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Dense-packed arrays on surfaces of constant negative curvature

Michael Rubinstein* and David R. Nelson
Department of Physics, Haruard Uniuersity, Cambridge, Massachusetts 02138

(Received 8 August 1983)

Dense-packed assemblies of hard spheres are standard models of disorder in metallic glasses.
Such packings are difficult to obtain with identical disks on flat two-dimensional surfaces because
triangular packing units are easily incorporated into a hexagonal close-packed lattice. By packing
disks on a two-dimensional manifold of constant negative curvature, however, one can study pack-
ing problems quite similar to those found in three-dimensional flat space.

I. INTRODUCTION

1.05d

ICOSAHEDRON IN FLAT
SPACE

(a)

HEXAGON IN CURVED
SPACE

(b)

FIG. 1. Comparison of the icosahedron in flat space, and a
hexagon projected out of a space of constant negative curvature.
In both cases, the distance l between the centers of the particles
on the surface is larger than the distance d to the center.

Structure in dense, supercooled liquids and in metallic
glasses is closely related to the difficulty in filling space
with tetrahedra of identical particles. ' Frustration be-
comes evident in three-dimensional (3D) packing problems
when 20 tetrahedra combine to form an icosahedron. As
shown in Fig. 1(a), gaps appear between 12 symmetrically
disposed surface particles. The atoms at the surface can-
not simultaneously sit at the minima of the pair potential
of the central atom and of their neighbors on the surface.
Although simple pair potentials lead to a strong energetic
preference locally for icosahedra, ' any particle packing
with local icosahedral order must be riddled with defects.
The nature of these defects is suggested by Coxeter's ob-
servation that icosahedra of identical particles can be used
to tile the surface of a four-dimensional sphere without
frustration. As pointed out by Kleman and Sadoc, '

defects such as disclinations are necessary to map the
four-sphere into flat space. The relevant defects have re-
cently been characterized more precisely using homotopy
theory" and the icosahedral order parameter defined
in Ref. 6.' The Frank-Kasper phases of complex
transition-metal alloys' are an interesting example of or-
dered arrays of frustration-induced disclination lines in an
otherwise icosahedral medium. Structure in metallic
glasses can be modeled by a disordered array of such

lines. '

In this paper, we study similar dense random packing
problems in two dimensions. It is, of course, easier to
construct and discuss analytically particles packed on a
surface instead of in d =3 dimensions. There are, in addi-
tion, elegant techniques based on the Dirichlet construc-
tion for visualizing defects' ' when such packings are
viewed from the third dimension. The two-dimensional
(2D) figure most analogous to the icosahedron is a hexa-
gon composed of six identical triangular packing units.
There is, unfortunately, no frustration, since the hexagon
can be periodically extended to tile the plane. Frustration
can be introduced into planar arrays of particles by allow-
ing for two different particle sizes. ' ' The resulting dis-
order is fundamentally different, however, than in 3D flat
space. There is, in particular, no analog of the asymmetry
between plus and minus disclinations expected in three di-
mensions. '

Frustration like that in 3D flat space does appear when
identical disks are packed on a surface H2 of constant
negative curvature. ' ' As shown in Fig. 1(b), cracks
open up between the disks at the surface of a hexagon.
The curvature of this surface is a tunable parameter which
can be used to vary the frustration. When the curvature is
nonzero, one has the same difficulty in filling space with
equilateral triangles as for perfect tetrahedra in 3D flat
space. We report here on computer-generated arrays of
hard disks placed on these surfaces via a simple deter-
ministic packing algorithm. The procedure is a 2D ver-
sion' of one used by Bennett to generate packings of
hard spheres. Using this method, one can easily generate
arrays with large numbers of particles. Although the only
"randomness" is associated with round-off errors in the
computer, 3D Bennett models, when relaxed in a soft po-
tential, have properties remarkably similar to real metallic
glasses. '

Although the hyperbolic space H2 cannot be embedded
in three dimensions, the resulting particle packings can be
visualized in projection. A related projection of particles
on the positively curved surface of a sphere is shown in
Fig. 2. Particles labeled by spherical polar coordinates
were packed using Bennett's procedure, starting at the
north pole of the sphere. The crude projection shown in
Fig. 2 was obtained by identifying the spherical polar
coordinates with ordinary plane polar coordinates. More
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FIG. 2. Array of 1314 identical disks packed by the Bennett
algorithm on the surface of the sphere with radius ten times the
disk diameter. The projection used is r'=r, P'=P, where {r,P)
are spherical polar coordinates and (r', P') are plane polar coor-
dinates. The north pole marked by the square is chosen as the
center of the planar coordinate system as well as the center of
the Bennett cluster. Anomalous 5- and 7-coordinated points are
devoted by diamonds and asterisks, respectively.

sophisticated projection schemes will be used to display
hyperbolic particle packings in Sec. II.

