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The interatomic coupling of magnetic moments in the insulating antiferrornagnetic transition-
metal compounds MnO, MnS, and NiO is calculated using a theory based on the itinerant-electron
picture (energy-band theory and the local-spin-density treatment of exchange and correlation). Cal-
culated values of these "Heisenberg" coupling constants agree with measured values to the extent
that can be expected in light of the approximations required to execute the calculations. The calcu-
lations emphasize the importance of covalent interactions between the metal d states and the anion p
states. These interactions are spin conserving and fundamentally nonmagnetic; they enter the cou-
pling of the magnetic moments because the intra-atomic spin splitting of the metal d shell makes
the covalent interactions dependent on the relative angle of the two magnetic moments.

I. INTRODUCTION

The transition-metal monoxides MnO, FeO, CoG, and
NiO possess a special conceptual significance because the
microscopic origin of their insulating nature' and anti-
ferromagnetic ordering has been and remains a funda-

' mental, but unsettled, question of solid-state physics.
While the insulating behavior of these substances is most
often ascribed to the Mott-insulator mechanism, some at-
tempts have also been made to interpret their behavior
within the conceptual framework of single-particle
energy-band theory. ' In a recent paper we showed that
the insulating character of both MnO and NiO can be ex-
plained by purely band-structure effects, that is, without
appeal to the Mott-insulator mechanism. Furthermore,
the calculations in which the paramagnetic state above the
Neel temperature was simulated by total spin disorder
showed the local antiferromagnetic magnetization to be
stable, even in the absence of long-range order for MnO.

Whereas our previous paper was concerned primarily
with the existence of a gap in the single-particle spectrum,
the present work focuses on the extent to which the same
itinerant-electron picture can also account for the inter-
atomic coupling J of the magnetic moments as reflected,
for example, in the spin-wave stiffness. The basic concept
in this context is superexchange. Since the work by Kra-
mers many theoretical studies ' ' have been made of
the mechanism of superexchange. Anderson gave an ex-
cellent review of the work through 1963 and developed a
systematic theory of superexchange starting from the
localized-orbital limit. In a qualitative sense, the theoreti-
cal background for the use of the Heisenberg model for
the insulating magnets was established by Anderson's
work. It has, however, proven very difficult to test the
quantitative implications of Anderson's formulation by
means of, for example, parameter-free mlculations of the
exchange coupling constants appropriate to a Heisenberg
model' ' of spin-wave dynamics. Such calculati. ons ap-

pear to be particularly difficult in the case of the
transition-metal monoxides because the strength of the in-
teraction (hybridization) between the transition-metal d
orbitals and the oxygen p orbitals is so strong that a per-
turbative treatment starting from the localized-orbital lim-
it is difficult, if not impossible.

For this reason, our approach starts from the opposite
limit, that is, band theory. The method of analysis is an
extension of our earlier work on iron. ' lt will be shown
that the present band scheme can successfully explain
qualitative features of the interatomic magnetic coupling J
in MnO, MnS, and NiO, although the theoretical values of
J are commonly about 3 times larger than the experimen-
tal values. (FeO and CoO are excluded from the present
study because the effect of the unquenched orbital angular
momentum cannot be treated properly within the present
theoretical framework. On the other hand, MnS is includ-
ed because of its similarity to MnO in several respects. )

Bemuse our analytical approach differs so pervasively
from the traditional one, a precise one-to-one identifica-
tion of the elements of our theory with the various su-
perexchange mechanisms ' ' is difficult. Furthermore,
we believe that some of our results are qualitatively new.
One new result is an interesting aspect of the role of the
anion p orbitals in the magnetic interaction. Another is
our finding that the ferromagnetic first-neighbor interac-
tion in NiO results from d-band covalency, in contrast to
the traditional approach where this effect is ascribed to
potential exchange.

The balance of the paper is organized as follows. In
Sec. II we briefly describe the method of the calculation.
Results are presented in Sec. III and discussed in Sec. IV.
Section V is devoted to concluding remarks.

II. METHOD OF CALCULATION

We are concerned here with the change in total energy
that results when the magnetic moment associated with an
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TABLE I. Lattice constant a (in a.u. ), Neel temperature T~
(in K), magnetic moment within the cation atomic sphere for the
ground state, M] (AF II), and for the paramagnetic state,
M& (para), and magnetic moment given by Eq. (5), M. M&„and
M are in units of p~.

