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Theoretical analysis of the achievement of random close packing of hard spheres
and a conjecture on spinodal decomposition
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We report the results of an analysis of bifurcation points of the nonlinear equation for the density
distribution in an inhomogeneous system. The theory used predicts the freezing transition. In addi-
tion, if the unstable fluid branch of the solution beyond the freezing point is followed to higher den-

sity, another bifurcation point is found. This latter bifurcation point is identical with the limit of
compression of the system, i.e., achievement of random close packing in the fluid. The density of
random close packing of hard spheres is predicted to be 1.202, in very good agreement with comput-
er simulation data. We show that the second bifurcation point is a limit of the first bifurcation
point and that no freezing transition is possible beyond this point. Comparison of the behavior of
the hard-sphere and Lennard-Jones fluids leads to the conjecture that spinodal decomposition of the
Lennard-Jones fluid occurs when the density, computed with a temperature- and density-dependent
effective hard-sphere diameter, reaches the value corresponding to random close packing of hard
spheres.

I. INTRODUCTION

In 1959 Bernal predicted the existence of a random-
close-packed (RCP) state for an assembly of hard spheres. '

In this state, in which the spheres are jammed together in
a fashion that prevents movement, there is short-range or-
der but not long-range order. Bernal estimated the density
at which random close packing was achieved from a study
of mechanical models; he found pRcp= (No/&)~c—p = I '2.
Subsequent more sophisticated investigations, includ-
ing computer simulations, have confirmed Bernal's predic-
tion and refined the estimate of the density of the RCP
state to pRcp=1. 18—1.215. However, to date there has
not been any theoretical analysis which predicts the ex-
istence of the RCP state of a hard-sphere fluid, nor any
statistical mechanical calculation of its density. In this
paper we present a first-principles analysis which both
demonstrates the existence of a RCP state of the hard-
sphere fluid and leads to an accurate calculation of its
density. Our analysis also leads to some interesting in-
sights into the nature of the freezing transition, the meta-
stability of the hard-sphere fluid, and spinodal decomposi-
tion.

It is well known that the hard-sphere fluid crystallizes
in a face-centered-cubic (fcc) lattice when the fluid density
reaches p*=-0.93, well below the value characteristic of
random close packing. A theory of the achievement of
random close packing must, therefore, be capable of both
accounting for and bypassing the freezing transition. We
have recently advanced a theory of freezing based on the
analysis of solutions of the nonlinear integral equation
describing the inhomogeneous density distribution at
phase equilibrium. The analysis takes the form of a
search for a bifurcation point at which the uniform densi-
ty characteristic of the fluid phase becomes unstable rela-
tive to the periodic density distribution characteristic of

the crystalline phase. The fundamental nonlinear equa-
tion studied is derived under the following approxima-
tions: (a) truncation of the exact expansion for the density
of an inhomogeneous system at the level of the direct
correlation function for pairs of molecules, (b) use of a
convenient but inexact pair direct correlation function for
the liquid, (c) use of an order-parameter expansion which
neglects vibrational motion in the solid, and (d) truncation
of the order-parameter expansion for the density differ-
ence between liquid and crystal phases after a few terms.
It was shown that, despite these approximations, the
theory successfully predicts the existence of the freezing
transition and accounts moderately well for the values of
the transition parameters. It was also found that if the
fluid solution was followed past the freezing transition
into the region where it is unstable with respect to the
crystal a new, universal, bifurcation point is found. For
the hard-sphere fluid we identified this latter bifurcation
point with the end of possible compression of the system,
i.e., with the attainment of random close packing of the
fluid and face-centered close packing of the crystal. This
identification is consistent with the results of a bifurcation
analysis of the corresponding nonlinear equation for a
one-dimensional system, which can be carried out exact-
ly. To reduce the chance that for the three-dimensional
system the second bifurcation point and our interpretation
of its physical implications are artifacts of the approxima-
tions used to derive the fundamental nonlinear equation of
the theory, we have extended our analysis to include
higher-order terms in the reciprocal-lattice vector expan-
sion of the density difference between phases. This is a
cogent extension of the earlier calculations in that it tests
the sensitivity of the existence and location of the bifurca-
tion point to the series expansion for the inhomogeneous
density. Note that the calculations for the one-
dimensional hard-rod system can be thought of as testing
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p(R)) 1=exp g ~k+ i(Ri, . . . , Rk+ i)