Figure 2 also illustrates the "5-7 construction, "' '
which will be used to study defects. A curved-space gen-
eralization of the Dirichlet construction is used to gen-
erate a "Wigner-Seitz" cell around every atom, separating
it from its near neighbors. The boundaries of the cell are
geodesics. The number of sides of the Dirichlet polygon
gives the coordination number of the particle. In Fig. 2,
anomalous 5- and 7-coordinate particles are highlighted
by diamonds and asterisks, respectively. Most particles
have coordinate number 6. In flat space, the 5's and 7's
can be viewed as microscopically defined disclinations
with "charges" + 1 and —1. Dislocations appear as 5-7
pairs. ' Note that the packing in Fig. 2 appears to be a
hexagonal close-packed lattice until curvature-induced de-
fects start to appear at sufficiently large distances from
the north pole. We have observed the same effect in a hy-
perbolic counterpart of Fig. 2. Analogous difficulties are
encounted when one tries to make large clusters with an
icosahedral symmetry in 3D flat space.

The average coordination number in 2D flat space must
be exactly 6, ' which makes particle configurations in this
case topologically rather uninteresting. Nontrivial ques-
tions arise, however, for incommensurate, nonzero curva-
tures. The hyperbolic spaces studied here are character-
ized by a metric, which in polar coordinates (r,P) reads

d s=d r+[sinh(I~r)/~] d P .

The Gaussian curvature of the space K is related to the

parameter ~ by K= —~ . The quantity x ' is an intrinsic
frustration length scale, which tends to infinity as space
becomes flat. [For a sphere with positive Gaussian curva-
ture x, sinh(~r)is replaced by a sin(~r) where ~ ' is the
radius of the sphere. ] It is a simple application of the
Gauss-Bonnett theorem to show that the average coordi-
nation Z in a space of constant Gaussian curvature K

20, 24

Z =6—3Ks/m, (1.2)

where s is the surface area per particle. Because the sur-
face area per particle enters Eq. (1.2), the average coordi-
nation number is not automatically determined by the
properties of the space when E is nonzero. The disor-
dered, hyperbolic Bennett packings we have studied are
characterized by Z's which are quite close to an ideal
value (corresponding to an ideal packing fraction) predict-
ed by a simple "statistical-honeycomb" model, similar to a
statistical honeycomb studied by Coxeter in three dimen-
sions. '

Our results are described in detail in Sec. II. Overall,
we find that disordered tessellations of H2 are remarkably
similar to dense random packing in three dimensions. We
find, in analogy with three dimensions, a split-second peak
in the radial distribution function. There is an asymmetry
in the distribution of point disclination defects, similar to
that predicted for disclination lines in three dimensions. '

Hexagonal orientational order is broken up by these de-
fects in a way remininscent of the decay of icosahedral or-
der found by Steinhardt et al. We also investigate
features which have no simple analog in three dimensions,
such as transitions to commensurate sevenfold and eight-
fold lattices when the curvature becomes sufficiently nega-
tive.

Improvements in the procedures used here are certainly
possible. It is well known that Bennett's packing pro-
cedure leads to anomalous density correlations in the radi-
al direction. Such unwanted correlations could be elim-
inated by relaxing the particles in a softer potential. Stud-
ies of relaxation and kinetics via Monte Carlo or
molecular-dynamics techniques would of course be espe-
cially interesting. Real metallic glasses in three dimen-
sions require particles with two different sizes. As dis-
cussed in Ref. 12, the smaller phosphorus atoms in an al-
loy like CoP are nodes for disclination lines with the
"wrong" sign —the charge of these lines is opposite to that
needed to relax the topological frustration. It is possible
to mimic this effect in H2 by introducing a dilute concen-
tration of small particles which can only accommodate
five near neighbors. Since sevenfold disclinations are
favored over fivefold charges in H2, here too one would
be seeding the material with disclinations of the wrong
sign.