(a) AFI I

M( (AF II)
M& (para)
M

4.45
122

4.46
4.45
5.0

5.21
150

4.39
4.31
4.69

NiO

4.20
523

1.05
1.04
1.02

(b) Para

atom at position R„ is rotated relative to the moment as-

sociated with a reference atom at position Ro. The partic-
ular estimate of this total-energy change that we are able
to evaluate numerically is given by

bE„(g)=—I delmlndet[I Ko(eo)ro K (e )& o]

0 0.2 0.4 0.6 0.8
E&erg y (Ry)

1.0

FIG. 1. Total state density of MnG (in states/Ry MnO) in (a)
the antiferrornagnetic state of the second kind, and (b) in the
paramagnetic state. Vertical broken lines separate the occupied
and unoccupied states.

E„'"=—,
' [bE„(0)—bE„(~)] (2)

which is derived in Ref. 17. Equation (1) is based on two
fundamental approximations: Firstly, the total-energy
difference is approximated by the change in the sum of
single-particle energies, and secondly, the moments in the
neighborhood of the two atoms under consideration are
assumed to be oriented in a completely random way. The
latter is a convention for extracting the interaction energy
between the particular two magnetic moments. The elec-
tronic structure of the medium of randomly oriented mo-
ments is described by the Korringa-Kohn-Rostoker
coherent-potential approximation (KKR-CPA)' with the
atomic-sphere approximation. The mathematical formu-
las for the individual quantities appearing in Eq. (1) can
be found in Appendix A; we discuss here the simple phys-
ical picture embodied in Eq. (1). The two r operators
describe spin-conserving propagation in the medium of
randomly oriented moments, while the K operators
describe the single-site scattering by each of the two atoms
under consideration. The scattering described by the K
operators depends on the orientation of the spin of the in-
dividual electron, relative to the specified spin-
quantization axis along the magnetic moment on each of
the two atoms. The calculation consists of evaluating the
total energy as a function of the relative angle 0 of the two
magnetic moment orientations eo and e„and as a function
of the spatial separation of the two magnetically scatter-
ing atoms located at Ro and R„. Note, in particular, that
it is primarily by means of the oxygen (or sulfur) p orbi-
tals that the electrons propagate from one metal atom to
another. This propagation, as well as propagation along
other possible trajectories is described by the ~ operators.
%'e would like to point out that the tight-binding expres-
sion corresponding to Eq. (1) is equivalent to that of Ref.
19, which reduces to Anderson's kinetic superexchange in
the strong-correlation limit. ' '

The exchange interaction energy E„' and the exchange
parameter J„are defined by

J„= E„'"/S— (3)

M = ——1m[in det[I (t, ' t —+') r—oo]

—indet[1 —(t, ' —t ')zoo] I,
where t, is the coherent t matrix and t+ (t ) is the
single-site t matrix seen by an electron whose spin is paral-
lel (antiparallel) to the orientation of the local magnetic
moment on the site. (See Appendix A for further details. )

III. RESULTS

The calculations were performed for the observed lat-
tice parameters. However, as the experimental data have
some scatter, the lattice parameters we adopted are 1isted
in Table I. The potentials used in the CPA calculations
for the inedium of randomly oriented moments (referred
to hereafter as the paramagnetic state) were those obtained
from the self-consistent augmented-spherical-wave (ASW)
band calculations ' for the ground-state antiferromagnet-8,2I

ic ordering. Figures 1—3 show the total densities of states
(DOS's) of MnO, MnS, and NiO in the paramagnetic and
antiferromagnetic (second kind or "AF II") states. The
results for MnO and NiO are the same as those presented
in Ref. 8. In the ground state (AF II), the insulating gaps
exist in all three substances, while only for MnO does the
insulating gap persist in the paramagnetic state. In reali-

The Heisenberg Hamiltonian appropriate to J„defined in
this way is

1Il= ——, QJ„S, s, +„.
i, n

The quantity S appearing in Eq. (3) is M/2, where M is
the magnitude of the spin magnetic moment per metal
atom, which, in turn, is defined by
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(a)AFl 1

TABLE II. Exchange interaction energies E„'" (in mRy) and
exchange parameters J„{inK).

Eex
n

MnO MnS
E„'" J„ Eex

n

NiO

0

(b) Para

0.2 04 0.6 0.8 1.0
Energy (Ry)

1.20
1.18
0.0
0.03
0.02

—0.01
—0.01

—30.3
—29.8

0
—0.8
—0.5

0.3
0.3

0.37 —10
0.93 —27
0.00 0
0.03 —0.9
0.02 —0.6
0.01 —0.3
0.00 0

—0.10
2.02
0.02

—0.12
—0.03
—0.01
—0.01

61
—1230

—10
73
18
6
6

FIG. 2. Total state density of MnS {in states/Ry MnS) in (a)
the antiferromagnetic state of the second kind, and {b) in the
paramagnetic state. Vertical broken lines separate the occupied
and unoccupied states.

