
PHYSICAL REVIEW B VOLUME 28, NUMBER 11 1 DECEMBER 1983

Random-field effects on the critical behavior of an interacting Base model
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The critical properties of a d-dimensional Bose model in the presence of a random quenched field
are investigated by renormalization-group techniques via the replica trick. To first order in a=6—d
it is found that both at nonzero- and zero-temperature regimes the grand-canonical critical ex-
ponents are the same as those of the corresponding classical model so that thermal and quantum
fluctuations appear to be irrelevant. Furthermore, at zero temperature, the scaling laws already es-
tablished for the pure model are retrieved with the replacement of d with d —4, but the random crit-
ical exponents are not derivable from the pure ones with the dimensional shift d ~d —4.

I. INTRODUCTION

In recent years, after a wide variety of investigations on
critical phenomena in pure classical' and quantum
systems, great interest has been shown for exploring the
the influence of random impurities which always exist in
any real system. In particular, several results have been
obtained which display drastic effects of random
quenched fields on phase transitions. Although it is not
easy to imagine experimental realizations of such random
fields, it is quite possible to have situations where they ap-
pear physically realizable. ' For example, it has been
shown that random fields can be experimentally generated
by the application of a uniform field on an dilute uniaxial-
ly anisotropic antiferromagnet with quenched random ex-
change interactions' or as a result of the random bilinear
coupling of two spin components near the transition from
a uniaxially ordered phase to a mixed one. ' In both
cases, transitions may occur at very low temperatures
where quantum effects may be relevant.

From the theoretical point of view, the amount of re-
sults is, at present, rich enough for classical models in the
presence of random fields. Renormalization-group (RG)
investigations' and exact predictions to all orders in per-
turbation theory' indicate an effective lowering of the
space dimensionality due to the presence of the random
field which becomes the dominant cause of disorder near
the transition point instead of the thermal fluctuations.

In contrast, the problem of the effects of random
quenched fields on critical behavior in quantum systems is
not sufficiently explored. Lacour-Gayet and Toulouse
studied the ideal Bose gas at nonzero temperature in the
presence of a random field as a special type of disorder
(random sources and sinks of superfluid particles). They
found that space dimensionalities of four and six play spe-
cial roles and that the usual scaling laws are violated, as
for classical systems. ' ' More recently, Aharony et aI. '

have investigated the critical properties of a d-dimensional
zero-temperature transverse Ising model in a longitudinal
random field. For this model the critical exponents are

the same as those of the zero-random-field case in d —3
dimensions and are identical to those of the classical tran-
sition which occurs at finite temperature. Thus, in the
presence of a random field, the quantum fluctuations
seem irrelevant in the same way as the thermal fluctua-
tions. A peculiar aspect of the approach of Ref. 21 is that
it is crucially based on the equivalence of the d-
dimensional pure system at zero temperature with the cor-
responding classical model in 0+1 dimensions. Such a
situation is known to be true only for quantum models for
which a "dimensional crossover" ' ' occurs in the zero-
temperature limit. This is not the case for "bosonized sys-
tems, "' such as the interacting Bose gas, ' the X-Y
model in a transverse field, ' and the spin- —,

' planar fer-
romagnetic model, which show, at zero temperature, a
Gaussian behavior for all dimensionalities, though a stable
nontrivial fixed point exists for d & 2. This unusual situa-
tion is not directly connected with a classical problem by a
dimensional crossover, even if a dimensional shift
d —+d+2 occurs in the zero-temperature limit. Rather, it
may be explained in terms of a more complex crossover
phenomenon (d, n =2)~(d+2, n = —2) also involving
the symmetry of the system ' (n is the number of order-
parameter components). Therefore, it may be of some in-
terest to investigate the effects of a random field in this
anomalous situation. This is just the purpose of the
present paper on the basis of a RG treatment, via the re-
plica trick, for a functional representation of an interact-
ing Bose model in the presence of a short-range correlated
random field. Of course, by means of an appropriate rein-
terpretation of the parameters involved, ' all the results
can also be extended to the above-mentioned spin
models. '

The starting point lies on a second-quantized Hamil-
tonian and it is therefore microscopic in nature. This as-
sures the correct inclusion of the quantum degrees of free-
dom so that the full effects of the quantum nature of the
model can be accurately explored and directly compared
with the thermal fluctuations and those induced by the
random field.