X p(R2) . p(Rk+()dR2 dRk+,

=exp[F(R&, Ip(R;) I )],

where Sk+~(R~, . . . , Rk+~) is the sum of all irreducible
Mayer cluster diagrams of order k+1 and the fugacity z
is determined by the usual normalization condition on

p(R&). Since F(R&, Ip(R;)I ) is the generating function of
the n-particle direct correlation function c„(R&, . . . , R„),
a functional Taylor-series expansion about its liquid-state
value F(R), IpII), truncated after the first two terms, ''
gives

p(R() p(=—exp dR, C,(R„,p, )ap(R, )
S zi

where Ap(R) is the density difference p(R) —p~, p~, and z~

are the density and fugacity of the liquid phase, and p,
and z, the analogous quantities for the solid phase.

The singlet density distribution is now expanded in a
Fourier series

p(R) =pi +b p(R)

=pi(1+4o)+pi g 4oe' (3)

where the IGI are the reciprocal-lattice vectors of some
chosen lattice, P- are the expansion coefficients,

G

the adequacy of the approximation for the pair direct
correlation function. In addition, we have discovered that
there are conditions such that the first bifurcation point
coalesces with the second, and as a result the freezing line
terminates at the second bifurcation point.

II. THEORETICAL ANALYSIS

Briefly stated, our analysis starts with the following ex-
act expression for the singlet density distribution as a
function of position p(R&) of an inhomogeneous fluid, '

tion describing the vector position of G, and P and A, -
G G

are defined by

Pr

p G G

p, C2(G)—:A,

where c2(G) is the Fourier transform of the pair direct
correlation function, cq(R~2), evaluated at G.

Since a hard-sphere fluid preferentially freezes into a
fcc lattice, we consider the reciprocal-lattice vectors of
this lattice only. In order to make calculations feasible,
we truncate Eq. (5) after three order parameters, denoted
by a, P, and y. The order parameters are chosen accord-
ing to their importance, as described in Ref. 7. The three
order parameters used in this work are (+1,+1,+1) (a),
(+3,+1,+1) (P), and (+2, +2, +2) (y). Then Eq. (5) gives
rise to a system of three nonlinear equations which can be
solved for bifurcation points. It is worth emphasizing
that Eq. (5) can be solved without using any information
about the liquid state other then its translational invari-
ance. Thus the bifurcation diagram generated by Eq. (5)
can be regarded as "universal" for a chosen lattice.

Figure 1 displays a typical bifurcation diagram. In Fig.
1 we have plotted the order parameter of the first
reciprocal-lattice vector, g-, against A. , for fixed

G G

values of A, - and A, - . As A, and A, - are varied the
Gp G Gp G

bifurcation points (A,*-,X-,A,"- ) define a surface in

three-dimensional space. Figure 1 shows that for each
pair (A,-,A, - ) there are two bifurcation points. The bi-

Gp G

furcation points for lower values of A.
G

denote the first

instability of the liquid with respect to the periodic densi-
ty distribution of the solid, characterized by nonzero
values of P- . When projected on the (A, , A, ) plane,G G '

Gp
(&*-,A,*- ) define a curve which is approximately linear.) G

The second bifurcation point is at k- = 1 and is invariant
Ga

tocha ges' the al esofA, dk- .
Gp G

The most interesting feature of Fig. 1

1.2

-G. R „-e
G Q pi

(4)
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and Ijko is the fractional density change in the transition,
equal to (p, —pl)/p~. Combining Eqs. (2)—(4) we obtain
the system of equations '

r

f dR~g- (R~)exp g g-A, -g-(R~)
G

f dR, exp g P-k-g-(R&)

where G„ is nth reciprocal-lattice vector, g is the func-
G
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FIG. 1. Three —order-parameter bifurcation curves for the
fcc solid at several values of the pair (A, , A, ). Note that theG p'

first bifurcation point approaches the second "universal" bifur-
cation point at A, =1 as the values of k, k are decreased.G 7
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We have solved Eqs. (7)—(9) using the Wertheim-Thiele
solution" of the Percus-Yevick equation, which gives

quite an accurate description of cz(k) for large values of
the wave vector k. The result of our calculations for the
densities is
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pi =1.202, p, =1.381 for A, - =1 . (10)
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values of A, - and A, - are lowered, the first bifurcation
Gp G

point approaches the second, and for sufficiently small
values of A, and/or A, - it is identically 1. That is, the