(a) AF((

) Para

0
0.2 0.4 0.6 0.8 ].0

Energy (Ry}

FIG. 3. Total state density of NiO {in states/RyNiO) in {a)
the antiferromagnetic state of the second kind, and {b) in the
paramagnetic state. Vertical broken lines separate the occupied
and unoccupied states.

ty, MnS and NiO are also insulators above the Neel tem-
perature T&. A weak aspect of our theory is the complete
neglect of the short-range magnetic order in our model of
the paramagnetic state. It is also true, of course that
correlation effects beyond those described by the local-
spin-density approximation may be unusually important
in these systems. While our modeling of the paramagnetic
state will limit the quantitative accuracy of estimates of
the exchange coupling, we expect that the qualitative as-
pects of our results should not be affected.

The pair exchange interaction energy was calculated
using Eqs. (1) and (2). It was found that bE„(8) is almost
exactly proportional to cos8. The cosO dependence of
bE„(8) supports the use of the Heisenberg model of the
form given by Eq. (4) and implies, as discussed in Appen-
dix B, that Eq. (1) is well approximated by

bE„(e)= ' f——delm Tr[ICD(80)'Ton+a(~n) COl

(6)

where the trace operator Tr is taken over the space of an-
gular momentum, site, and spin indices (L,n, s).

Next, we calculate the exchange parameters J„using
Eqs. (2), (3), and (5). Here, we comment on the values of
S and M. In our band picture there is a distinction be-
tween the spin magnetic moment M given by Eq. (5) and
that defined within the cation atomic sphere M», . (In the
localized orbital limit, the two quantities coincide. ) The
quantity M~~ in both the AF II state and the paramagnet-
ic state are listed in Table I. The value of M given by Eq.
(5) includes the tails of the magnetic polarization associat-
ed with a given cation and is the total magnetization that
rotates simultaneously with the change in the direction of
the cation magnetic rnornent. For MnO, which has an in-
sulating gap even in the paramagnetic state, M is just 5.
If an insulating gap also exists in paramagnetic MnS and
NiO, M would be 5 (MnS) and 2 (NiO). Unfortunately,
however, our model of complete disorder for the paramag-
netic state does not produce a gap in MnS and NiO, and,
as a result, the values of M given by Eq. (5) are 4.69 (MnS)
and 1.02 (NiO). Although there is no rigorous justifica-
tion, we use M/2 as S with M listed above. Table II
shows the calculated exchange parameters J„as well as
the interaction energies E„'"up to the seventh neighbor for
MnO, MnS, and NiO. A characteristic feature commonly
seen in these three materials is that the exchange coupling
between the first- and second-nearest neighbors is dom-
inant, while the coupling between atoms more distant than
second neighbor is much weaker, except for the fourth-
neighbor coupling in NiO. The use of the spin Hamiltoni-
an with the exchange parameters up to the second neigh-
bor has been common in the analysis of the observed mag-
netic properties for these substances. Our results
provide justification for this type of approximation.

In the case of MnO, the first- and second-neighbor ex-
change coupling are both antiferromagnetic and have
comparable magnitudes. As for MnS, the signs of the
first- and second-neighbor coupling are the same as those
in MnO, that is, both are antiferromagnetic, but the am-
plitude of the nearest-neighbor coupling is reduced to
about half or less. On the other hand, some qualitatively
different features are found in the exchange coupling of
NiO. The nearest-neighbor coupling is weakly but defin-
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TABLE III. Experimental and theoretical exchange parameters (in K) of the first and the second
neighbors.

MnO MnS NiO
Reference

—14.4
—9.0

—10.0
—28
—30.3

—7.0
—10.4

—11.0
—28
—29.8

—8.0

—10

—9.0

—27

—50

—222

—1230

22
25
26
23
24

present paper

itely ferromagnetic and the second-neighbor interaction is
strongly antiferromagnetic, stronger than that for MnO
and MnS. The latter feature is qualitatively consistent
with the experimental observation that the Neel tempera-
ture T& of NiO is about S times higher than that of MnQ,
as shown in Table I.