II. RESULTS

A. Basic concepts

The properties of the hyperbolic space H2 are deter-
mined by the metric (1.1), expressed in terms of polar
coordinates r and P. Polar coordinates are essential to
discuss the global properties of H2, because it is impossi-
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ble to introduce a singularity-free Cartesian coordinate
system. In order to pack particles on the computer, we in-
tegrate Eq. (1.1) to obtain the geodesic distance l,b be-
tween two points with polar coordinates (r„P, ) and
(rb Pb):

cosh(el, b )=cosh(~r, )cosh(~rb )

Since Z =n for the n-fold lattices defined above, the sur-
face area per particle s„ for the ideal structure in a com-
mensurate curvature ~„ is

s„=m(n —6)/3a.„. (2.6)

Since the area of a disk of diameter d in hyperbolic space
1s

—sinh(ar, )sinh(orb )cos(p, —pb ) . (2.1)
slnh(Kp )

Sdisk dr
0 0 K

(2.7)=4m sinh (~d/4)/a.
the packing fraction f„ is

3/sin(m /n ) —6
n =sdisk ~n

n —6
(2.8)

where we have used the expression for the commensurate
curvature (2.2). The packing fraction (2.8) reduces to the
familiar result f6 ——m/2V 3=0.907 for a flat-space hexa-
gonal lattice and gives f7 -0.914, f8 -0.920, andf9 0.924. The packing fraction is a monotonically in-
creasing function of coordination number, because the rel-
ative area occupied by the cracks in an n-fold lattice of
hard disks decreases with n.

In this paper, we shall focus primarily on incommensu-
rate curvatures O=x6&x &x7. An ideal packing fraction
f;d,»(~d ) can be defined for general curvatures by analyti-
cally continuing Eqs. (2.2) and (2.8) off the integers. With
every value of ~d, we associate a lattice of identical Dir-
ichlet polygons, which must in general have nonintegral
numbers of sides. Solving Eq. (2.2) for n=Z;d„i, we see
that the coordination number of this "statistical-
honeycomb" lattice is

1

2 sin(~/n )
(2.2)K~A =2 cosh

Z;d» (ICd )= 7T Sin
1

2 cosh(xd /2)
(2.9)

When ad equals one of the special values given by Eq.
(2.2), one might expect the Bennett packing algorithm to
lead to a regular "crystalline" lattice, analogous to the
hexagonal lattice obtained for the flat-space case n =6.
Because there is no global Cartesian coordinate system for
~d&0, flat-space ideas about what constitutes a "lattice"
must be modified. Our definition of a regular n-fold lat-
tice requires that all particles have Dirichlet coordination
number n, and that there are 6-function peaks at discrete
intervals in the radial distribution g(r) (see Sec. IID).
The regular eightfold tessellation we find when ~d equals

Replacing n by Z;d„i in Eq. (2.8) gives us an "ideal" pack-
ing fraction for every value of ad. It seems plausible that
f;d,»(ad ) represents a preferred packing fraction in an un-
bounded space of constant negative curvature. This ideal
packing fraction varies monotonically from m/2v 3 when
ad =0, to 3/vr as vd tends toward infinity. In general, one
expects the packing fraction in highly disordered particle
configurations to be smaller than the ideal value. As we
shall see, particles packed via Bennett's procedure have
packing fractions quite close to the ideal value, even when
the curvature is incommensurate.

Remarkably similar issues arise when particles are
packed in 3D flat space. Just as one can "triangulate" a
2D particle configuration with near-neighbor bonds via
the Dirichlet construction, one can construct a tetrahedral
array of bonds joining near neighbors via the Voronoi con-
struction in three dimensions. The particle coordination
number on a 2D surface is also the number of triangles
surrounding that particle. As stressed in Ref. 12, the
analogous concept in three dimensions is the number of
tetrahedra q surrounding a bond. A lattice of perfect
tetrahedra is impossible, since the curvature of 3D fiat
space is incommensurate The average number of tetrahe-
dra surrounding a bond q will in general increase with the

~8d = 1.528 57 (2.3)

is like a flat-space Bravais lattice with inversion symme-
try, while the heptagonal lattice corresponding to

+7d = 1.090 55 (2.4)

is like a Bravais lattice with a basis —similar to a honey-
comb lattice in flat space.

