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We have performed an extensive x-ray scattering study of the freezing transition of incommensu-
rate xenon physisorbed on graphite as a function of temperature and chemical potential. At a cov-

erage of 1.1 monolayers the transition is continuous to within the substrate-determined resolution,
with correlation lengths in the fluid phase exceeding 50 atomic spacings. At coverages less than one
monolayer the transition is first order. A comparison is made with current theories of two-
dimensional melting.

I. INTRODUCTION

The last 15 years have seen intensive research on the
structure, thermodynamics, and phase transitions of sim-
ple gases adsorbed on graphite. ' The behavior of both
rare gases such as krypton and xenon, and more compli-
cated molecules such as oxygen and methane, have been
studied using a number of techniques including adsorption
isotherms, heat capacity, x-ray scattering, low-energy elec-
tron diffraction (LEED), and neutron scattering. Exfoli-
ated graphites such as Union Carbide Grafoil and ZI'X
have proved exceptionally useful as substrates because of
their large, relatively homogeneous surfaces. We have
used high-resolution x-ray scattering to study the melting
transition of xenon adsorbed on ZYX exfoliated graphite
as a function of both temperature and coverage near
monolayer density. These experiments were motivated in
part by theoretical and numerical studies which made
varying predictions about the nature of the two-
dimensional (2D) melting transition, some predicting a
first-order transition and others predicting a continuous
transition with unusual properties. Xenon forms a tri-
angular 2D lattice that is incommensurate with the gra-
phite substrate at temperatures near the melting transi-
tion, and both the adatom-adatom and adatom-substrate
interactions approximate simple Lennard-Jones potentials.
It therefore provides a particularly good experimental
realization of an ideal 2D solid. We find that in the sub-
monolayer regime, the melting transition is strongly first
order, but that at coverages greater than one monolayer
the melting transition appears to be continuous.

In Sec. II we summarize briefly current theoretical
work on the melting transition of 2D solids. Section III
reviews previous work on the xenon on graphite system.
In Sec. IV we describe the experimental techniques used,

and in Sec. V we describe the data analysis. Section VI
describes high-resolution x-ray data taken at the Stanford
Synchrotron Radiation Laboratory (SSRL), while Sec. VII
describes more extensive but lower-resolution data mea-
sured with a rotating-anode x-ray generator at the Mas-
sachusetts Institute of Technology (MIT). In Sec. VIII we
discuss our results and compare them with the theoretical
predictions.

II. REVIEW OF THEORY

It has been known for 50 years ' that true crystalline
long-range order (LRO) is impossible in a 2D solid. At
finite temperatures the divergent long-wavelength fluctua-
tions convert the zero-temperature 6 function diffraction
peaks at reciprocal-lattice points ~ to power-law singulari-
ties' ' of the form

2k~ Tz
s(Q —F)~ iQ —r

27TpC

where c is the speed of sound and p is the mass density.
In this low-temperature phase long-range bond-
orientational order survives. A physically appealing
theory originally developed by Berezinskii' and Koster-
litz and Thouless' predicts that 2D systems with two de-

grees of freedom may have a continuous disordering tran-
sition mediated by the thermal unbinding of topological
defects (dislocations in the case of crystals). At high tem-
peratures a phase transition can take place to a disordered
phase, which is characterized by exponential decay of both
orientational and positional order. The presence of a sub-
strate has interesting consequences. If the substrate is
commensurate with the 2D lattice, long-range positional
order can be restored. For incommensurate substrates, as
in the present case of xenon on graphite, the long-
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wavelength phonons of the 2D lattice will still produce a
power-law structure factor. However, Novaco and
McTague' have shown that the ground-state energy of an
incommensurate 2D crystal is minimized when its crystal-
line axes have a definite orientation with respect to the
substrate ("orientational epitaxy"). Thus the chief effect
of the substrate is to provide an orientation field which
will impose some degree of bond-orientational order even
in the completely disordered phase.

Nelson, Halperin, and Young' ' have developed a
dislocation-mediated melting theory in detail for the case
of a triangular solid on a substrate which provides an
orienting field but does not influence the long-range posi-
tional order. This appears to be an appropriate model for
xenon on graphite. A novel prediction of this theory is
that the melting will proceed in two stages: Above the
melting temperature T, the adsorbed layer will have ex-
ponentially decaying positional correlations but will retain
a power-law decay in bond-orientation correlations. This
novel intermediate state is called the "hexatic" phase.
Above a higher temperature T;, both positional and orien-
tational order are short range. The Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory makes a num-
ber of explicit predictions for the critical behavior near
T, . The correlation length on the fluid side of the transi-

tion diverges exponentially,

several thousand particles, and sampling no more than
several million configurations, which corresponds to a
very short interval on a "real" time scale. This means
that continuous transitions, which typically involve large
fluctuations and critical slowing down, may be confused
with first-order transitions which show coexistence and
hysteresis. It may, in fact, be very difficult to determine
the nature of a transition on the basis of numerical calcu-
lations. On the other hand, computer studies have the ad-
vantage that local atomic arrangements can be studied
directly. A recent computer simulation by Abraham, '

which incorporates the possibility of promotion to a
second layer and models the xenon-graphite interactions
as closely as possible, yields results which are similar to
our diffraction results, although his interpretation is
somewhat different. Specifically, he regards. fluctuations
of the number of particles in the first layer as signifying
an inherent instability in the overfilled xenon monolayer.
In the experimental case, the presence of the three-
dimensional (3D) vapor means that the film is described
by a grand-canonical ensemble, for which local fiuctua-
tions of the number of adsorbed particles are to be expect-
ed, particularly near a second-order phase transition.
Furthermore, because one cannot distinguish the separate
layers as distinct phases, the exchange of atoms between
layers does not imply the presence of more than one
phase.

~ (ri() o)(meltmg) & —,

As T approaches T, from above, S ( r ) diverges with

(3)

S(r) ~ [g'+(T)]

Equally detailed predictions were made for the hexatic-
to-liquid transition, but since our experiments did not ad-
dress the existence of the hexatic phase these predictions
will not be discussed here.

The KTHNY model assumes a continuous transition
and develops a self-consistent theory based on the unbind-
ing of thermal dislocations. It is always possible that
some other mechanism, such as the spontaneous forma-
tion of grain boundaries, might cause a first-order transi-
tion at a lower temperature. There have been a number of
other theories of 2D melting, most employing a mean-
field approach, many of which predict a first-order transi-
tion.

A considerable number of molecular dynamics and
Monte Carlo calculations have been done on the 2D melt-
ing problem, based on a wide variety of potentials (power
law, hard sphere, Lennard-Jones, and Gaussian). " The
results have proven to be controversial, with some authors
seeing behavior consistent with the KTHNY picture, some
seeing evidence for a first-order transition, and some
claiming that both types of transition are possible. Com-
puter simulations are typically done using no more than

where 0.3696. . . ~v~0. 4. The exponent describing the
(1,0) peak is restricted to the range

III. PREVIOUS EXPERIMENTAI. , STUDIES

The bulk properties of xenon are well known.
Bulk solid xenon has the fcc structure with a nearest-
neighbor distance of 5.31 A. The critical-point and
triple-point temperatures and pressures are the following:
T3 —389.7 K, p 3,——57.64 atm, T3, ——16 1 ~ 3 K, and

p3, ——-612 Torr. The Debye temperature of the solid is ap-
proximately 64 K.