IV. DISCUSSION

A. Overall aspects

Consider now a comparison of the interatomic exchange
interactions given by the present calculations with values
deduced from experiment and estimates based on earlier
theoretical work. Table III shows the exchange parame-
ters derived from the analysis of the experimental data,
such as thermodynamic quantities and spin-wave-
dispersion data. As shown in Smart's review, the
molecular-field analysis for the Neel temperature and the
susceptibility indicates a J2/J& ratio of about O.S, 1.0, and
1.7 for MnO, MnS, and NiO, respectively. It should be
noted, however, that the molecular-field theory is known
to overestimate the Neel temperature considerably. This
was pointed out by Anderson and by Lines and Jones.
It should also be noted that ambiguities exist in the experi-
mental determination of the Weiss temperature due to the
difficulty of the susceptibility measurements at high tem-
peratures. An analysis of the thermodynamic quantities
based on the Green's-function method shows that the
J2/J& ratio for MnO lies very close to 1. A similar result
was also obtained from the paramagnetic resonance mea-
surement by Coles et a/. for Mn-pair impurities in MgO.
Kohgi et ah. measured the spin-wave dispersion by neu-
tron inelastic scattering at 4.2 K and found the J2/J& ra-
tio to be about 1.2 for MnO by fitting the effective spin
Hamiltonian to the spin-wave-dispersion curve. Hutch-
ings and Samuelson found from the spin-wave measure-
ments that the nearest-neighbor exchange coupling in NiO
is smaller by an order of magnitude than the second-
nearest-neighbor coupling and is ferromagnetic. The
qualitative features exhibited by our calculated exchange
couplings are fairly consistent with the experimental re-
sults listed above. However, our theory seems to overesti-
mate the magnitude of the magnetic interaction, as shown
in Table III. A possible reason of this quantitative
disagreement is discussed in Sec. IV C.

Many theoretical efforts ' ' have been made to

elucidate the basic mechanisms in the superexchange in-
teraction and to evaluate the exchange coupling constants
quantitatively. Among these efforts, one of the most sig-
nificant contributions is the Goodenough-Kanamori
rule. "' BrieAy, the Goodenough-Kanamori rule states
that if there is a finite transfer integral between orbitals of
neighboring magnetic ions, then the antiferromagnetic ki-
netic superexchange dominates; if, on the other hand, the
transfer is forbidden, then a weak ferromagnetic coupling
due to the potential exchange is expected. Before discuss-
ing the results in Sec. III in a band picture we present a
brief survey of the interpretation of the exchange interac-
tion in MnO, MnS, and NiO given by the localized-orbital
picture, mostly following Anderson. In the case of MnO
and MnS(d ), the antiferromagnetic interaction of the
second-nearest neighbor (180' coupling) is of kinetic ex-
change origin and is due mainly to the strong hybridiza-
tion of Mn es with oxygen or sulfur p orbitals (pdo. -pdo ).
The balance between the kinetic exchange of the pd~-pd~
type and potential exchange is believed to be weakly fer-
romagnetic. The nearest-neighbor coupling (90 coupling)
for MnO and MnS is also antiferromagnetic due to the
bond of t2s orbitals of one Mn atom and es orbitals of the
other via anion p orbitals (pdvr-pdcr). As for NiO(d ), the
second-nearest-neighbor coupling is antiferromagnetic,
and is again due to kinetic exchange of the pdo. -pdo. type.
It was argued that the antiferromagnetic coupling in NiO
would be stronger than the corresponding coupling in
MnO or MnS because the ferromagnetic potential ex-
change is absent in the d case, whereas it makes an ap-
preciable contribution in the d case. In the first-
neighbor coupling (90' coupling) of NiO there is no kinetic
exchange mediated by oxygen p orbitals. Since the kinetic
exchange via the oxygen s orbital is expected to be very
small, the net interaction will be weakly ferromagnetic,
due to the potential exchange. The sign of the exchange
interactions are all consistent with the Goodenough-
Kanamori rule. "'

We now describe the qualitative features of the ex-
change interaction as given by the band picture. The ex-
change energy b,E„of Eq. (1) is simply the sum of the
change in the one-electron energies induced by the change
in the relative angle of the two magnetic moments. By re-
garding ez as a variable parameter and plotting E„' as a
function of eF, we can see the change of the one-electron-
energy sum in every energy range. This is the same fun-
damental idea that underlies our calculation of the nonlo-
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FIG. 4. (a) Exchange interaction energy E„"for n =1 (solid
line) and n =2 (broken line) as a function of eF, and (b) partial
DOS's with eg (solid line) and t2g (broken line) symmetries at the
Mn site for MnS. Vertical broken lines denote the actual Fermi
energy.