The surface area per particle for the commensurate
tessellations is determined by the topological constraint
(1.2), which we write as

(2.5)Z(a, s) =6+3m s/m. .

The integration is carried out explicitly in Appendix A.
Hard disks with diameter d were deposited sequentially
starting with a seed configuration of three particles form-
ing an equilateral triangle centered at the origin. Succes-
sive disks were brought into contact with the growing seed
cluster so that (1) each new disk just touched two previ-
ously deposited disks without ovelapping any part of the
seed; and (2) the distance to the origin [as determined by
Eq. (2.1)] was as small as possible. Starting with a
tetrahedral seed cluster, Bennett has used a similar algo-
rithm to generate disordered particle arrays in 3D flat
space.

Significant differences in particle packings are expected
as a function of the dimensionless parameter ~d. Con-
sider n particles symmetrically arranged about a central
disk as in Fig. 1(b). For each value of n, there is a special
"commensurate" curvature such that these n + 1 particles
form a regular polygon with no gaps between the hard
disks at the surface. Each regular polygon is then com-
posed of n identical equilateral triangles with angles 2m/n, .
(In hyperbolic space, of course, the sum of the angles of a
triangle is no longer equal to rr. ) It is easy to use (2.1) to
show that the commensurate curvatures are given by' '

r
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degree of disorder. A simple physical argument' sug-
gests, however, that tetrahedral particle packings corre-
sponding to an "ideal glass" will have

q =q;d„) 2——n/co. s '( —, )

=5.104299 . (2.10)

The value of q for the Frank-Kasper phases differs from
(2.10) by a few parts in ten thousand. The result in Eq.
(2.10) was first obtained by Coxeter for a fictitious
statistical-honeycomb particle tessellation, such that every
bond is surrounded by the same fractional number of per-
fect tetrahedra. ' Equation (2.9) applies to an analogous
2D statistical honeycomb. In this sense, q;d„~ in 3D flat
space is the analog of the quantity Z;d„& defined for a
range of incommensurate curvatures by Eq. (2.9).

The concept of a "packing fraction" makes more physi-
cal sense for hard disks than for particles interacting via
soft pair potentials. As stressed, for example, in Ref. 23,
frogs eggs and caviar are a better model of, say, rare gas
atoms packed at low temperatures than hard spheres. It
also seems awkward to describe simple metals, which are
well approximated by point ions immersed in an essential-
ly incompressible sea of conduction electrons, by packing
fractions. For this reason, it is probably best to summa-
rize our results in terms of purely topological concepts,
like the average coordination number. One can always use
Eqs. (2.5) and (2.8) to convert results for Z into packing
fractions for the special case of hard disks.

B. Particle packings

As discussed in the Introduction, an appealing feature
of 2D glassy particle configurations is that they can be
viewed from the third dimension. When the 5-7 construc-
tion is used to highlight defects, one obtains a graphic rep-
resentation of the disorder which is difficult to achieve in
three dimensions. Particle packings in hyperbolic space
can be viewed by projecting them onto a plane. Although
projections which preserve distances are impossible, one
can find mappings of H2 into flat space which preserve
angles or transform geodesics into straight lines. Given
a point with hyperbolic polar coordinates (r,p), a projec-
tion procedure is defined by plane polar coordinates
(r', p'), where r' and p' are functions of r and II). Figure
3(a) shows a conformal projection of 1000 particles
packed via Bennett's algorithm with ~d =0.5. Anomalous
coordination numbers are highlighted using the procedure
discussed in the Introduction. This angle-preserving pro-
jection is defined by
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FIG. 3. (a) Conformal map of 1000 disks packed by the Ben-
nett algorithm on a surface of uniform negative curvature with
~d=0. 5. (b) The same configuration mapped by r'=r'+ d,

Histogram indicates the relative numbers of
fivefold —sevenfold coordinated points.

r ' =Rotanh()rr /2), (2.11)

where Ro is the radius of the disk into which all of II2 is
mapped. Unfortunately, most of the particles are
squeezed into a narrow strip near the rim of the disk.
This distortion of distance is even more severe for the geo-
desic projection, which maps geodesics into straight lines
via