Concerning the use of the replica trick, we must
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remember that, though widely used, it sometimes has
problems of its own. Apart from these peculiar problems,
which are the object of recent investigation, ' many
studies have proved that this trick constitutes a useful
technique to obtain in a simple way correct physical re-
sults for random systems. Nevertheless, some analytic
difficulties emerge in the ordered phase and some caution
must be used, but this is not the objective of the present
work.

The paper is organized as follows. In Sec. II we intro-
duce the model and, as result of the replica trick, we
derive an "effective action, " which is the basis of our RG
approach. Furthermore, the general ternperature-
dependent RG equations are presented. In Sec. III they
are discussed and an investigation of the random critical
properties at nonzero- and zero-temperature regimes to
first order in e=6—d is made. Finally, in Sec. IV some
conclusions are drawn.

II. THE MODEL AND THE RG EQUATIONS VIA THE REPLICA TRICK

Let us consider a d-dimensional, (n/2)-component Bose model in a quenched random field h(x)=Ihj(x);
j= 1, . . . , n l2J described by the second-quantized grand-canonical Hamiltonian

n/2
H=g fdxW(x) g2 gO n/2

V'+ +'( )+ g d' +'( )+"( )P'( )+'( )
2M 4

n/2

+ g f d x[h~(x)%'~ +hj*(x)W(x)] .

Here @jt(x) and W(x) (j= 1, . . . , n /2) are the usual Bose fields (operators for different j are assumed to be commut-
able), M denotes the mass of Bose particles, p = —ro is the chemical potential, and uo ~ 0. Concerning the random field
h(x), which described the disorder effects in the system, we assume that h (x) (j= 1, . . . , n/2) or their Fourier com-
ponents h~-=V '/ f d"xh~(x)e '" " (V is the volume of the system) are Gaussian random variables with short-

k

range spatial correlations:

[hJk] „[hJk] 0 [hkhjk ] 5.J5kk hoz (2)

In (2) k denotes a wave vector for which a cutoff A is assumed, ' and the bracket [ ],„indicates an average over possi-
ble configurations of the random field.

For our purposes, it is convenient to introduce a functional representation of the model. For a given configuration of
the random field, we can write for the grand-canonical partition function

aIhI =T" ""=f u[-y]e ~(~")

where the "action" A I g, h I is defined by'

1/T C) (X 7-) 1/T
~I/, h )

= f d"x f d~P'(x, r) ' + f d&H(r) .

(3)

(4)

In Eqs. (3) and (4) p(x, r) = [p( x, r); j= 1, . . . , n /2] is a complex field such that p(x, 0)= p(x, 1/T), T is the tempera-
ture, and H(v ) is the classical functional corresponding to H, depending on v through the fields P, P .

From (1) it follows (in units for which fi =2M =A = 1) that

A Igh)= f d"x f d~ V(7(x, r)
~

+ro
~

P(x, i)
~

+P'(x ~) ' + P(x, r)
~

(2I7

+ [h(x) P*(x,~)+h*(x) P(x, i)]

Of course, since the disorder is quenched, the physical free energy of the system is defined by the average over the disor-
der'

F= —T[ln& I h I ],„.
By now using the replica trick, for the averaged free energy we can write

F= —T lim in[& Ih ]],„=—T lim in&,ff,
1 . 1

m~O Pl m~O I

(6)
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where

and

i g ~[y ]
~Ed(AJ~

a=1
(8)

—A,g((p )) —M(p, h)
e ' = e

a=1 av

Thus the replica trick results in an effective action A,ff(I/~I), which is a functional of m replications
a=1,2, . . . , m J of the original Bose field P, connected with the physical properties of the random system by the ap-
propriate limit (7).