Gp
bifurcation line ends at the value A, - = 1 in the

G

(A.-,A, - ) or in the (A,-,A, - ) plane, as illustrated in
G '

Gp G G

Fig. 2, which implies that there can be no freezing transi-
tion beyond the value A, =1. A stability analysis shows

G

that the liquid is unstable beyond this point. We shall
now show, by explicit numerical calculation of densities,
that the point A, - = 1 corresponds to the dense RCP state

G

of the hard-sphere fluid.
The liquid- and solid-phase transition densities are cal-

culated by solving the following system of equations:

~- (PI p )
I PI=Pl Ps=Ps

(pi p,), =0,
Bp G p~=ui e =s'

(8)

Pl &Ps I p —p+ p —p+

PI=PI ~Ps=Ps G
y

(9)

where p~, p*, are transition densities and (1,A,'-, A,*- ) is aGp' G

triplet of values on the bifurcation surface.
The significance of these conditions has been discussed

in Refs. 7 and 8. Here we just mention that Eq. (8) is a
structural condition which arises from the existence of a
sharp maximum in the direct correlation function for the
liquid near

~
G ~, the magnitude of the first reciprocal-

lattice vector of the crystal. This condition, along with
conditions (7) and (9), guarantees that the liquid and solid
densities predicted by the solutions to the nonlinear in-
tegral equations correspond to the lowest density for
which the liquid becomes unstable.

FIG. 2. The bifurcation curves generated for the fcc system
when the bifurcation triplet (A,*,A,*,A,

*
) is projected on the

(A, , A, ) plane.0 '
Gp

The predicted density of the liquid for A, - =1 corre-
G

sponds exactly to the known value of the density of the
RCP state, while the predicted density of the solid is very
close to the fcc close-packed limit. The above result was
conjectured in Ref. 7 on the basis of a two —order-
parameter theory. However, the termination of the bifur-
cation line at k- =1 was not recognized then.

G

For the one-dimensional fluid there is only the bifurca-
tion point at A, - =1. Since the direct correlation func-

G

tion for the hard rod fluid is exactly known, we can calcu-
late the densities that correspond to A, - =1. We find

G

pI ——p, = 1.0, the maximum achievable density in this case.
There is no phase transition in this system.

III. DISCUSSION

We have shown, for a hard-sphere fluid, that there ex-
ists a density beyond which further compression is impos-
sible. The numerical value of this density is in excellent
agreement with estimates of the density of the RCP state.
To find this limiting behavior of the hard-sphere fluid we
followed the fluid branch of the equation for the density
distribution of an inhomogeneous system past the density
corresponding to freezing, in which region the fluid is un-
stable relative to the fcc crystal. Given the similar
behavior of the Auid solutions when A, - = 1 in one and

G

three dimensions, and the insensitivity of our results to ex-
tension of the set of retained reciprocal-lattice vector
terms in the expansion of the inhomogeneous density dis-
tribution, we believe our numerical calculations and the
interpretation proposed to be robust.

Landau proved that the coexistence line between two
phases with inherently different symmetries cannot ter-
minate in a critical point. ' Our statement that the freez-
ing line ends at the value A, - =1 is in agreement with

G

Landau's theorem. To see this we note, first, that the
properties of a hard-sphere assembly depend only on the
density, and not on the temperature. Thus the fluid-to-
crystal transition occurs at a particular density, and the
freezing line in the temperature-density plane is degen-
erate in the sense that it is perpendicular to the density
axis and parallel to the temperature axis. Stated another
way, there is no temperature above which freezing of the
hard-sphere fluid is impossible since, for any temperature,
all that need be achieved is a density greater than 0.93.
(Of course, the pressure required to achieve this density
increases with the temperature. ) Second, the freezing
point of the hard-sphere system is determined by the in-
tersection of the line of bifurcations of the nonlinear Eq.
(5) and the line generated by solution of Eqs. (7)—(9). The
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line of bifurcations, taken alone, follows the fluid-to-
crystal transition as the values of the Fourier components
of the pair direct correlation function evaluated at the
first and second reciprocal-lattice vectors vary. The inter-
section of the line of bifurcations with the solution of Eqs.
(7)—(9) pick out those values which self-consistently de-
fine the densities of the two phases at the transition point.
We can think of a general point on the line of bifurcations
in the (A.-,A.- ) plane as one defining, for densities oth-

er ' Gp
er than the density of freezing, the fluid-to-crystal transi-
tion with particular values of the amplitudes of c2(G~)
and c2(G&). Our interpretation implies that such con-
strained transitions cannot occur after the density of the
fluid reaches the RCP value. Given the definition of the
hard-sphere interaction, the volume of the RCP state is ir-
reducible, hence fluctuations in density are suppressed,
and it is reasonable to find that transitions involving con-
figurational change cannot occur.