(2.12)

r'=d(r/d )'+"", (2.13)

As illustrated in Fig. 3(b), for the same packing as in Fig.
3(a), this ad hoc algorithm produces an approximately
homogeneous distribution of 1000 particles in the plane,

We have found it preferable to use a projection scheme
which does not distort distances so severely, namely



28 DENSE-PACKED ARRAYS ON SURFACES OF CONSTANT. . . 6381

(a}

o
4 o O y
0 o o
0 0

0

0

o O
0

0
0

O 4 y aa
a 0

0
0

0
0

0
Qp

0
0

0

0
0 0

0
0 0

0
0

0
0

0
a0

p
00

a
0

ao0
0y

o a 0 0
0

a o
0

I

5 67
Kd = 0.5

(b}

0 0 0o Q
a 0

O y 0 a o 0 a o o o
o y 0 o y y oo yo 4 y 0 0 O o y y o

0 0 4 a y o 0 y oo 0 O o o O o o y
4 y O O o 0 0 O oo o O y 0 o 0 o 0 o OO
0 0 0 y o o y

O 0 0 y y o
o O o o

o y y O O 0 y oy o oa o y O
0 y y o0 a y oO O o y o o 0 o

o y Q o 0
o y oo 4

0 o O o

0 0 0 O o o 0 0 0 o o y a o o

0
O o 0 0 o y 0

0
4

o o o o O y
Q 0 0 0

o 0 o o0 0 0 0 o
O o a 0 0 o Q o 0 o o a

0 o O
o o o

0 y o o y a o
o o 0 0 0 y O o 0

o 4 0 0 y o a 0 0 4 0 a o y
O o a o o a

o o 0 0 o y 00 0
0 0 0 y a y 0

o y
0 o 0 0 0 n

o 0 y 0 4 y a y 0
4 a o 0 0 o

0 0 0 0 0 a 0o 4 0 0 0 o 0 0
0 0 0 a y 0

0 0 o y O
y

a y a
o o o 0 a 0

o o 0 0
o o

0 0

o y a
0 0 0 0 0 0 4

a y
p

o 0 yo o y a o y a o y y 4
o oa o o o Oo

o
0 a o 0 0 a

Q o o y O y o 0 0 o

o y y o 0
0

a o a
0 a p4

o o o y y y a y a
0 0 O y y o o o ao y O O O 0 y o y y 0 a o

o
0 oo o O y y a 0 y y 00 a a 0 0 0

a
y o y y a 4o o a
y y O a y y y 0 0 0 0 o G

y 0 0 y 00
0

0 o o O y o 0 o o
0 n p 0 0 0 I

o 4 o G a 0 0a o O 0 O o 0 o 0 o p
o 0 'o

o o y a o o o y 0
0 0 0 y 0 0

ly 0 o
a y a0 0 0a a o y

0 0

these particle packings with Fig. 3(b), it is helpful to also
examine the coordination-number histograms shown in
the insets. Although six-coordinated particles dominate in
a11 three cases, the bias toward seven-coordinated parti-
cles, as opposed to five-coordinated particles predicted by
Eq. (2.5) is quite evident. A similar-asymmetry appears in
the distribution of tetrahedra per bond in 3D dense ran-
dom packings. ' One candidate for the ground state is a
regular arrangement of sevenfold disclinations embedded
in an otherwise six-coordinated medium. Evidently, these
highly ordered ground states are not accessible via
Bennett's packing procedure. The degree of disorder evi-
dent in the figures is related to the number of unpaired
fivefold disclinations. We would expect qualitatively
similar particle configurations for finite-temperature sys-
terns cooled on a hyperbolic manifold at rates which are
fast compared to the time necessary to equilibrate dis-
clinations. The configuration for }}d=0.3 is clearly more
ordered near the initial seed triangle. The influence of the
seed is less evident for ed=0. 5 and ~d=0. 7. All three
particle configurations display a weak, threefold asym-
metry aligned with the orientation of the initial seed trian-
gle. The asymmetry decreases with increasing distance
from the center. More homogeneous particle configura-
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FIG. 4. Array of 1000 disks packed on the surface of con-
stant negative curvature, plotted by the same map as Fig. 3(b)
for (a) ~d =0.3 and (b) ~d =0.8.

and gives a clear impression of the defect topology. It
also reduces to flat-space polar coordinates in the limit
ad~ 0.