FIG. 5. (a) Exchange interaction energy E„'" for n =1 (solid
line) and n =2 (broken line) as a function of eF, and (b) partial
DOS's with eg (sohd line) and t2g (broken line) as a function of
eF, and (b) partial DOS's with eg (solid line) and t2g (broken line)
symmetries at the Mn site for MnS. Vertical broken lines denote
the actual Fermi energy.

cal susceptibility in transition metals. In fact, Eq. (6) in-
dicates that AE„ is essentially a nonlocal susceptibility of
the paramagnetic state. Figures 4—6 show E„'" for n = I
and 2 as a function of ez and also the partial density of d
states in MnO, MnS, and NiO. The relationship between
the magnetic interaction and the filling of the d band, dis-
cussed by some workers for transition metals, is basi-
cally valid in the present case also. For the case of a
nearly-half-filled d band, the magnetic interaction between
neighboring magnetic moments is generally antiferromag-
netic, whereas when the d band is almost empty or almost
filled, the interaction is ferromagnetic. An important
point here is that the interatomic magnetic coupling is
communicated by d-band covalency effects, which are
not intrinsically magnetic; the coupling is not due to the
electron-electron interaction. In the MnO and MnS cases,
because the local majority-spin band is full and the local
minority-spin band is empty, we can regard the band as a
half-filled one in which the local spin subbands are split
by the intra-atomic exchange energy. Therefore, the ex-
change interactions of the first and the second neighbors
are antiferromagnetic. Figures 4 and 5 also show that the
tzg and e& states play dominant roles in the first- and the
second-neighbor exchange interactions, respectively, be-
cause E„'"(ez) varies strongly when e~ falls in the energy

regions where the corresponding subbands are located.
Although the present approach looks different from the
conventional kinetic exchange, the basic mechanism is the
same. However, the energy denominator in the expression
for the kinetic exchange in second-order perturbation
theory is the exchange splitting of the d band in the
present approach, whereas it is the Coulomb interaction
itself in the localized-orbital picture.

The situation for NiO is more complicated. We start
our discussion with the second-neighbor coupling, which
is determined by the covalency in the eg subbands. Since
the eg subbands are half-filled, the second-neighbor cou-
pling should be antiferromagnetic. We can also say that
the coupling may be stronger than that in MnO and MnS
because the exchange splitting is smaller, which may come
into the energy denominator in the expression for the ki-
netic exchange in the second-order perturbation theory.
With regard to the nearest-neighbor coupling the almost-
filled t2g subband produces a ferromagnetic coupling, but
it is quite weak. The states above the Fermi energy con-
sist primarily of eg states, but small amount of t2g states
are also included because eg and t2g orbitals exhibit finite
mixing in solids. We emphasize that the ferromagnetic
coupling of the first-neighbor interaction is again due to
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FICz. 7. Fourth-order contribution to the self-energy of the
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oxygen atom.

4

I

I

I

I

I

minority spin
I I I I I I I I I

0 02 0.4 0.6 08
Energy (Ry)

1.0

d-band covalency in our band picture. This result differs
qualitatively from the common understanding, according
to which potential exchange plays a role, as mentioned
previously. The fact that our calculational model does not
possess an energy gap in paramagnetic NiO, is almost cer-
tainly due to the absence of short-range magnetic order in
the model of the paramagnetic state and not to any funda-
mental inadequacy of our band picture of the exchange
coupling.

'

FICx. 6. (a) Exchange interaction energy E„'" for n =1 (solid
line) and n =2 (broken line) as a function of ez, and (b) partial
DOS's with e~ (solid line) and t&~ (broken line) symmetries at the
Ni site for NiO. Vertical broken lines denote the actual Fermi
energy.

B. Role of the oxygen p states in the magnetic
interaction

It should be noted in Figs. 4 and 5 that the exchange in-
teraction E„'"(e~) is fairly large at the top of the anion p
band in the case of MnO and MnS, which strongly affects
E„'"(eF) at the actual Fermi energy. This means that the
anion p bands make an appreciable contribution to the ex-
change interaction. It is the purpose of this subsection to
clarify the role of the anion p states in the magnetic in-
teraction. First, we note that the kinetic exchange in the
second-order perturbation with regard to the effective
hopping integral between metal atoms is fourth order with
regard to the hybridization between the anion p and the
metal d orbitals. In the following, we show that the
dependence of the anion p-level shift on the magnetic
alignment of the neighboring metal atoms is also fourth
order in the p-d hybridization (see Fig. 7). The large value
of E„'"(EF) just above the anion p state is explained by this
effect.