Although the adsorption of xenon on graphite has been
studied since 1957, the first clear evidence for phase
transitions in physisorbed xenon on graphite was seen in
1966 with the pioneering LEED experiments of Lander
and Morrison. At T =90 K, P-10 Torr, Lander and
Morrison saw a LEED pattern that they attributed to a
V3&(V3 R30' commensurate structure. It is now be-
lieved that the structure they observed was incommensu-
rate, but too close to the epitaxial spacing for them to
resolve the difference. Heating the sample a few degrees
caused the adsorbed xenon crystal to melt. The first iso-
therm measurements for xenon on exfoliated graphite
were performed by Thorny, Duval, and co-workers.
From detailed isotherm measurements, they constructed
the phase diagrams for Xe and other gases adsorbed on
graphite. The phase diagram of submonolayer xenon (see
Figs. 1 and 2) is similar to that of 3D xenon, with distinct
gas, liquid, and solid phases. The two-dimensional (2D)
Xe triple-point and critical-point temperatures were mea-
sured to be T2, ——99 K. and T2, ——117 K. Suzanne and
et al. and Bienfait and Venables performed LEED and
Auger studies which confirmed and extended the Thorny
and Duval results in the low-pressure regime and provided
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information about atomic vibrations and growth kinetics
in the submonolayer regime. Venables et al. ' performed
a series of electron-diffraction experiments which showed
for the first time that Xe has a low-temperature
commensurate-incommensurate transition, and is incom-
mensurate for all temperatures in the vicinity of the triple
point. They also observed the orientational epitaxy of in-
commensurate 2D Xe solids. Using ellipsometry, Quentel
eI, a/. were able to confirm independently the isotherm
results of Thorny and Duval. Ellis et al. have diffracted
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FIG. 1. Phase diagram of xenon in the presence of a graphite

substrate. Solid lines are from Refs. 49 —51, 57 —60, and 66,
dashed lines and circles are new results.

hydrogen atoms from xenon adsorbed on graphite, and re-
port that at 26 K, Xe/graphite forms the v 3Xv 3 R 30
commensurate structure. Litzinger and Stewart per-
formed heat-capacity measurements in the coverage-
temperature region 0. 19 & e & 1.05, 65 & T & 160 K. (The
coverage 8 is in units of one monolayer. ) The presence of
a constant-temperature line of anomalies between
0.2&6 &0.7 at T =99.95 K confirms the existence of a
submonolayer triple point. The heat-capacity peak be-
comes unmeasurably weak at higher coverages.

Brady, Fein, and Steele performed x-ray scattering
measurements of xenon on spheron (a form of carbon
black) but since they took data only in the region
0. 1 & 8 & 1.05, T = 175 K, they only observed scattering
from a 2D fluid. Hammonds et al. performed x-ray
scattering experiments in the region 0.30 &e & 2.0,
88 & T & 112 K. This work confirmed the isotherm results
of Thorny and Duval and the LEED result of Lander and
Morrison in detail, including the identification of a 2D
triple point at 99 K. The 2D solid phase at T =112 K
was found to be triangular and incommensurate. The evo-
lution of peak intensity with coverage showed that succes-
sive layers form an hcp or fcc stacking pattern. This re-
sult is consistent with the observation that the 2D xenon
lattice constant very nearly matches the nearest-neighbor
distance in the (111)planes of 3D fcc solid xenon. Some
of the x-ray results on monolayer xenon melting described
in this paper have been reported elsewhere.

Other studies of the melting of incommensurate phy-
sisorbed phases have been performed on CD4 (Ref. 68) and
argon. The methane data were analyzed using similar
techniques, and yielded results consistent with, the present
work, showing evidence of a continuous melting transition
in monolayer adsorbed methane. This experiment was

90 0.5 1.5 2.
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FIG. 2. Phase diagram of xenon on graphite between 0 and 2 monolayers. Dashed lines are paths followed in experiments. A,
SSRL III; B, MIT1.01; C, MIT1.26; D, MIT1.33; E, MIT1.57; I', MIT1.59 and SSRL I; 6, MIT1.84; H, SSRL II.
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carried out with a resolution somewhat lower than that of
the rotating-anode data described in Sec. VIII, and was
therefore unable in our opinion to differentiate unambigu-
ously between power-law and exponential correlation
functions for correlation lengths exceeding about 40 A.
The purpose of the argon experiment was to make a sys-
tematic comparison between the phase diagrams of argon,
krypton, and xenon adsorbed on ZYX exfoliated graphite.
The melting transition of argon was studied with high-
resolution synchrotron techniques (L,fr = 1200 A) and was
found to be continuous at higher densities. The signal lev-
el in the present work was sufficiently high to enable a
more detailed analysis of the data than was possible in the
argon experiment. Further experiments on the argon-on-
graphite system by the same group and two of us (P.W.S.
and D.E.M.) using a higher-flux wiggler beam line at
SSRL are currently in progress. Dimon et al. have re-
cently performed measurements which confirm our identi-
fication of a tricritical point at T-125 K, to be discussed
below. Rosenbaum et al. ' have recently performed a
scattering measurement of xenon on single-
crystal —exfoliated graphite; their measurements support
the Nelson-Halperin prediction of a hexatic phase.

The p Tproject-ion of the Xe/graphite system is shown
in Fig. 1. The 2D triple-point and critical-point tempera-
tures are at approximately 0.4 times their bulk values.
The 2D solid-fluid phase boundary and the 3D liquid-gas
phase boundary are observed to converge. Since symme-
try considerations argue against the existence of a mono-
layer critical point, the monolayer liquid-solid phase
boundary must terminate either at a multilayer phase
boundary or at the bulk liquid-gas phase boundary. The
corresponding e Tprojection of -the Xe/graphite phase
diagram is shown in Fig. 2. Below T =99 K and 8=1
the only possible phases are a dilute gas or a monolayer
solid containing a small number of vacancies. A broad
first-order coexistence region separates these two phases.
There is a triple point at 99 K, above which the system
makes first-order transitions between a dilute gas, a dense
liquid, and a monolayer solid. At T =112 K, the solid-
fluid coexistence region is quite narrow, with boundaries
at 0.84&8 &0.88. At T =117 K and 8=0.4 there is a
critical point above which the only phases are a fluid and
a monolayer solid.

The monolayer solid has a triangular structure that is
incommensurate with the substrate at all coverages mea-
sured when T ~70 K. However, as will be discussed
below, the position of the solid Xe(1,0) peak near the melt-
ing transition was found to be close to r=1.60 A ', only
6% away from the v 3XV3 R30 commensurate value

= 1.70 A '. In thermal equilibrium, the monolayer
solid must have both atoms promoted to the second layer
and vacancies in the first layer. Increasing coverage
forces the crystal to contract and promote atoms to the
second layer. At T=112 K, the (1,0) reciprocal-lattice
position increases continuously with increasing coverage,
reaching a limiting value &=1.64 A ' at 8=1.5. On the
other hand, the reciprocal-lattice vector at the

O

coexistence-region boundary is ~=1.59 A '. If we as-
sume that ~=1.64 A ' corresponds to a completely filled

first-layer solid with no vacancies, and that at the coex-
istence boundary there are no second-layer atoms, we find
that the coverage at 8=0.88, T = 112 K is 0.88
X(1.64/1. 59) =0.94 in "expanded" lattice units. This
means that the subrnonolayer xenon solid can support at
least 6% vacancies before melting.

Two features are apparent in the region between e= 1

and 2. Firstly, there is a region of coexistence between a
monolayer solid with second-layer gas and a two-layer
solid. While it is plausible that such a region must exist,
the exact phase boundaries above T =112 K are not
known. Secondly, the narrowing of the solid-fluid coex-
istence region has been extrapolated to a multicritical
point above which the transition is continuous. As will be
discussed in more detail below, the liquid-solid transition
is almost certainly first order at T =112 K and continu-
ous at T= 150 K. The exact location of the supposed
multicritical point is bracketed between these two values.

IV. EXPERIMENTAL METHOD

Two sets of measurements were performed: A series of
three high-resolution experiments using synchrotron radi-
ation at SSRL, and a more complete, but much lower-
resolution set of measurements done using a rotating-
anode x-ray generator at MIT. The two sets of experi-
ments employed different samples, sample cells, gas-
handling equipment, and diffractometers, but were similar
in many respects. The MIT data were obtained first, but
were reanalyzed when the much-higher-quality SSRL data
became available. Many of the experimental details have
been described elsewhere. '

Both sets of experiments used Union Carbide UCAR-
ZFXexfoliated graphite. The properties of UCAR-ZFX
have been discussed elsewhere; it has preferentially
oriented adsorption surfaces, a surface coherence length
L =2000+300 A, and a specific surface area 1 —3 m /g.
The distribution of planar orientations is approximately
Gaussian with a halfwidth at half maximum (HWHM) of
—11 . The SSRL sample measured 12)& 12)&2 mm, with
the c axis parallel to the thin direction. Only the center 20
mm were exposed to x rays. The MIT sample was cut
into strips measuring 24)&2.5)&1 mm . The strips were
drilled and threaded onto thin rods, with the c-axis verti-
cal, to form a sample with dimensions 24)&22&&2. 5 mm.
In the MIT configuration the sample was rotated about
the c axis, while in the SSRL configuration the c axis was
in the plane of scattering, but in both cases the
momentum-transfer wave vector k=kf —k; was in a
basal-plane direction, and perpendicular to the c axis.
Sample thicknesses in the range 1—2 mm are convenient
since the x-ray attenuation depth at X=1.5 A of ZYX gra-
phite is —1 mm. The graphite was prepared by baking it
at 900'C under a vacuum & 10 Torr for several hours
to remove contaminants and loading it into the sample
cell under clean nitrogen atmosphere.

