lnY+j

( )
~

Y n (A10)

where d/dn indicates the derivative with respect to the
distance measured in units of the distance between lattice
planes. Although the nth plane is not an atomic plane,
xJ'"' is to be understood as the probability of finding the
jth species of atom on a lattice point of the homogeneous,
equilibrium alloy taken as the reference.

On the other hand, for the variables such as y;Jn+ ' and
Y'+J+ ', the values not only depend on the distance from
the nth plane, but the values of y Jn', and Y'+J also depend
on the concentration gradient. In such a case

T

(n)
(n) (n) (n) yvJ

Ynj(j. &'=Qj YJ 1+51n
(n)

j=i

(A12e)

etc., where

(n) (n) (n)= Y+ie = Y-ie . {A13)

The Y "'s are the flow of the ith atom, etc., across the nth
plane in either direction in the equilibrium state and we
shall not use the suffix e to indicate equilibrium in this
case. Also, because all variables are now expressed in
reference to the nth plane and because any plane can be
taken as the reference plane in the steady state, the super-
script (n) will be dropped hereafter unless confusion is ex-
pected. In deriving Eqs. {A12), similar expansions for
y,z"+ 's are required. The results are summarized in
Table II.

In view of the fact that Y; is a characteristic quantity of
the equilibrium state as indicated in Eq. (A13), it is physi-
cally meaningful to define the effective jump-frequency
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parameter w;, which includes the effect of the surround-
ings, as

w;=5;e

4

3jie+ji
j=1

&ie

F;

q;q„At

—PQfw;=8;e (A14b)

3

qi;= —a;+ g Qjpj;,
j=1

(A15)

The quantity w; is the jump frequency of an atom of the
species i ordinarily defined.

The next step is to reorganize expanded terms. After
lengthy transformations we arrive at '

—
(y;J —yj;) =O . (A 18)

Time derivatives of configuration variables such as
(d/dt)y j can be readily written in terms of the path vari-
ables, making use of the geometrical relation, as

refers to the equilibrium state [Eq. (A3d)]. Equation
(A15) indicates that the flow 4; can be expressed in terms
of the chemical-potential gradient of the ith constituent
atoms and quantities represented by the first-order deriva-
tives.

Another essential step to derive the Onsager equations is
the steady-state condition. Here, the steady-state condi-
tion means specifically that the state variables which
specify the state of the system do not change with time.
In order to take advantage of the symmetry, we write

where

a; =(2' —1)ln
q;

&ie

d
+i +i

dn

(A16a)

(A16b)

d
d 3'ij (~ 1)Yiuij;+j, +~Yiu, ij; —j

1)Yijiu; —j , ~Yij iu;+j

+(~ 1)Yuj ij; i +~—Yuj ij;+i

yjiyivyvj
'tt~ji =6 ln

yijyjvyvi
(A16c)

Here a; is the chemical-potential gradient of the ith con-
stituent atoms (a; =Pp;) in the system, and Pj;, which is
introduced for the convenience of the calculation, is a
measure of the deviation of state variables from equilibri-
um due to the existence of the concentration gradient [see
Eq. (A9)]. The latter has the properties

1 ) +ij,vj; +i ~ ~ij, vj; —i (A19)

The expression (d/dt)yjf can be obtained from Eq. (A19)
by exchanging i and j.

By introducing Eqs. (A12) into the steady-state condi-
tion Eq. (A18), together with Eq. (A19), we obtain to the
first order in small deviations

2
Q Yj &J + & «&~j-

2CQ —1

jl ——Plj (A17a)

(A17b)
=Qj Y; Q,J+ g Qjpp — qi; . (A20)

2') —1

That Eq. (A16) gives the chemical-potential gradient a; of
the ith constituent can be seen in Ref. 2. QJ in Eq. (A15)

t

This equation yields, by summing over j and utilizing Eq.
(A15),

3

(Qj W~)

X Qj&J-=

r 3

y (gJ(1 —~~) [&J+[(2~—3)/(2' —1)]qij I )—2 j=1
3 3

1 —g (QJWJ) g g, (1—W, )

(A21)

where

w;

Wi+Wj

By introducing Eq. (A21) in Eq. (A15), we then obtain
equations which correspond to Eqs. (2),

qi;= —g L,&a&, (A22)
j=1

where [(Al 1)]

As is seen from Eq. (A22), I;J- only includes equilibrium

properties with respect to-spatial distribution of' atoms and
to atomic jumps such as w;. In other words, as long as the
concentration gradient is small enough, it is possible to
derive the Onsager equations, and the kinetic matrix I.,J
from equilibrium properties, although the application of
the PPM is not limited to the near equilibrium state. '