Let us analyze the situation in Fig. 7 more explicitly.
Consider a six-orthogonal-orbital (d —p —d bond) scheme.
The atomic d level with majority (minority) spin, the
atomic p level, and the p-d hybridization are denoted as
Ed —6 (Ed +6) Ep, and t, respectively, where 2b, is the
exchange splitting of the d state. In order to calculate the
lowest two molecular-orbital energies corresponding to the
anion p band as a function of angle 8 between the two mo-
ments, we solve the following secular equation:

Ed —6—e

0
0
0

0

0

0

0

Ed —6 cosO —6

6 sinO

0

Ed+6 cosO —6 0

0

0
=0. (7)

0
0

0
0 Eo —e 0

Eo—e

After some manipulation, Eq. (7) is reduced to

(Eo —e) [(Eg—E) —5 ] —4t (Ep'—E)(Ed —E)[(Ed—e ) —6 ]+2t [2(Ed —e) b. ( 1 +cos0)]=0—
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2(Ed —Eo)+b. cos(8/2)

(Ed Eo—) b. —
2/+ [g+ (Ed Eo )——1]/+-

(Ed —Ep ) —b,

(10)

Then, the sum of the energy shifts of p levels due to the

p -d hybridization is given by

hE= —(g++g )t'+(rt++q )t4

4(Ed Eo ) .t'
(Ed —Eo) —5
8(Ed —Eo)[(Ed Eo—) +6 (2+cos8)]

+ 2 2 3[(Ed —Eo) —6 ]

(12)

In Eq. (12), it is natural that the t term does not, depend
on 8 because it has no path connecting the different metal
atoms. The anion p-state contribution to the exchange en-

ergy is found to be

E,'„"""= —,
'

[b,E(8=0) AE(6=m—)].
8(Ed Eo)b-

[«d —Eo)' —~']'
The contribution is antiferromagnetic for the present band
parameters and is proportional to 5 as expected.

Now we consider specific coupling schemes for the first
and second neighbors. The former is a 90' bond case, in
which, for example, two metal atoms are situated at
a (0,0, —,

'
) and a ( —,,0,0) and an anion atom at the origin.

The latter is a 180' case, in which for example, the bond
axis is directed in the z direction. In the 90 case, as the
fourth-order hopping between different metal atoms
occurs via the anion, there are three paths,

d3z2 q2 pz dzz» dzz pz —d3z2 q2» dyz py
—dzy

(14)

Then, t in Eq. (13) is expressed as

(t )& 2(pdcr) (pdm)+——(pdn). .

using the tight-binding parameters. In the 180 case, the
following three fourth-order hopping paths exist:

pi d3g2 q2~ dzx p~ de ~ diaz py diaz

Then, t is expressed as

(t )2=(pdcr) +2(pdm. )

By using Mattheiss's hopping parameters, pdo. ——0.0737
Ry and pdn. -0.0318 Ry, for MnO (Ref. 31) we get a ratio

In Eq. (8) we postulate a solution of the form

e—Eo gt —+'gt2 4

We substitute Eq. (9) into Eq. (8), and solve for g and g,
obtaining

(t )2/(t )~ of 2.7, where we have neglected, for simplicity,
the overlap integrals between the d and p orbitals, which
were included in Mattheiss's parameters. The anion p
contribution of the second neighbor is more than twice as
large as that of the first neighbor in MnO, which is con-
sistent with the behavior of E„'"at E~-0 3R.y in Fig. 4(a).
If we use the band parameters, (Ed —Eo)-0.45 Ry and
b, -0.14 Ry, for MnO, which are taken from the band
structure in the CPA calculation, then the magnitude of
the anion p contribution is a few tenths of a mRy. In
MnS the contribution may be larger than that in MnO, be-
cause Ed —Eo is smaller and the hopping integrals are
larger. In NiO the contribution is considerably smaller
because of the small exchange splitting (b, -0.04 Ry). In
this way the features pointed out at the beginning of the
section are successfully explained. The mechanism dis-
cussed above has some similarity to Slater's mecha-
nism, ' ' in which the polarization of the anion states
plays a role through the admixture of the 3s state into the
2p states.

We now proceed one step further. One might expect
that E„'"(eF) in Figs. 4—6 would be proportional to b, for
any value of eF and then the b, dependence of E',„"' " in
Eq. (13) cannot explain the fact that E,'„"""is important in
MnO and MnS, but less important in NiO. The point in
this regard is that E„"(eF) for eF in the d-band region is
proportional to 5 rather than to 4 because 6 comes into
the energy denominator in the perturbation treatment of
the covalency effect in the d band. Therefore, the contri-
bution of E,',"""to the exchange coupling becomes rela-
tively important when 6 is large.

C. Origins of the overestimate of exchange coupling

We compare the results of the exchange interaction
with the total energy of ordered MnO and MnS. As
presented in another paper, ' we calculated the total ener-
gies of MnO and MnS in the three magnetic configura-
tions: ferromagnetic and two antiferromagnetic orderings,
the first kind (AF I) and the second kind (AF II). The to-
tal energy of AF II is lower than that of AF I by 5.4 mRy
for MnO and 5.7 mRy for MnS, which is consistent with
the experimentally observed AF II ordering. Assuming
that the energy difference is described by the effective-pair
spin Hamiltonian with the exchange interaction obtained
in this work, we obtain 4.4 mRy for MnO and 5.1 mRy
for MnS. Although the agreement between the results
from the two different approaches is quite satisfactory, it
may be accidental and perhaps we cannot expect more
than the fact that the results obtained using the two ap-
proaches are the same order of magnitude.