The SSRL sample cell was constructed of aluminum,
with cylindrical beryllium windows. It was approximately
25 mm high and 20 mm in diameter. The rectangular
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MIT sample cell was constructed of stainless steel with
flat beryllium windows. The inside dimensions were
26~24X4.2 mm. Temperature control was maintained
using Air Products Displex cryostats with platinum resis-
tance and silicon diode thermometers. The sample tem-
perature was measured with a precision of 0.01 K and an
absolute accuracy of 0.5 K. The amount of gas adsorbed
on the graphite surface was measured volumetrically;
pressures were measured using two Baratron pressure
gauges with full scale ranges 10 —10 Torr and
10 —10 Torr, respectively (1 Torr= 1 mm Hg), and
were corrected for thermal transpiration. The experi-
mentally measured units of surface coverage were (change
in pressure)&&(dosing volume) at room temperature; the
equivalent fractional surface coverage was calculated in-
directly from adsorption isotherms and measured
structural changes. Both the position of inflection points
in the xenon adsorption isotherm ' and the measured
coverage at the krypton commensurate-incommensurate
transition yield an adsorbed volume of 560+30 Torrcm
(=1.8X10' atoms) at monolayer coverage for the MIT
sample and 97+5 Torr cm for the SSRL sample.

The MIT measurements were all done in a "closed-cell"
configuration in which a fixed amount of gas was let into
the sample cell, which was then sealed off. In this type of
scan, the surfaces coverage changes slightly with tempera-
ture because of gas exchange with the 3D gas in the dead
volume of the cell. At a few temperatures the cell was
opened and the vapor pressure measured; the path through
the phase diagram was interpolated between these mea-
sured points, which are indicated with open circles in Fig.
2. The closed-cell technique was used to minimize impur-
ity contamination by the gas-handling system, since each
run lasted for several days. Scans done in this way will
henceforth be labeled MITx, where x is the amount of gas
in the cell measured in coverage units, i.e., MIT1.59 refers
to an experiment in which an amount of xenon corre-
sponding to 1.59 monolayers was sealed in the cell. This
represents the true surface coverage only at zero tempera-
ture.

The SSRL measurements were done three different
ways. SSRL I was a closed-cell scan at a fractional
dosage very close to that of the MIT1.59 run; the vapor
pressure at T =150 K was 50.0 Torr as compared with
48.03 Torr at T =149.25 K in the MIT1.59 run. The
SSRL II run was done as a function of vapor pressure at a
constant temperature T =150.0 K; it crossed the liquid-
solid phase boundary at approximately the same point as
the MIT1.59 and SSRL I runs (1.1 monolayers). The
SSRL III run was done as a function of surface coverage
at a constant temperature T = 112 K.

The paths of the various MIT and SSRL runs are
shown in dashed lines in Fig. 2. There is an important
difference between closed-cell scans done as a function of
temperature and constant-temperature scans done as a
function of 3D vapor pressure (i.e., chemical potential): A
closed-cell scan steps through a first-order coexistence re-
gion, whereas a chemical-potential scan jumps over such a
region. Both types of scan follow similar paths across a
continuous transition line. In all cases mass exchange

took place not only between the adlayer and the 3D vapor
but also between the filled first layer and the partially
filled second layer. The xenon-graphite system is 2D only
in the sense that solid correlations only develop parallel to
the graphite planes.

The high-resolution experiments used the synchrotron
radiation from the eight-pole wiggler at Beamline VII of
SSRL. The x rays were focused by a metal-coated mir-
ror. The beam was monochromated by a double Si(111)
monochromator tuned to A, =1.74 A, passed through a
monitor and slits, diffracted from the sample in the verti-
cal direction, diffracted from a Ge(111) analyzer crystal,
and measured by a NaI scintillation detector. Scattering
was done in transmission in an essentially nondispersive
configuration. The longitudinal resolution was
hq=0. 0003 A ' HWHM. This was considerably nar-
rower than the sharpest Xe(1,0) peak, which had a finite-
size-determined width of 0.0016 A ' HWHM. The out-
of-plane resolution was —1' HWHM.

The source of the x rays in the low-resolution experi-
ments was a Rigaku 12-kW rotating-anode x-ray genera-
tor operating at 8 kW. The scattering was done in
transmission in a two-axis configuration. The monochro-
mator was a 1)&1 in. vertically focusing graphite (002)
monochromator, which selected the Cu Kcx spectral line
(A, = 1.5418 A). The beam was further collimated by slits
before and after the monochromator and immediately be-
fore the sample, and by Soller slits in front of the scintilla-
tion detector. The longitudinal instrumental resolution
was Aq=0. 0085 A ' HWHM, corresponding to a real-
space resolution m/Aq =370 A. The out-of-plane resolu-
tion was approximately 2' HWHM. Both diffractometers
were controlled by PDP 11/34 minicomputers via "com-
puter automated measurement and control" (CAMAC) in-
strumentation interfaces.

V. DATA REDUCTION

We now discuss the data analysis, some details of which
have been described elsewhere. The scattered x-ray in-
tensity was normalized to the monitor signal. The resul-
tant intensity was compared via least-squares fits to vari-
ous theoretical models. A least-squares fit yields a
goodness-of-fit parameter X, which represents the average
deviation of the model from the data in units of one stan-
dard deviation. It is important to note that the value of

thus obtained depends on the counting statistics. In the
limit of very poor statistics, the standard error is large,
and g is not highly sensitive to the model used. As the
counting statistics improve, X will increase for incorrect
models but will remain close to unity for the correct
model in the absence of systematic experimental errors.

As discussed in Sec. II, it is expected that in a true 2D
solid the 5-function Bragg peaks will be replaced by
power-law singularities of the form [Eq. (I)]. In a 2D
fluid the scattering take the form of broad cylindrical
tubes. In a 2D orientationally ordered or hexatic fluid we
expect that Ornstein-Zernike decay of real-space correla-
tions will lead to a Lorentzian in-plane scattering cross
section
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S(Q) ~
(Q —r) +v

It was found that crystalline peaks were in fact also well
modeled by sufficiently sharp Lorentzians, although this
is unphysical; this effect will be discussed in detail later.
These intrinsic scattering cross sections are modified by a
number of factors to give the measured signal. Both the
instrumental resolution and finite-sample-size effects
smooth out the power-law singularity in the solid line
shape and also broaden a Lorentzian line shape. Indeed,
the instrumental resolution and finite-size rounding affect
the line shape the same way. If one neglects the finite-size

cutoff of low-frequency phonons, the instrumental resolu-
tion and the finite-size effect both contribute Gaussian
terms to the peak width. Thus, the instrumental broaden-
ing can be incorporated in an effective finite sample size

L,ff —[L + (m /5) ]'

where I. is the intrinsic sample size and 5 is the instru-
mental width. Several approximate formulas for a
power-law line shape convoluted with finite-size rounding
have been published '; we have used the approximation
of Dutta and Sinha,

S(q) = I
a

2L 2

1 —~ @ 1 —~ 1;—q eff

yv~ 2 2' '

o I (b)r(c+s)s! '

f 217 d(p

(Q —7) +a
i~ +Q +r

g (d2 1 )1/2 ' 2gr

where y is the angle between Q and ~ This line sha.pe is
well approximated by the square root of a Lorentzian
when

l Q —r
l
«r and

l Q —r
l
)a. If we had used a

Lorentzian instead of a powder-averaged Lorentzian, the
peak halfwidths would have been equal to a. instead of
v 3a. The powder-averaged form is almost certainly
correct close to the freezing transition. A final convolu-
tion is necessary because of the vertical mosaic of the
ZYX substrate. In the scattering cross section for a 2D
crystal the Bragg spots are replaced by Bragg rods normal
to the plane. If the crystal plane is tilted with respect to

where @ is the degenerate hyperbolic function
("Kummer's function"). @(b;c;z) is well behaved for
small z, but contains a large number of oscillatory terms
when

l
z

l
is large. Therefore, for z ) 10, an alternate ex-

pression was used,

4(a; b;z) =e'N(b —a; b; —z),

4( abz)= z ', lz
l
))1 .r(b)

I (b —a)

Note that the forms [Eqs. (7) and (8)] are universal func-
tions of qLeff. It is straightforward to verify that this line
shape becomes a finite-size Gaussian in the limit
qL,ff«1, and has power-law tails S(q)~q"
qL,ff))1. In the case of the Lorentzian line shape, if
finite-size or instrumental resolution effects are to be in-
cluded the Gaussian broadening must be numerically con-
voluted with the Lorentzian line shape.