It is interesting to invert the line of argument used
above. The RCP state of the hard-sphere fluid must be at
an extremum with respect to sensitivity to fluctuations in
configuration. That this is so follows from the observa-
tion that an infinitesimal decrease in density permits the
fluid-to-crystal transition to occur. This inordinate sensi-
tivity to fluctuations leads us to ask if there exists some
relationship between the seemingly diparate phenomena of
random close packing and spinodal decomposition.

We have described elsewhere a study of freezing in the
Lennard-Jones system using the same method of analysis
as described for the hard-sphere system, with necessary
modifications. Since the Lennard-Jones interaction is
soft, there is no limit to the density of the system, and the
fluid-to-crystal transition occurs along a nontrivial line in
the temperature-density plane. In our analysis of the
Lennard-Jones fluid we also found a second bifurcation
point, universal in the same sense as described for hard

spheres at A, - =1. We interpreted that second bifurca-
G

tion point as signaling spinodal decomposition of the
fluid, i.e., at that density and temperatures the fluid be-
comes unstable to infinitesimal fluctuations. Of course,
the temperature and density at which such instability
occurs can vary because the intermolecular potential is
soft, so the analysis traces a spinodal line. We now con-
jecture that the spinodal line for the Lennard-Jones fluid
corresponds to the state of random close packing of
spheres with a temperature- and density-dependent diame-
ter. To support this conjecture we show in Table I a corn-
parison of the temperature- and density-dependent
equivalent hard-sphere diameters, computed from the
Weeks-Chandler-Andersen' analysis of the Lennard-
Jones fluid, and the values obtained by taking the spinodal
point as corresponding to the state of random close pack-
ing of (equivalent) hard spheres. The agreement between
these values is striking. We also show in Table I the
predicted values for the RCP density of the fluid and the
close-packed density of the fcc lattice, computed from the
actual densities at the bifurcation point k =1 and the

G

Weeks-Chandler-Andersen temperature- and density-
dependent equivalent hard-sphere diameters; the corre-
sponding values for the hard-sphere fluid are 1.202 and
1.381, respectively. We attribute the small drift with tem-
perature to the increasing inadequacy of the Weeks-.
Chandler-Andersen approximation as temperature in-
creases. Generally, the constancy of these densities, and
their agreement with the hard-sphere values, is very good.

The conjecture that the spinodal decomposition of a
fluid state occurs when the density reaches that equivalent
to random close packing of hard spheres focuses attention
on the different roles of static and dynamic fluctuations in
a system. In the RCP state of a hard-sphere fluid there
are frozen-in local density inhomogeneities but, because no
motion can occur, all dynamical fluctuations are

Test of conjecture relating the spinodal in the Lennard-Jones fluid to random close packing o«ffe«ive ha«spheres.
WCA denotes the Weeks-Chandler-Andersen analysis (Ref. 13).

Hard-sphere fluid

pl, Rcp ps, fcc

1.202 1.381

Lennard- Jones fluid
[c(T',pi )]wc~' [c(T*,pi ) lack [pi,acp(L ~)]wc'' [p,*,r..(LJ ) ]wc~'

0.5
0.75
1.15
1.35
2.75

1.111
1.155
1.213
1.237
1 ~ 358

1.272
1.323
1 ~ 392
1.422
1.574

1.029
1.014
0.996
0.989
0.956

1.030
1.018
1.000
0.994
0.964

1.211
1.204
1.199
1.197
1.187

1.386
1.380
1.375
1.375
1.376

'Values computed in Ref. 13.
"Values obtained by assuming the value of pRcp for the Lennard-Jones system is 1.215 for all T* and p~ .
'Values for the liquid random close packing computed from [a(T",pI )]wc~.
Values for the fcc solid close packing computed from [o(T*,p~ )]wc&.
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suppressed. On the other hand, in the equivalent of ran-
dom close packing of the Lennard-Jones fluid fluctuations
can occur continuously, since the energy required for such
is always bounded. While the existence of configurational
disorder implies the existence of local density fluctuations

in any fluid, it is the dynamic exploration of the accessible
phase space that drives a liquid-to-solid transition.
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