Taking into account (2), one easily obtains

~ fi(I4 ])=~fi'(IN I)+~if'(IN I » (10)

where in the Fourier space
m n/2

~N( I 0 I ) = Q
a,P=1j =1 q

k l&1

[(r +k icosi)5 p
—(ho—lT)5pir, o]P (q)0p(q)

m n/2

~«([4' I)= 4y X X
a=1 i,j =1

O&
/

1 „i &1

(qi)'(( (q2)4' (q3)4 (ql +q2 q3) (12)

In (11) and (12) it is
1/2

P(q)= dx ~ x ~e t(k x Nl~)

q:—( k, roi), and coi 2m IT (1=0——, +1,+2, . . . ) are the Matsubara frequencies. As we see, the effective action introduces in
the problem an additional quadratic term which describes the fictitious interaction between two replicas caused via the
random field. This allows us to apply RG techniques quite parallel to the pure system, ' taking m ~0 in the final re-
sults. The quantum RG procedure, where also the Matsubara frequencies are to be scaled as coi =b'pi& —=- T'=b'T (b is
the spacial rescaling factor, z is the dynamical critical exponent), is readily applied to the "effective problem. "Neverthe-
less, together with the "usual" diagrammatic techniques, the results

(P"(q)Pp(q') )' '=5; 5""r, +k2 —im,

(h p/T)5coi p
5 p+ 2rp+k i pi, m(h oi—T)5~—,,0

(13)

G(q)=[(P*(q)P(q))]„—[(P*(q))(P(q))],„= li g (P'*(q)P(q))' ',
m~O m

(14)

are to be taken into account in the smoothing process and for the appropriate choice of the rescaling factor
gb (=b ' "' ' for the replica fields [P~J, respectively. In (13) and (14) ( )' ' denotes an average with respect to the
effective action (10) and the zero index in (13) indicates an averages with respect to A, fi'( [P I ).

We find that the temperature-dependent finite RG recursion relations in the limit m ~0 for the parameters rp, ho, up,
suitable for a discussion of the random critical properties to first order in E=6 d(il =0, z =—2), are

r

Pp =b Pp+ [Qpf i(rp T;b ) +uoho f2("o'b )]+.O(u o, u oh o, u oh o )
4

(hp)'=b [hp+O(uoho, . . .)],
2 2 2

uo b'"+' up ———[(n+6)f3(rp, T;b)+2f~(ro, T;b)]— (n+8)f5(rp, b)+O(uoht, . . . )

T'=b'T,
where
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1 d —1 1 d —1

f, (ro, T;b)=K„f,dp, ~ f2(ro)b)=Kd f,dp
b ' (ro+p~)/T b ' (rp+p2)2

d —I/4T ) pd —)

fs(ro~T;b)=Kd f,dp fs(ro, b)=Kd J,dp
sinh'[(ro+p')/2T] ' ' (ro+p')'

Eg & p~ —& rp+P
f~(ro, T;b)=,dp coth

b P'p +P
and Kd =2i —dw —d/2/I-(d/2)

Equations (15) show that for d & 4 —z, up is an irrelevant variable, i.e., it decays to zero for b +Do—, whereas ro and hp
are relevant. However, the recursion relations for these depend on products such as uohp and it is important to extract
from (15) information about the behavior of the variable wp ——uohp under the RG process. Therefore, one must consider
the recursion relation for this product, i.e.,

Wp =6 Wp—6—d
2

upWp wp 3

4
[(n +6)fs(rp, T;b ) +2f4(rp, T;b )]— (n +8)fs(rp, b )+0(wp, . . . )

2
(17)

together with the recursion relations for ro, up, and T.
It is now convenient to operate with the differential ver-

sion of the previous relations. It is immediate to see that
the T-dependent RG differential equations for the renor-
malized variables r(l), w(l) =u(l)h (l), u(l), and T(l), ap-
propriate for the random problem to first order in
@=6—d, are

dI n+2
dl

=2r+Kd [uA(r, T)+wB(r)],
4

I

ing the critical properties in terms of the chemical poten-
tial, which is the natural variable in our microscopic
grand-canonical formulation.