The intrinsic line shapes must now be powder averaged
because of the orientationaiiy disordered nature of the
ZYX substrate. In the case of the Lorentzian line shape
this can be done analytically,

I

the scattering plane by an angle P, the scattering max-
imum will appear at a larger vector r'=r/cos(g). This
leads to the well-known "sawtooth line shape" of 2D crys-
tals. ' ' Therefore, including an instrumental resolution
and/or finite-size function R(Q), the azimuthal powder
average and the vertical mosaic average, an intrinsic line
shape Io will be convoluted to give

I(Q)= fd Q'R(Q —Q')

xfdy fde(0)lo
l Q

'
l

cosP .
cosP

(10)

Here r is a reciprocal-lattice vector, 8 is the angle of r
relative to some arbitrary direction in the basal plane, and
P(f) is the probability that a crystalline plane is tilted an
angle g from the scattering plane. As discussed above the
Lorentzian line shape was analytically powder averaged,
but the resolution and/or finite-size and vertical mosaic
integrals were done numerically. To minimize calcula-
tional time, fits were also done in which the powder-
averaged Lorentzians were not convoluted with the resolu-
tion function; it was found that the values of x. thus ob-
tained agreed with the resolution-convoluted values when
the peak halfwidth was more than 1.5 times the instru-
mental limit. The power-law line shape incorporates the
finite-size convolution in the Kummer-function approxi-
mation, but the powder average and vertical mosaic in-
tegral were done numerically. The rotating-anode data
were then multiplied by a polarization factor
[1+cos (25)]/2.

In addition to the intrinsic scattering due to the ad-
sorbed xenon, there was a diffuse scattering background
due to scattering from substrate phonons, Compton
scattering, etc. Typical peak-to-background intensity ra-
tios were 6:1 in the solid phase for both sets of experi-
ments. This background scattering was measured when
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there was no xenon in the cell and fitted to a smooth poly-
nomial B(Q). With xenon in the cell, diffuse background
scattering was partially absorbed. This effect was taken
into account with an "absorption factor" b (P, T), so that
the final scattering cross section was of the form

l„),(Q) =& (P, T)B(Q) I(Q), (11)
2

where I(Q) is the intrinsic 2D scattering cross section
[Eq. (10)] including all convolutions (the polarization fac-
tor was used only with the MIT data). Plotted diffraction
curves in this paper have all had the background scatter-
ing subtracted. Accurate knowledge of the background
absorption factor b (P, T) was important because precise
measurement of the intrinsic scattering in the peak wings
depends sensitively on the amount of diffuse background
scattering to be subtracted. In the MIT experiments, it
was possible to calculate the absorption factor ab initio,

b =exp[ a(l,p, +—l„p, )], (12)

where a =330 cm /g is the mass absorption coefficient for
Curn x rays passing through xenon, I, and I, are the
lengths of the x-ray path through the Xe 2D solid and Xe
3D vapor regions of the sample cell, and p, and p, are the
mass densities of the 2D xenon solid and 3D xenon vapor.
Typical calculated values were b =0.7 —0.85. In the
SSRL experiments the absorption factor could not be cal-
culated with sufficient accuracy due to the large volume
of the sample cell. Therefore, b(PT), was obtained from
the least-squares fits based on combined criteria of physi-
cal plausibility and maximum goodness of fit: Statistical-
ly significant negative signal after background subtraction
was not permitted in any scan, and b was fixed for a given
run at the value that gave the smallest average 7 for the
entire run. Values of b obtained in this way agreed well
with approximate ab initio calculations. In addition, both
the scattering amplitude and the absorption factor were
renormalized by the observed attenuation of the graphite
(002) peak; this canceled some of the effects of fluctuating
incident x-ray flux.

In the fits to a Lorentzian cross section, the possible fit-
ting parameters were the scattering amplitude 3, peak po-
sition r, width Ir, vertical mosaic (tilt distribution
HWHM) M, effective size I., and absorption factor b.
However, the absorption factor was fixed as discussed
above. The crystal size was fixed at 2000 A or ~/6, the
instrumental resolution, whichever was smaller. The vert-
ical mosaic, which was determined by the line-shape
asymmetry and was an intrinsic property of the substrate,
was held fixed at the best average value for that run (typi-
cally 11' HWHM). When the central portion of the peak
is resolution limited, ~ is determined by the peak-to-wing
intensity ratio, which is quite sensitive to the background
absorption factor. The power-law line-shape fits were
done similarly: b, M, and I. were fixed at their calculated
or best average positions, and the free fitting parameters
were the scattering amplitude, peak position, and exponent

Rather than being determined by the slope of the
scattering in the wings, as one might naively expect, q

also is primarily determined by the peak-to-wing intensity
ratio. The uncertainties in the absorption, effective size,
and vertical mosaic were incorporated in the error bars f"or
3, ~, ~, and g.

VI. HIGH-RESOLUTION DATA

We now present our high-resolution diffraction results.
Figures 3 and 4 show the Xe (1,0) diffraction peaks from
the SSRL I run, which was a closed-cell run that crossed
the liquid-solid phase boundary at a coverage of approxi-
mately 1.1 monolayers. The scattered intensity was gen-
erally integrated for either 4 & 10 or 10 monitor counts
at each point; the average monitor-count rate was 10
counts/15 sec. In these and succeeding figures, the back-
ground scattering has been subtracted. The solid lines in
Fig. 3 are fits to a power-law line shape, while the solid
lines through the higher-temperature scans in Fig. 4 are
fits to a Lorentzian line shape, as described in the preced-
ing section.

At T = 120 K there is a sharp primary diffraction peak
centered at ~=1.639 A ', with a small amount of scatter-
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FIG. 3. SSRL I Xe(1,0) diffraction curves. Data points
shown are characteristic; in some cases measurements were
made on a finer mesh. Background has been subtracted. Solid
lines are power-law fits. a, 120 K; b, 135 K; c, 150.0 K; d, 151.3
K; e, 151.6 K.
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FIG. 4. SSRL I Xe(1,0) diffraction curves. Solid lines are
Lorentzian fits. a, 151.60 K; b, 151.80 K; c, 151.90 K; d, 151.95
K; e, 152.00 K; f, 152.05 K; g, 152.10 K; h, 152.15 K; i, 152.25
K; j, 152.50 K; k, 153.0 K; l, 154.0 K; m, 160.0 K.

ing in the low-Q wing. There is also a broader, but well
defined, peak at Q —1.73 A '. A calculation of the su-
perstructure due to the hexagonal strain modulation
predicts ' a sharp superlattice peak at
+(r„r;„„)/2 —1.73 A ' if-the adsorbed film is ro-
tated 30' with respect to the substrate lattice vectors. The
120-K scan in Fig. 3 clearly shows that the modulation
peak is much broader than the primary peak. This ap-
parent discrepancy could be resolved if the orientation be-
tween the substrate and adsorbate were not perfectly rigid.

Novaco and McTague' have shown that the energy of an
adsorbed layer has a rather broad minimum as a function
of orientational angle, which will be displaced from the
high-symmetry direction. The observation of satellites
around higher-order peaks would tend to confirm the
description of a rotated monolayer; however, studies on
oriented substrates are required to make an unambiguous
determination of the orientation of the adsorbate. Be-
tween T = 120 and 150 K, the primary peak moves gradu-
ally to ~=1.604 A ' and remains sharp, the modulation
peak becomes weaker and broader until it disappears, and
the scattering in the wings increases slightly. Between
T =150.0 and 151.8 K, the peak broadens slightly, the
scattering in the wings increases, and the reciprocal-lattice
vector decreases to ~=1.599 A '. Between T =151.80
and 152.20 K, the correlations decrease dramatically. The
central peak continuously becomes broader and weaker
and the scattering in the wings increases. Since peak
width is inversely proportional to positional correlation
length, this means that the correlation length is decreas-
ing. Scans above T =152.20 K are clearly due to a fluid
phase. The peak continues to broaden at a reduced rate,
and the peak position moves to ~=1.51 A ' at T =178
K. No evidence of hysteresis is seen.