5. Correlation factor

For the calculation of the correlation factor as defined
in Eq. (1a), it is necessary to derive the tracer diffusion
coefficient D + {D; for i=3) from Eq. (A22) in the form

era N;= —D;x;6t,
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xjcxj =0 . (A24)

Further, since we deal only with the steady state, the con-
dition

a;=0 (A25)

readily follows. This is due to the fact that 8 and 8* are
chemically identical so that the distribution of 2 atoms is
not affected when the isotopes 8* are diffusing and
changing places with 8. Equation (A22), combined with
Eqs. (A24) and (A25}, thus reduces to a relation between

3 and a3 [Eq. ( 12}]. Further, from the condition (A24)
and the condition that the profile of the atomic distribu-
tion does not change,

x,%,= —x,%,

follows. Therefore, we obtain from Eq. (A21)

1 —Z —2g Q~PJ3
j=1

where

(A26)

(A27a)

3Z=I- XQ, = Xj—J w3 +wj j—J w3 +wj

where x; is the concentration gradient of 8*,while a is the
jump distance and 2' is the coordination number under
appropriate boundary conditions. For this purpose we
first introduce the Gibbs-Duhem relation as such a boun-
dary condition, which is supposed to hold under the
steady-state condition

For ideally disordered alloys, where @=0,

Z= xg wg+
wg+wg

(A31c)

6. Examination of the definition
of the correlation factor

In the present treatment, the correlation factor f~ is de-
fined as the ratio of the tracer diffusion coefficient Dz
[Eq. (A23)] and the diffusion coefficient expected from
the random walk of tracer atoms, Y'3, in the statistically
averaged solid. In multicomponent systems, Dz- naturally
depends on the boundary conditions imposed on the sys-
tem to measure %3. In other words, f~ is not uniquely de-
fined. Therefore, the meaning of fz obtained by the PPM
in the past is examined here.

The boundary conditions given here are the Gibbs-
Duhem relation, [Eq. (A24)] and a, =0 [Eq. (A25)], which
follows from the condition that the profile of the atomic
distribution with respect to the second and the third
species is kept the same [Eq. (A26)]. Under the above
boundary conditions, Z3 in Eq. (A27b) has a more general
form Z3..

Q; and &; for any disordered homogeneous alloy (with
short-range order) can be obtained readily at a given tem-
perature T from the knowledge of e, and f~ for any disor-
dered alloy can be readily calculated. Based on Eq.
(A27b), 1 —Z gives the probability that a single 8' atom
jumps back into the vacancy it has just replaced under the
equilibrium condition.

8 and 8* should be regarded as chemically the same and,
hence u)i ——uig, ui~=u)3 ——ups, and Q~+Q3 ——Qs. Qs is
given by the CVM for homogeneous binary alloys and is
substituting xz for the case of ideally disordered alloys.

Also, the relation

Z3 =Z3+ Q3b, ,

where

W3 W2

w3+w3 w3+wp

(A32a)

(A32b)

x3 =x3ea3 (A28)
Because w2 ——w3,

From Eqs. (A27a), (A15), and (A29), we can obtain

(2co —1)Z
2+(2' —3}Z '

where

(A30)

QA iud QB~BZ= +
wg +wg wg+wg

In terms of F s,

I'3~Q3Z=1- ' ~j~Q~+ I'3~Q3

Yi /Q
' &j~QJ+ &3~Q3

(A3la)

(A3lb)

can be derived readily. Then, the relation N3 and x3, and
thus the correlation factor fbi defined in Eq. (12), is ob-
tained. f~ is equivalent to define with respect to Eq.
(A22a),

Z3—=Z3 (A33)

follows. This means, under the boundary condition that
the profile of atomic distribution with respect to the
second and the third species is kept the same, the (normal-
ized} flow of a third species, ~P3, is equivalent to the drift
motion of a single (tagged) atom of the third species under
the equilibrium condition Z3, irrespective of its composi-
tion. The possible effect of the additional contribution
due to a high concentration of the third species, Q36, van-
ishes because of the equality w2 ——w3. This means that Z3
is an expression for a negligible amount of atoms of the
third species (Q3 ——0). Although the expression f~ [Eq.
(A30) with Eq. (A31)] has been derived for any amount of
8*, f~ does not depend on the composition x, for the
reason explained above, and Z3 represents the relative effi-
ciency of the drift motion of a single atom (a tagged atom)
with respect to that of the random walk as commonly de-
fined in the random-walk theory of the correlation factor.
This does not mean that Dz should always be independent
of the amount of tracer atoms under general conditions of
diffusion measurement.
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