We comment briefly on the possible origins of the
overestimate by the present calculation of the interatomic
exchange coupling. For NiQ the present band calculation
underestimates the magnetic moment and therefore the
exchange splitting. This leads to a serious overestimate of
the interatomic exchange coupling. The same may also be
true for MnO and MnS, although with less significance.
Other possible origins for the overestimation are conceiv-
able. For example, the present prescription for evaluating
the exchange coupling takes account of only the band-
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energy term. Generally speaking, the screening effect by
the electron-electron interaction reduces the change in the
band-energy contribution. However, the fact that the
ASW result also overestimates the magnetic energy differ-
ence seems to suggest that this screening effect may not be
so important because the ASW calculation takes account
of the screening effect within the local spin-density-
functional (LSDF) formalism. Of course, this counter-
proof based on the importance of the screening effect has
some ambiguities. As the two magnetic configurations,
the first and the second kinds of antiferromagnetic order-
ings are quite different from each other and the state den-
sities for them, for example, are also quite different (see
Fig. 2 in Ref. 8). Therefore, the basic assumption that the
energy difference between the two magnetic orderings is
described by the pair interactions is questionable. A third
possibility is the nonsphericity of the intra-atomic poten-
tial. Neutron scattering shows that the magnetic distri-
bution around Ni in NiQ, for example, has appreciable
nonsphericity. Both the ASW calculation and our CPA
calculation do not take into account the nonsphericity of
the potential at all. A possible way of studying the effect
of insufficiency of these methods in treating the potential
is to change the atomic radius for each constituent atom.
Recently, Kiibler studied how the total energy depends on
the choice of atomic radii. He changed the ratio of the
Mn and Q radii r =EM„/Ao from 1.18 to 0.75. A value
of r = 1.18 is approximately the same as that used in the
present work, obtained using a prescription based on the
bulk moduli of the constituent elemental materials. The
value r =0.75, on the other hand, is close to the ratio of
the ionic radii for Mn +Q . Kubler found that the
total-energy difference between the first and the second
antiferromagnetic orderings changes from 5.9 mRy
(r =1.18) to 3.5 mRy (r =0.75). The fact that such a
gross change in the atomic decomposition of the unit cell
causes the total energy to change so little is encouraging,
but it is also true that the total-energy differences of in-
terest in the present context are also very small; Kiibler*s
sensitivity test is an indication of the desirability of treat-
ing the shape of the potential more accurately. As the en-

ergy scale of interest is very small, there may be other pos-
sibilities for the error in the numerical computation. The
refinement of the numerical accuracy is one of the future
tasks.

V. CONCLUDING REMARKS

Energy-band theory was applied to the calculation of
the superexchange interaction in MnQ, MnS, and NiQ.
These materials are usually regarded as Mott insulators.
It was pointed out that the band calculation accounts well
for the insulating behavior of these substances. ' ' The
present calculation is based on the KKR CPA calcula-
tions for the paramagnetic state where each cation atom
has a finite magnetic moment with random orientation.
Qur approach successfully explains the qualitative
features of the exchange interactions. Qur interpretation
of the exchange interaction in NiQ has some qualitative
differences from the traditional one, which is based on the

localized-orbital picture. It was also pointed out that the
shift of the anion p level due to the p-d hybridization de-
pends on the magnetic alignment of the neighboring
cation atoms and that this makes a fairly large contribu-
tion to the superexchange interaction for MnQ and MnS.
However, the exchange interaction is on the order of mRy,
which makes a quantitative agreement quite difficult.
The present scheme overestimates the exchange interac-
tions for MnQ, MnS, and NiQ by a factor of about 3.
Possible origins of this disagreement were discussed.
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APPENDIX A BRIEF SUMMARY OF THE KKR CPA
FOR DERIVING EQ. (1)

The KKR CPA was applied to describe the electronic
structure of the system in which the magnetic moment at
each atom is oriented randomly. The procedure for ob-
taining Eq. (1) is essentially the same as that in our work
on iron, ' which should be referred to for the detailed
prescription. In this appendix we give explicit expressions
of the quantities appearing in Eq. (1) and also point out
some small differences between the present calculation for
compounds and the previous one for the element iron.