All the diffraction peaks were first fitted to powder-
averaged Lorentzian line shapes as described in the
preceding section; it was found empirically that this line
shape could describe both the solid and liquid line shapes
satisfactorily. Table I shows the values of scattering am-
plitude, peak position, and z from Lorentzian fits to the
SSRL I run, as well as values of i) from power-law fits to
these scans. Fits below 150 K were done with a variable
background parameter. Although the Lorentzian line
shape is an incorrect description of the solid phase, it is a
useful way to parametrize the shape of the diffraction
curves. A background absorption factor of b =0.8 gave
the best fits above 150 K. Figure 5 shows the inverse
correlation length z obtained from Lorentzian fits to the
SSRL I scans. Figure 6 shows the fitted peak position r
and peak amplitude A from Lorentzian fits, and the ex-

ponent g from power-law fits, to the SSRL I data. The
error bars are estimated systematic errors due to uncer-
tainty in the background absorption. Several features can
be seen. The peak position evolves smoothly from
r-1.605 to 1.58 A ', corresponding to a 1.5% lattice ex-
pansion. The fitted amplitude, which is proportional to
the azimuthally averaged scattered intensity at the peak
position, decreases smoothly and rapidly from 20 (arbi-
trary units) at T =151.6 K to 0.4 at T =152.2 K. The
most dramatic curve is that describing the inverse correla-
tion length ~ versus temperature. At T = 150 K, the peak
has a finite-size-limited width. Between T =151.6 and
152.3 K, the inverse correlation length increases rapidly
and continuously to ~=0.03 A ', corresponding to a
correlation length of 30 A, or about seven nearest-
neighbor distances. At T =156 K, x=0.0554 A ', and at
T =178 K, re=0. 1 A ', corresponding to next-nearest-
neighbor correlations only.

The solid lines in Fig. 5 are the results of a fit of I( vs T
to the KTHNY prediction [Eq. (2)],
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TABLE I. Fits to SSRL I diffraction scans.

T (K)

120.0
125.0
130.0
135.0
140.0
145.0
150.0
150.50
151.00
151.30
151.60
151.80
151.90
151.95
152.00
152.05
152.10
152.15
152.20
152.25
152.30
152.40
152.50
152.70
153.0
154.0
156.0
160.0
178.0

L2'

59.0
8.4
5.6

10.8
5.1

6.8
4.5
6.8
5.9
5.7
5.3
4.4
3.1

2.6
2.9
2.1

1.6
1.3
1.3
0.9
1.5
1.4
1.5
1.7
2.0
1.6
2.3
2.0
3.1

36.6
34.5
33.2
28.6
27.6
27.4
17.8
15.9
13.3
11.82
8.64
5.49
3.79
3.04
2.37
1.87
1.448
1.164
0.968
0.967
0.897
0.854
0.789
0.763
0.697
0.630
0.545
0.455
0.301

e (A-')

1.638 84
1.635 73
1.631 29
1.631 67
1.620 69
1.612 37
1.604 40
1.603 11
1.601 61
1.600 80
1.599 84
1.599 1

1.598 7
1.598 6
1.598 3
1.597 6
1.597 9
1.597 8
1.596 8
1.596 6
1.595 9
1.596 1

1.593 9
1.592 3
1.591 3
1.588 7
1.578 7
1.56 5
1.51 0

~' (A ')

0.00043
0.000 55
0.000 S4
0.00047
0.000 49
0.00043
0.000 60
0.000 67
0.000 77
0.000 86
0.001 23
0.002 20
0.003 55
0.004 83
0.006 91
0.009 7
0.014 5

0.020 4
0.027 4
0.026 9
0.030 8

0.032 6
0.036 2
0.037 3
0.043 6
0.046 6
0.053 5
0.06 2
0.09 7

~" (A ')

0.000 17

0.000 29

0.000 30
0.000 33
0.00045
0.000 55
0.000 86
0.001 77
0.003 09
0.004 33
0.006 22

0.072

40.0
7.0

9.0
6.4
6.5
5.4
3.8
3.1

3.5
2.9
5.8
9.5
9.5

0.23
0.26

0.26
0.25
0.25
0.273
0.292
0.306
0.324
0.361
0.429
0.490
0.512

'Results of fits to powder-averaged Lorentzians. A is proportional to the peak scattered intensity in this
model.
Results of fits to powder-averaged and resolution-convoluted Lorentzians.

'Results of fits to power-law line shapes.

Io~

I—
C9

LLj

O
I—

LLI

CC
C)
C3

bJ
M

QJ

0.04—

0. 03—

0.02—

0.01—

0
O. 06—

0.05—

0.04—

0.05—

0.02—

O.01—

151.8 152.0 152.2 152.4
I I I I I 1

~il
il

~it

i'

1)'
I.

I I I I I

150 1 52 154 156

TEMPERATURE ( K )

FIG. 5. Inverse correlation lengths from Lorentzian fits to
SSRL I scans. Solid lines are fits to KTHNY form; dashed lines
are power-law fits as discussed in text. Top and bottom panels
are the same fits with different scales.

C
~( T) =zoexp B-

T Tc
(13)

v =0.4 (v= 0.37 gives an equally good result),
~o ——0.082 A ', B =0.0862, and T, =1S2.00 K. The fit-
ted parameters depended sensitively on which points were
included in the fit; the final values were 0.08
A & Kp(0. 18 A ', 0.08 &8 & 0.22, and 151.80
K & T, & 152.00 K. It should be noted that the theoretical
curve actually has a sigmoidal shape and approaches the
temperature axis tangentially for temperatures extremely
close to T, . The exponential prediction lies within the er-
ror bars of the'measured inverse correlation lengths except
for the points at 151.8 (T (52.0 K, where the calculated
K is too small. We will discuss the possibility that this ef-
fect is due to a first-order coexistence region in more de-
tail below; the most likely explanation of the transition
rounding is that finite-size and edge effects are playing a
role. Quite possibly, binding-energy heterogeneity effects
also round the transition to some extent. At T =151.90
K, the correlation length is 325 A. Since the limiting crys-
tallite size is I. =2000 A, it is probable that when the
correlation length reaches 300—SOO A edge effects begin
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to play a role. Since the xenon nearest-neighbor distance
is -4.55 A, a correlation length of 500 A would imply
correlated fluid patches containing roughly 10000 atoms.
Cxreif et al. and Cardy have calculated the width of the
transition region in the KTHNY model; they argue that
the KTHNY prediction [Eq. (13)] is only quantitatively
exact when g»10 lattice spacings. It is clear that our
experiments do not probe this asymptotic region.
Nevertheless, within our uncertainties the observed evolu-
tion of fluid correlation lengths is consistent with the
KTHNY prediction with a fitted factor in the exponen-
tial.

The exponential form [Eq. (13)j for the inverse correla-
tion length is unusual; for conventional phase transitions
one observes a power-law evolution of the correlation
length near the critical point. The dashed line in Fig. 5 is
a fit to a power-law form,

K =Kp
T Tg

Tc
(14)

with T, =152.04 K, v=0.277, and Kp=0. 24 A '. The al-
lowed ranges of the parameters are 151.85 & T, & 152.05,
0.24 A ' & ~p & 0.9 A ', and 0.2 & v &0.5. A value
v-0. 3 does not correspond to any known model and
indeed in 2D systems one typically finds v-0. 8 —1.3.
The power-law form fits the data almost as well as the ex-
ponential form, and misses the same points at T = 151.80
and 151.90 K. The primary source of the error bars for ~0
and v is the uncertainty in T, .