For T&0, the fixed point T*=Oo of the RG equation
for the temperature is just approached for l~ oo because
repeated iteration of the RG transformation will lead to

T( l) = Te "~T*= m as l~ a) .

Thus, for (19) with l »1, Eqs. (18) reduce to

dw

l 4
=ew —

I uw[(n+6)C(r, T)+2D(r, T)]
dr n+2 U W

1+r (1+r)

+2(n+8)w E(r)I,
(18)

dw n+8
dl 4

=Ew —Ky
Uw w 2

2+2(1+r)' (1+r)' (20)

dl 4
=( 4+a)u — —

I u [(n+6)C(r, T)+2D(r, T)]

+2(n +8)uwE(r) ],
dU n+8
dl

=( —2+e)u —Kd
4

V2 Uw

(1+r )' (1+r )'

dT
I

where l is the logarithm of the RG length-rescaling factor
and

A(r, T)= Iexp[(1+r)/T] —1I

B(r)=(1+r)

C(r, T)= sinh [(1+r)/2T],1

4T

E(r) =(1+r)

D(r, T) =— coth[( 1+r ) l2T] .
1 1

2 1+r
Of course, Eqs. (18) are to be solved with the initial condi-
tions r(0)=rp w(0)=wp=uphp and u(0)=up.

III. CRITICAL PROPERTIES

Here we are interested in investigating Eqs. (18) in the
two temperature regimes, T&0 and T=0, and in describ-

where we have introduced the appropriate variable U =uT
with w =uk, =uh (A, =h /T) and du/dl =(—2u
+duldl)/T As we see, Eq. s. (20) are just the RG equa-
tions already obtained for the corresponding classical ran-
dom problem' ' ' without the use of the replica trick.
Thus we can say that near the critical dimensionality
d, =6, the T&0 critical behavior of the quantum model
under study, in terms of variable rp —p, is the same as-—
that for the corresponding classical random n vector-
model. This behavior can be analyzed as usual by linear-
izing Eqs. (20) near the fixed points (r =w*=u*=0) and

(n +2)e, 2e
4(n+8) ' K6(n+8)

with @=6—d. In particular, one finds that it is Gaussian
for d ~ 6 and not Gaussian for d ~ 6. However, since the
classical RG analysis for Eqs. (20) is well known, here we
do not enter into details. Nevertheless, due to the dif-
ferent meaning of the parameter r p which enters the
grand-canonical Hamiltonian, we wish to point out expli-
citly that in our case the chemical potential assumes the
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same role of the temperature in the classical model.
Therefore, its critical value for T&0 assumes relevance.
It can be obtained by the criticality condition t,"(0)=0,
where

equation. This is a manifestation of the dimensional shift
d ~d +2 which occurs in the pure case when T~0.

By inspection of Eqs. (23), we find that the random
fixed point exists:

t, =r r*+—W(w —w*)+Av
with

sc, n —4 e(n+2) 1+
8 n+8 2

n —4 e(n+2) 1+
16 n+8 4

(21) n+2 ~ 2
E, W e, u*=O,

4(n +8) ' E6(n+8)

which is the same as that at T&0, except for the change
of u*=0 in v*=0. The eigenvalues of the linearized RG
equations about the Gaussian fixed point and the random
fixed point and the corresponding linear scaling fields are,
respectively,

is the only relevant scaling field for e=6 —d &0 in the
linear analysis of Eqs. (20) near the random fixed point.
We find to first order in e