In Eq. (1), eo (e„) is the direction of the magnetic mo-
ment at Ro (R„)and K and t' are given by

K,(eo) = [ I (t, ' t —')Ooroo—]
—'(t, ' t ')00—(Al)

(t)„„=t„5„„,
(tc )nn =tc, n5nn'

(K )„„=K„(e„)5„„, (A5)

(A6)

r'=(t, ' —6)
t, is the coherent t matrix, t is the single-site t matrix, and
6 is the structural Green's function. The quantities
denoted by v. are matrices in the space spanned by (L,n, s)
where L denotes the orbital angular momentum (I,m), n
denotes the lattice site, and s denotes the spin state. The
matrix elements of these quantities with regard to lattice
sites are



BAND THEORY OF THE MAGNETIC INTERACTION IN MnO, MnS, AND NiO

We note that the anion sublattice has the perfect periodici-
ty and t, „ is just t„, the t matrix for the anion potential if
R„ is an anion site. Therefore, the effect of the anion sub-
lattice enters into EE„ through r' in Eq. (A2). With this
in mind we regard the indices 0, n, and n' in Eqs. (1) and
(Al) —(A6) as the site indices in the cation sublattice.
Then t, „ in Eq. (A4) is independent of n B.y using the
2&2 unit matrix I and Pauli matrices o.„,o-~, and o-» t„
is expressed as

t„= ,' (t+ +—t ) X 1+ ,' (t+ t—)—X (e„o), (A7)

where r' is a matrix spanned by (L,n).
The CPA self-consistency equation for the determina-

tion of t, is

fdQKo(eo)=0, (A9)

where the integration is over the orientation of ep. By
using Eq. (82) from Appendix 8, Eq. (A9) is reduced to

where o. is a vector spanned by the Pauli matrices and
t+ (t ) is the t matrix "seen" by an electron whose spin is
parallel (antiparallel) to e„. The transition matrices t+
and t are matrices spanned by I. and are common to all
cation sites (t+, t, t„K+, K ), and v.oo are diagonal in
L, space so long as l (2. The multiplication sign in Eq.
(A7) indicates a direct product between the matrix in the
orbital space and that in the spin space. The quantity K is
also expressed similarly. [See Eq. (1S) in Ref. 17 and Eqs.
(82) and (83) in Appendix B.] r as well as t, and G is di-
agonal in spin space and expressed as

(AS)

which is the CPA equation for the system where the local
magnetic moments take only up or down orientation ran-
domly.

We comment on technical aspects of the CPA calcula-
tion. As the d band is fairly narrow in transition-metal
oxides, the convergence of the iterative solution of the
CPA equation (Al 1) is generally slow. Ducastelle3 dis-
cussed this convergence problem and proposed a useful
solution, which we adopted in the present work: By using
the averaged t matrix as a starting t„an approximate
coherent t matrix in the ith iteration t,"is used to obtain
t, of the next step by

(t(i+1))—( (t(i))—1 (K(i))(1+(K(i) ) c(i))—)

with

(A12)

(K(i)) & (K+(i)+K —(i)) (A13)

APPENDIX B: cos8 DEPENDENCE OF hE OF EQ. (1)

We make use of the following equation:

ln det( 1.+A ) =TrA +TrA + —,(TrA ) +. . . (81)

If we retain the first-order term, Eq. (1) is reduced to Eq.
(6). Like Eq. (A7), the K matrix is also expressed as

Ko(eo) = —,(K++K ) X 1+—'(K+ K)X(ep cr )—
%++K—=0,

or more explicitly,

(A10) (82)

K„(e„)= , (K++K ) —X1+—,(K+ —K ) X(e„o ) .

t, '= ,'(t+'+t ')+(t, —' t+')r~(t, t—), —
With Eqs. (AS), (82), and (83), we obtain

(83)

K(pe)o7 oK( e)r p= & [(K +K )1p (K +K )1„p]X 1 + ~ [(K —K )7 p (K +K )1„p]X(ep cr )

+ —[(K++K )1o„(K K)r+o]X(e„o+ '—[(K —K )&o~(K+ —K )&'o]

X[(e .pe)1 +i(epXe„) o ], (84)

where we make use of the relation

(ep. o)(e„o.)=(ep e„)1+i(epXe„) cr .

The trace of (84) over (L,n, s) is reduced to

Tr[Ko(eo)&onK (e )'Co]= —,
' tTr[«+K )&on] +Tr[(K+—K )&o 1 coseI, (86)

where 8 is the angle between ep and e„and Tr on the right-hand side of Eq. (86) is over (L,n). Therefore, the cos8
dependence of Eq. (1) implies that the first term in (Bl) dominates. This implies also that the many spin interactions
beyond the pair interaction in Eq. (4) can be neglected.
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