The diffraction peaks between T =120 and 151.95 K
were also fitted to a power-law line shape, as described in
the preceding section. The results of these fits are sum-
marized in Table I. The background was fixed at b =0.8,
with fluctuations renormalized by the intensity of the gra-
phite (002) peak. This procedure worked well for T & 150
K. Between T =135 and 120 K the integrated intensity
under the Gr(002) peak decreased by 20%, while the in-
tegrated intensity in the wing of the xenon peak, between

Q =1.30 and Q =1.35 A ', decreased by 40%. The sud-
den decrease in transmission is probably due to a first-
order second-layer condensation transition. When the
second layer condenses the vapor pressure drops suddenly,
and more of the gas is on the substrate and in the path of
the x-ray beam. The second-layer condensation interpre-
tation is strengthened by the observation that, while the
reciprocal-lattice position changes continuously at higher
temperatures due to thermal lattice expansion, the peak
position remains nearly constant at v=1.615(2) A ' be-
tween T =130 and 135 K. The discrepancy between the
absorption of the Cxr(002) peak and the xenon background
signal is not understood; it is conceivably due to interfer-
ence between the graphite planes and the adsorbed xenon
layers. The solid line for the T = 120 K scan in Fig. 3 was
generated by a least-squares fit in which b(I', T) was al-
lowed to vary. The fit shown gave b =0.219 (i.e., 22%
signal transmission); larger values resulted in negative sub-
tracted counts on the wings. We emphasize, however, that
the background was well behaved in the neighborhood of
the melting transition.

Figure 6 shows the fitted values of g between T =120
and 151.95 K. Error bars on g are estimated systematic
errors due to uncertainties in background subtraction,
crystallite size, and vertical mosaic. The error bars for g
increase below T =150 K. This is due to the anomalous
background absorption described above, the high-Q modu-
lation peak, and the more limited range of the scans. The
exponent evolves slowly from g=0.25+0.07 at T =125 K
to g=0.30+0.05 at 150.5 K. Above T =151 K, g in-
creases rapidly to a value g(T =151.95 K)=0.512. The
quality-of-fit parameter increases rapidly from X =2.9 at
T=151.6 K to 7 =9.5 at T=151.95 K. The power-law
line shape cannot describe the high-temperature curves ac-
curately because increasing g increases the value of the
function in the wing, but leaves the width of the central
part of the peak unchanged, while the measured scattering
has an appreciably broadened central region. When



HEINEY, STEPHENS, BIRGENEAU, HORN, AND MONCTON

where 8] q and e ] d are the coexistence-region boundaries
at the temperature T and I]lq and Isp)ld are the scattering
line shapes at those boundaries. We assume that the solid
and fluid correlation lengths are relatively constant along
the phase boundaries; the solid peak position at melting
was found in the MIT experiments to be almost constant
along the melting curve. Fits were done to the SSRL I
scans assuming various coexistence boundaries. The dif-
fraction line shape was generated by linear interpolation
between best-fit line shapes at the assumed phase boun-
daries. g was then calculated for scans at temperatures
between the coexistence boundary temperatures T, and TI
with no adjustable parameters, assuming a = ( T —T, )/
(Tt —T, ). Figure 7 shows the values of X from these fits
with various assumed endpoints. The pure Lorentzian,
single-phase fits give 2&7 &5 (dashed line). T =151.3 K
is clearly not the solid-phase boundary, since this choice
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FIG. 7. Value of g from coexistence fits to SSRL I scans.
Coexistence region boundaries are A, 151.3—152.15; B,
151.6—152.15; C, 151.6—152.05; D, 151.6—151.95; E single-
phase Lorentzian fits (dashed line).

T&151.8 K, the peaks must be described by a highly
correlated fluid, possibly with edge effects playing a role.
If we take the increase in X as an indication that the
power-law line shape is no longer valid, then the largest
believable value of the exponent is in the range
0.31 (g (0.42.

Scans in the solid-liquid transition region were also
analyzed according to a simple model for a first-order
phase transition. A closed-cell run will pass through a
coexistence region, in which the solid material is convert-
ed into fluid according to a lever law. At a given (B,T)
point in the coexistence region, the scattering function is
given by

I(q, T B)=aIuq(q, TBhq)+(1 —a)I„ud(q, TB„td),
(15)

results in X =53 at T =151.8 K. Both the peak position
and the overall shape are incorrect in this fit. As the
coexistence-region boundaries are brought closer together,
the fits predictably improve. When the coexistence limits
are T, =151.6 K, TI ——151.95 K, the single-phase and
coexistence fits are essentially indistinguishable. Since the
single Lorentzian inverse correlation length at T =151.6
K is a=0.00123 A '=1/816 A, it is not physically plau-
sible to assume that the solid coexistence-region boundary
is at any higher temperature.

In another model for two-phase coexistence, a distribu-
tion of binding energies may result in an effective spread
in transition temperatures. Accordingly, we did a set of
fits in which the amplitude of a sharp, solidlike peak and
all of the parameters of an additional broad Lorentzian
were allowed to vary. The width and position of the
"solid" peak were fixed at their 151.6 K values. The
values of ~ thus obtained increased by 10—15%%uo, but
showed the same qualitative evolution up to (=250 A.
We therefore conclude that the xenon melting transition at
T-152 K, as measured in a closed-cell run, shows a con-
tinuous evolution of the correlation length up to at least
200 A, and is consistent with a continuous transition at
longer length scales, but that two-phase coexistence over
the very narrow temperature range between T =-151.6 and
151.95 K cannot be ruled out. Note that the melting tran-
sition, although apparently continuous, is quite rapid; ~
evolves from the reciprocal of the finite-size limit to half
of its liquid saturation value between T = 151.8 and 152.3,
0.003 in reduced temperature.

A second run, SSRL II, was done as a function of vapor
pressure at a constant temperature T =150.0 K. Such an
experiment differs qualitatively from a closed-cell run.
Because the 30 vapor pressure is proportional to
exp(chemical potential), and phases in equilibrium must
have the same chemical potential, a first-order transition
will manifest itself as a discontinuous change in the
scattering profiles as a function of pressure; that is, a
discontinuous jump in the fitted correlation length as a
function of pressure is the signature of a first-order transi-
tion, while a continuous evolution of the correlation
length indicates a continuous transition. However, even a
first-order transition may show some rounding due to
macroscopic disorder, resulting in apparent two-phase
coexistence. The diffraction peaks from this run are
shown in Fig. 8; they are closely similar to those in the
SSRL I run. No evidence of hysteresis is seen. At
I' =40.0 Torr the diffraction line shape is a finite-size-
limited central peak with extended wings, centered at
~=1.600 A '. With decreasing pressure, the peak con-
tinuously becomes broader and weaker. At I' =31.0 Torr,
the peak is quite broad, weaker by a factor of 6, and cen-
tered at ~= 1.59 A

The least-squares fits were done in the same way as for
the SSRL I peaks. Owing to problems with the electron-
storage-ring stability, the x-ray intensity fluctuated con-
siderably, and this problem was not completely eliminated
by the practice of dividing by the monitor signal and nor-
malizing to the Gr(002) integrated intensity. Therefore,
both the data and fits in this run are of slightly lower
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FIG. 8. SSRL II Xe(1,0) diffraction curves as a function of
pressure (in Torr) at T =150 K: a, 40.0; b, 38.19; c, 37.0; d,

5.9; e, 35.43; f, 35.05; g, 34.7; h, 34.50; i, 34.35; j, 34.00; k,
330 l, 31.0. Solid lines for P) 37.0 Torr are power-law line

shapes; the rest are Lorentzians.

quality than those in SSRL I. In particular, the most
fluid peaks (large ~) have large error bars in x due to the
uncertainty in the subtracted background. This, combined
with the lack of diffraction data well into the fluid phase,
precluded detailed fits of ~ vs P, since the saturation value
ao was undetermined. Fitted values of a, peak position,
and amplitude from Lorentzian fits to the SSRL II scans
are shown in Fig. 9. The inverse correlation length
evolves continuously from re=0.0006 A ' at P =40.0

—1Torr to ~=0.029 A at P =31.0 Torr without any ob-
servable discontinuity. The solid line in Fig. 9 is a func-
tional form

a = tcoex p (
—8 [P, /(P, —P) ]")

with empirically chosen parameters P, =35 Torr,
=0.33, and KO=0.082 A (I.e., Ko was fixed at its sa-

turation value from the SSRL I scans). Consistent with
the results described for the SSRL I data, there is some
rounding of the transition below a=0.004 A ' —1/250
A. In this case. ..owever, a substantial variation in sub-

' ~ ~ ~

strate binding energies would be required to explain the
rounding. The scans at pressures above 35.43 Torr were
itted to power-law line shapes. The measured exponents

were g (40 Torr)=0.311, g(38. 19 Torr)=0. 323, g(37.0
Torr) =0.374, and ri(35.9 Torr) =0.420. The power-law
fit to the 35.9-Torr scan resulted in X =10.0, as opposed
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to X =5.6 for a Lorentzian fit. We conclude that for this
run, rI(melting) =0.37+0.05. As with the closed-cell mea-
surements, "coexistence" fits were done with a Lorentzian
plus a sharp peak (with width and position fixed by the fit
at 37.0 Torr) with arbitrary amplitude to mimic the ef-
fects of a spread in T, . Again, the fitted values of Ir in-

creased slightly, but the observed evolution in correlation
length remained continuous.