2p, (T)= (n +2) upT+2uphp
16

n —4 2
(up T+4uoh p )e

4 n+8

(22)

X„=2— e, A, = —e, A,„=—4,n +2
n+8

t„=r+at-w, t =w, t„=u,(G) (&) (6)

t„=(r r*)+—a(w —w*)+bu,

t = (w —w*) —cu, t„=u,
where

x,
aG —— (n+ 2)(1+e/2), a =—M,

8

(25)

and we can write t„(0)= rp —rp ( T)=p, ( T) p, . Thus —the

approach to the critical point in terms of the chemical po-
tential is realized for p~p, (T) and all the thermodynam-
ic quantities will be expressed in terms of p, (T) p. Fi-—
nally, we observe that, since

bco=2m T(l) =2me' T~ as l~ oo,

only the Matsubara frequency cop ——0 survives near the cri-
ticality and the original Bose problem reduces exactly to a
classical problem. Therefore, the previous statement made
for T&0 remains true to arbitrary order in e (Ref. 19)
and, by approaching the criticality in terms of p, the criti-
cal exponents and the scaling laws can be obtained from
those of the pure case (e.g., 2 —a=dv) with the dimen-
sional shift d ~d —2.

Let us consider now the T=O regime where we might
have quantum effects. In this limit Eqs. (18) reduce to

&6 n+2e e
48 n+8 2 8(n+8)

(27)

Pc = —~Oc

x, 2(n+2) uoho
8

up
+(n —4)uphp e2n+8 6

(28)

From (25) it immediately follows that the random fixed
point and the Gaussian fixed point are stable for e ~ 0 and
a&0, respectively. Furthermore, the random critical sur-
face for d & 6 is determined by setting t„"(0)=0, and the
T=0 critical chemical potential is given by

dw

dl 4
+2(n+8)1+r (1+r)

dr n+2 w

dl 4 (1+r )2

(23)

Of course, t„(0)=rp rp ——p—,—p measures the deviation
C

from the criticality.
We are now, in a position to calculate the T=0 critical

exponents. For example, for the correlation length
g-(p, —p) ', we find

du

dl 4
=( —4+e)u— u +2(n +8)1+r (1+r)

As we see, some differences with respect to Eqs. (20) ap-
pear. In particular, it is evident that the presence of a ran-
dom field introduces the order-parameter dimensionality
in the T=O Bose problem. It is known in fact that, in the
zero random field, any dependence on n is absent in the
quantum regime to arbitrary order in the perturbation
series. ' However, the peculiarity of the T=O random
problem is the coefficient —4+@ in the third RG equa-
tion in contrast with —2+@ in the corresponding classical

v= 1/A, „=—,[1+(n +2)/2(n+8)e]

~(ro, wo, uo)= lim lim
T~0, m —+0 I
V~ oo

(29)

for d & 6, as for T&0. It is also easy to verify that, as in
the classical random problem, ' the vanishing of u*,
which is a consequence of the irrelevance of u for
d ~ 4 —z, is responsible for the failure of the T=0 scaling
laws already found for the nonrandom Bose system.

Let us consider the physical grand-canonical free-
energy density at T=0 defined by
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where W,tt= —(T/V)in&, tt. Then it is immediate to
show that ~, under the RG transformation, scales as

~(rp, wp, up)=e ' + 'P (r(l), w(l), u(1)) . (30)

=(rp —rp. )'"+"f
0

«p —rp. ) (rp —rp. )
&u

(31)

Thus, near the criticality and in terms of the linear scaling
fields, the singular part of P scales as

W~(t„, t~, tg)=e + Wg(t„e ', t~e, t„e "
)

Al A. I A, I

2 —a = [(d+2)—4]v

= [(d —4)+2]v, (35)

i.e., in the quantum pure relation d is replaced by
d +A,„=d —4. Similarly, one can show that the other
T=O scaling laws for the pure Bose model are modified
in an identical way.