As discussed in Sec. II the KTHNY theory makes a
prediction [Eq. (4)] for the peak scattering on the liquid
side of the transition as a function of correlation length.
For all models discussed quantitatively to date, the liquid
structure has been given by a single-pole Lorentzian. So
we write

A~"

I~ +(Q —r)
I ( r ) cc a' t

(16)

(17)

I I I I I II

Since Xe on ZYX is a powder in the plane, the measured
scattering function is an integral of the intrinsic scattering
around a circle of radius r,

I'(r) cc f dQ'I(Q')R(r —Q') ccaI(r),
g —1 (18)

Imeasured(+) ~ +

The amplitude parameter A in the Lorentzian fits is pro-
portional to the measured peak intensity. Figure 10 shows
the fitted values of A from the Lorentzian fits to the
SSRL I and SSRL II scans, rescaled to fall on the same
curve. The function 3 =boa fits the data well, im-
plying that g=0.28+0.05. This is in good agreement
with the measured value of g on the solid side of the tran-
sition and the prediction [Eq. (4)]. The power-law evolu-
tion of 2 vs a should occur when [(T —T, ) /T, ]« 1; the
success of the prediction when ir=0.04 A '=1/25 A,
quite far from the transition, is possibly fortuitous.

The last high-resolution run, SSRL III, was done as a

function of surface coverage near 8=0.85 at T =112 K,
where the melting transition is known from isotherm mea-
surements and previous scattering measurements to be
first order. Figure 11 shows the Xe(1,0) diffraction
peaks at surface coverages 6=0.897, 0.855, 0.837, 0.829,
0.812, and 0.767 monolayers. Possibly because of addi-
tional x-ray absorption or Compton scattering by the ad-
sorbed xenon, the background normalization procedure
previously described was unsuccessful, and a small term
linear in Q was added to the intrinsic Lorentzian line
shape. The solid lines in Fig. 11 are fits to a Lorentzian
line shape. This function describes the scans at 8=0.897,
0.829, 0.812, and 0.767 well. However, even with various
corrections to the background the scans at 8=0.855 and
0.837 could not be described by a single Lorentzian line
shape, which was too weak in the wings and not sharp
enough in the center to describe the measured peaks. Fig-
ure 12 shows fits to a two-Lorentzian composite line
shape at 8=0.855 and 0.837. Owing to the limited num-
ber of experimental points, the coexistence line shapes
could not be determined a priori, but it was required that
the two scans be sums of a sharp and a broad line shapes
with all parameters except amplitudes equal for the two
fits, and that the solid line shape has a physically plausible
a. & 0.00125 A '. The fitted curves in Fig. 12 have
~g ——1.575 A ', zl ——0.0335 A ', 7;=1.582 A ', and
~, =0.00jL25 A '. The two-Lorentzian line shapes work
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FIG. 11. Xe(1,0) peaks from SSRL III run at 112 K. Cover-
ages (in units of 1 monolayer) are a, 0.897; b, 0.855; c, 0.837; d,
0.829; e, 0.812; f, 0.767. Solid lines are fits to a single Lorentzi-
an plus a small linear term.
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tion peak halfwidth, but, when g»L, rf, a' is determined
by the peak-to-wing intensity ratio. Some of the peaks
were also analyzed with a power-law line shape, again
with L,ff —370 A. The MIT1.59 run was the most
thorough and was representative of the other runs, so we
will discuss it in detail.

Figure 13 shows selected Xe(1,0) diffraction peaks from
the MIT1.59 run. The average monitor signal rate was
(5)&10 counts/sec), and the scattered intensity was in-
tegrated for at least 1.5X10 monitor counts at each
point. Solid lines are fits to power-law line shapes for
T & 152.7 K and Lorentzian line shapes for T & 152.9 K.
The line-shape evolution is qualitatively the same as that
in the SSRL I scans. At T =80.1 K the scattering con-
sists of a resolution-limited peak centered at r=1.6618
A ' and a modulation peak at Q —1.73 A '. The pri-
mary peak can be described either as a power-law singu-
larity with q =0.21+.05 or a Lorentzian with
~=0.0005+0.000 33 A '. Unfortunately, there was a
broad peak in the empty-cell background centered at
Q =1.7 A ', presumably due to adsorbed impurities,
which varied somewhat with time and temperature. Al-
though this impurity peak could be included in the sub-

FIG. 12. SSRL III scans at 6=0.855 and 0.837. Solid line is

a fit to a composite line shape; other two lines are constituent
liquid and solid line shapes.

10

well, but X is relatively insensitive to the exact values of
the parameters used. Extrapolating the values of r and x.

from their fitted values in the pure solid and liquid phase,
we deduce boundaries 6=0.833 and 0.867 which agree
quite well with the Thorny and Duval5 values 0.84& B
(two phase) &0.88, and the limits measured by Ham-
monds 0.83 &e (two phase) &0.90. We conclude, there-
fore, that two-phase coexistence has a subtle but distinct
signature in the measured scattering line shape when
high-resolution scans are performed, which was not ob-
served in the high-coverage melting transition experi-
ments. The locations of the phase boundaries as deter-
mined by diffraction line-shape analysis are in excellent
agreement with the locations determined by other workers
using thermodynamic measurements.

VII. LOW-RESOLUTION DATA

As discussed earlier the MIT experiments were per-
formed in advance of the synchrotron measurements.
These experiments employed a rotating-anode x-ray gen-
erator with a graphite monochromator. The diffraction
runs were done in the closed-cell mode at doses corre-
sponding to zero-temperature coverages of 1.01, 1.26,
1.33, 1.57, 1.59, and 1.84 monolayers. The approximate
paths traced through the phase diagram in these runs are
shown in Fig. 2. The instrumental resolution was
4q=0.0085 A ' HWHM, which is equivalent to scatter-
ing from finite platelets with L,rf =370 A. All the dif-
fraction lines were analyzed with Lorentzian line shapes.
As discussed in the section on data analysis, when

g«Luff the fitted value of ~ is determined by the diffrac-
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FIG. 13. MIT1.59 Xe(1,0) diffraction curves: a, 80.1 K; b,
124.7 K; c, 146.0 K; d, 151.5 K; e, 152.7 K; f, 152.9 K; g, 153.2
K; h, 153.5 K; i, 154.0 K; j, 157.6 K; k, 171.4 K. For T( 152.7
K, solid lines are power-law fits; the rest are powder-averaged,
resolution-convoluted Lorentzian fits as discussed in the text.
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tracted background function, and thus eliminated to first
order, a careful determination of the Xe modulation peak
at 1.73 A was not possible in this experiment. As the
temperature increases, the lattice expands, the scattering
in the wings increases, and the modulation peak becomes
broader and weaker. At T =152.67 the peak may be
described as a power-law singularity with q=0. 36+0.05

TABLE II. Fits to MIT1.59 Xe(1,0) diffraction peaks.

P (A ') a' (A ')

80.1

90.5
99.3

106.4
110.9
115.5
120.1
124.7
129.0
133.7
134.1
138.8
142.2
144.1

146.0
148.0
149.2
150.5
151.0
151.5
151.7
151.9
152.2
152.4
152.7
152.9
153.1
153.2
153.3
153.5
153.8
154.0
154.4
154.9
155.4
156.1
156.7
157.6
158.6
159.5
161.4
163.8
165.7
167.6
169.5
171.4

4.17
3.80
3.71
3.59
3.95
3.89
4.06
4.16
4.42
4.36
4.26
4.19
4.15
4.20
4.22
4.44
4.64
4.80
4.86
4.80
4.95
5.03
5.13
5.49
5.96
6.27
7.68
8.32
8.69
9.29
9.52
9.52
9.56
9.72
9.74
9.90
8.75
8.86
9.03
9.24
9.18
9.79
9.41
9.96

10.3
10.17

1.6618
1.6541
1.6488
1.6444
1.6421
1.6393
1.6369
1.6338
1.6307
1.6265
1.6262
1.6214
1.6169
1.6141
1.6113
1.6080
1.6061
1.6034
1.6024
1.6014
1.6009
1.6003
1.5999
1.5994
1.5989
1.5986
1.5979
1.5981
1.597
1.596
1.596
1.594
1.593
1.593
1 ~ 592
1.589
1.585
1.585
1.584
1.580
1.575
1.576
1.571
1.568
1.570
1.562

0.000 64
0.00041
0.000 41
0.000 37
0.000 55
0.000 56
0.000 74
0.000 87
0.001 13
0.001 25
0.001 26
0.001 49
0.001 76
0.002 00
0.002 24
0.002 81
0.003 4
0.004 3
0.004 3
0.004 7
0.005 1

0.005 6
0.006 2
0.007 5
0.0106
0.0192
0.024 8

0.031 8
0.035
0.042
0.046
0.047
0.049
0.052
0.055
0.056
0.052
0.054
0.057
0.061
0.062
0.071
0.071
0.076
0.082
0.082

0.208
0.195
0.196
0.193
0.209
0.211
0.224
0.234
0.251
0.257
0.255
0.266
0.279
0.288
0.298
0.299
0.334
0.360
0.358
0.366
0.374
0.385
0.395
0.417
0.459

'Results of fits to a resolution-convoluted, powder-averaged
Lorentzian line shape. Peak scattered intensity is proportional
to 2/z in this model.
"Results of fits to a power-law line shape.
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FICi. 14. Inverse correlation length vs temperature from
SSRL I and MIT1.59 runs. The SSRL I temperature scale has
been shifted by + 0.8 K so that the curves superimpose when v
is large.

0

or a Lorentzian with sc =0.0043 A '. The peak at
T =152.67 is describable either with g=0.46+0. 10 or
with ~=0.0106 A= 1/94 A. By the time the correlations
have diminished to 94 A, the SSRL scans are unambigu-
ously described as Lorentzians due to well-correlated
fluids. The transition temperature and critical properties
of the melting transition are less well determined in the
low-resolution scans due to difficulty in distinguishing ex-
perimentally the correct line shape. The MIT1.59 fits
yield 0.25 (q(melting) (0.45. Fitted values of g are listed
in Table II.

Fitted values of v from the MIT1.59 run using a
resolution-convoluted, power-averaged Lorentzian line
shape are summarized in Table II and plotted in Fig. 14.
Fitted values of v from the SSRL I run are also plotted
with the temperature scale shifted +0.8' so that the
curves overlap in the fluid phase. The curves agree well in
the fluid phase, but differ substantially at lower tempera-
tures. Since the two scans were done under very similar
conditions, we expect that the structure and correlations
of the 2D crystallites should be the same; it appears that
the fitted value of the inverse correlation length ~ depends
on the resolution. On the other hand, the value of rl ob-
tained from power-law fits does not move outside the er-
ror bars when the resolution is changed from 370 to 2000
A. Lorentzian and power-law line shapes are qualitatively
different in that the former has an intrinsic length scale
I/~ while the latter does not. Since changing the instru-
mental resolution corresponds to changing the length scale
of the measurement, we expect that Lorentzian and
power-law line shapes should scale differently. ' The
observed invariance of the fitted value of g under a length
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FIG. 15. MIT1.59 (1,1) and (2,0) peaks. Solid lines are Lorentzian fits with fixed w and v.

scale change is a strong indication that the power-law line
shape contains a correct description of the physics.

Figure 15 shows higher-order peaks from the MIT1.59
run. At low temperatures substrate modulation peaks are
visible. Because of the low signal-to-background intensity
ratio, detailed investigation of the correlation function was
precluded. The solid lines shown are Lorentzian fits with
peak positions and halfwidths fixed from their fitted
values in the equivalent Xe(1,0) peaks. Power-law fits
were also done, and yielded g( 1,1)=0.5+0.25 and
g(2, 0)=0.7+0.3 when 100 & T & 130 K. This is con-
sistent with the more accurately measured
g(1,0)=0.25+0.05 and the prediction

yacc

~

r
~

. In the
future, we expect that careful measurements of the
higher-order peaks will provide a sensitive test of the
power-law line shape.

Diffraction scans from the other MIT runs are qualita-
tively similar to those in the MIT1.59 run. The trends
found previously are seen in these runs: sharp peaks at
low temperatures, lattice expansion and increased scatter-
ing in the wings with increasing temperature, and an ap-
parently continuous melting transition. Plots of inverse
correlation length versus temperature are also qualitatively
similar. If we take as a rough criterion for the melting
temperature ~=0.005 A ', then as seen in Table III peak
position at melting is given by v =1.600+0.02 A ' over
the temperature range 112&T &152 K. This justifies

Run

TABLE III. Melting parameters.

~ (A-')Coverage

SSRL I
SSRL II
SSRL III
MIT1.01
MIT1.26
MIT1.33
MIT1.57
MIT1.59
MIT1.84

1.10
1.10
0.85
0.90
1.00
1.02
1.10
1.10
1.20

152
150
112
138
146
148
149
151.7
150.0(2)

1.598
1.597
1.58
1.599
1.600
1.603
1.607
1.601
1.610

0.36(08)
0.37(05)

0.32(10)

0.35(10)
0.35(10)

the assumption in the preceding section of constant lattice
parameters along a hypothesized coexistence curve. The
sc-vs-T curves all resemble one another and the curves
measured in the high-resolution experiments. The fitted
values of g at the melting transition are also consistent
with that measured in the MIT1.59 run. Figure 16 shows
fitted values of the normalized peak scattering intensity
from all the MIT closed-cell runs versus inverse cor-
relation length. Amplitudes have been corrected for back-
ground absorption and renormalized so that A (a.
=0.03 A ')=2. Only values of a above the resolution
limit 0.005 A ' are plotted. The data are all consistent
with a power law (peak intensity) ceo. found in the
SSRL data.
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Q MIT 1.84
MIT I.59

o MIT 3.57
& MIT f.53
a MIT 1.01 0.23&g&0.33 . (20)

region may occur when the correlation length exceeds 500
A. The exponent g, measured by the evolution of peak in-
tensity versus peak halfwidth on the fluid side of the tran-
sition, is found to be

UJ
C3
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CL
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CL
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VIII. SUMMARY

At T = 150 K and 8= 1.1 our high-resolution x-ray
scattering results indicate that the 2D xenon freezing tran-
sition is continuous. A power-law line shape describes the
data well with a value of the correlation exponent in the
solid phase,

INVERSE CORRELATION LENGTH (A )

FIG. 16. Fitted peak intensities from MTT closed-cell data
normalized to 3 (~=0.03)=2. Solid line is a theoretical predic-
tion 2 ~ ~" ' with g=0.28.

Diffraction scans taken as a function of pressure at con-
stant temperature also display these features with g(melt-
ing)=0. 37+0.05. The anomalous beam absorption ob-
served below 135 K is consistent with a second-layer con-
densation transition. At 112 K the melting transition is
deduced from line-shape analysis to be first order, con-
sistent with the results of vapor-pressure isotherm mea-
surements, and with the extrapolated multicritical point at
T-125 K.

The MIT low-resolution results are consistent in all
respects with the high-resolution results. In particular, we
find rl(melting) =0.35+0.10 both from line-shape analysis
and from the evolution of peak intensity with peak width.
In the solid phase, the change in the fitted correlation
lengths under a change of resolution, as contrasted with
the agreement of power-law exponents, offers strong sup-
port for the correctness of the power-law line shape; con-
comitantly the power-law correlations due to divergent
long-wavelength phonons almost certainly provide the
correct description of a continuous-symmetry 2D solid.

0.27 & rl(melting) & 0.42, (19) ACKNOWLEDGMENTS

consistent with the KTHNY prediction 0.25 & rl(melt-
ing) &0.33. On the fluid side of the transition the evolu-
tion of the correlation length with temperature is con-
sistent with the Halperin-Nelson-Young prediction of an
exponential dependence of tr(T), although we cannot pre-
clude a power-law dependence with an anomalously small
exponent v. The correlation length evolves continuously
to at least 200 A before finite-size or edge effects affect
the line shape. A narrow, substrate-induced coexistence
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