The previous discussion indicates that, for a Bose sys-
tem at T=0, the effects of the introduction of a random
field are as follows:

(i) to change drastically the Gaussian behavior found
for all dimensionalities in the pure case ';

(ii) to shift the upper critical dimensionality from 2 to

due to the arbitrariness of the rescaling parameter 1»1.
In (31)f(x,y) =W, (l,x,y), tJ =tJ(0) (j -=r, w, u ), and

(iii) to convert d in the scaling laws of the nonrandom
case to a+A.„=d—4.

Of course, the knowledge of v, g, and A,„ is sufficient to
determine all the relevant random critical exponents,
which result in the same way as those of the T&0 case.A,„2 "

A,, 2 n+8
are the "crossover exponents" associated with the ir-
relevant fields t~ and t„=up. Observe now that if f(x,y)
were regular for x~O, y~O, for the critical exponent a
defined by

IV. CONCLUSIONS

2~~
S —a-(rp —rp, )

()rp

we should have the scaling law 2 —a=(d+2)v already
obtained for the pure model at T=O. To see that this
does not occur in the random case, making use of "tradi-
tional diagrammatic" techniques, we can construct the cu-
mulant perturbation series for a:

( (~I))v) (m)ao ( 1)v
lim — lim

v=1 v! r o, V m o
&~ oo

(33)

For instance, to first order we find

&Wg),( '=m '( +n2)n—

I 1
X

y (ro+E )/T
k —1

h2
1

2

+
(rp+ k )(rp+ k mh p/T)—

and the corresponding contribution to ~ behaves as
uphp ——up 'wp. An analogous calculation for higher terms
in series shows that, for finite wp and infinitesimal up, the
dominant contributions behave as uo as well. This indi-
cates that, after iteration of the RG procedure, near the
random fixed point where r=r'&0, w=w*&0, and
u =u' =0, the singular part of P, as a function of r, w, u,
behaves as u ' for u ~0. This allows us to conclude that
in (31) f(x,y)=f(O,y)-y ' for x~0 and y~O and the
revised scaling law follows:

From our investigation based on a RG treatment via the
replica trick, some conclusive remarks can be drawn.
Firstly, at T&0, the random quantum model is equivalent
to a classical n-vector model in a random quenched field
and the critical exponents can be obtained from those for
a pure system with the dimensional shift d ~d —2.
Furthermore, in agreement with the results of Ref. 21 ob-
tained for the transverse Ising model with a different ap-
proach, also for random Bose model at T=O, the critical
exponents are the same as those of the transition occurring
at finite temperature. Therefore the presence of a random
field destroys the classical to quantum crossover for T~O
which occurs, in contrast, when the field is absent. '

Thus, in any case, the quantum fluctuations, in the same
way as the thermal fluctuations, seem to be irrelevant rela-
tive to those caused by the random field.

However, we wish to point out a substantial difference
existing between the transverse Ising model and the Bose
model in the T=0 regime when a random field is present.
Whereas in the first case the critical exponents are deriv-
able from those of the pure model at T=O with the di-
mensional shift d —+d —3, the T=0 critical exponents for
a random Bose model cannot be obtained from the pure
exponents (which are mean-field-like) with the dimension-
al shift d —+d —4. This is due to the anomalous behavior
of the pure model at T=O, which is Gaussian also for
d & 2 [to arbitrary order in e=2 —d (Ref. 10)] though a
stable non-Gaussian fixed point exists. This aspect of the
problem is characteristic of all bosonized systems '
where, when pure, no dimensional crossover occurs for
T~O and corresponds to the peculiar anisotropy existing
between the wave-vector components and the Matsubara
frequencies in the quantum action. In this connection we
speculate that, in contrast, for pure quantum systems with
dimensional crossover d~d+z when T~O, ' ' the in-
troduction of a random field at T=O generates an "in-
verse dimensional crossover d ~d —(2+z)," that is, in the
pure exponent d is replaced by d —(2+z).
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