Packings of identical disks projected using Eq. (2.13)
are shown in Figs. 4(a) and 4(b) for xd =0.3 and }}.d =0.7,
respectively. The 1000 particles shown in these figures
were extracted from the centers of approximately 2000
particle arrays to eliminate edge effects. When comparing

500 1000

FICx. 5. Average coordination number Z as a function of the
number of X disks packed sequentially on the surface of con-
stant negative curvature with ~d=0. 5. Straight line corre-
sponds to Z;d ~.
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TABLE I. Numerical data for particles packed at a variety of incommensurate curvatures. This information pertains to a 1000-
disk central portion of computer-generated 2000-particle arrays.

K8

0.3
0.4
0.5
0.6
0.7
0.8

189
102
27
39
18
0

544
648
733
619
595
466

267
250
240
342
387
534

6.08
6.15
6.21
6.30
6.37
6.53

Zideal

6.075
6.133
6.207
6.299
6.408
6.534

0.908
0.908
0.909
0.909
0.910
0.911

0.9075
0.9080
0.9087
0.9094
0.9102
0.9112

1.74
1.74
1.72
1.72
1.70
1.70

d2

2.00
2.00
2.00
2.00
2.00
2.00

3.0
2.3
2.1

1.9
2.0
2.0

tions would presumably result from relaxing these Bennett
packings in a softer pair potential.

Figure 5 shows the average coordination number Z for
the first N particles in the cluster. These results are con-
sistent with an oscillatory approach to a value close to
that predicted by the statistical-honeycomb model,
Z;q„~(ad =0.5)=6.207. The Frank-Kasper phases in 3D
flat space exhibit very similar behavior when q is plotted
as a function of the size of the unit cell. ' The surface
area per particle, and hence the packing fraction, can be
extracted from Eq. (2.5). A summary of our numerical re-
sults for six different values of ~d is contained in Table I.

C. Correlation functions

The radial distribution function g(r) for ad=0. 5 is
shown in Fig. 6. The definition of this function is a gen-
eralization of the flat-space one; we define g(r) to be the
average number of particles with geodesic distances be-
tween r and r +dr from a given one divided by the area of
the corresponding annulus: 2m. [sinh(i~r )l~ jdr. The
second peak of this distribution function appears to be
split into two subpeaks in a way reminiscent of 3D dense
random packing' ' and of experimentally determined
radial distribution functions for metallic glasses. The po-
sition of the first subpeak can be calculated as the length
of the longer diagonal d ~ of a rhombus in H2 with sides d
and the shorter diagonal equal to d:

1 h, 4 cosh (i~d)
d) = cosh

cosh(ad )+ 1
(2.14)

( )
6is(r) (2.15)

where 8(r ) is the angle a bond (joining two near-neighbor
atoms and centered at r) makes with respect to some
reference axis. It is difficult to define an average like
(iI'i6(r)) precisely in curved space, because one cannot
unambiguously specify a reference axis for 8(r ) common

1.0--

For Kd=0. 5 one finds d~-1.715d in good agreement
with the position of the first subpeak 1.72d+0. 01d. The
second main subpeak is at dq —2d implying the existence
of three-membered collinearity similar to those noted for
3D random-packed models. '

At large separations the radial distribution function
should approach the average number density s ', which
can be determined from the average coordinate number
via Eq. (2.5). Using the value of Z in Table I, we find
s '= 1.14d for sd =0.5. The asymptotic behavior of
Fig. 6 is consistent with this value.

Another quantity of interest is the orientational order
parameter i)i6(r). In 2D flat space, this quantity is given
b 17

G(1')

0. 5--

-G. 5--

0
1.0

I

2.0
- 1.0--

FIG. 6. Radial distribution function for the cluster plotted in
Fig. 3.

FIG. 7. Grientational correlation function for the cluster
plotted on Fig. 3.
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to all of H2. ' It is possible, however, to define a path
dependen t correlation function

(2.16)

(2.17)

where the angles 8(r) ane 8(0) entering Eq. (2.16) are to
be compared after the bond at r is parallel transported to
the origin along a path I . It is a straightforward exercise
in differential geometry to show that the correlations
along two different paths I and I" are related,

6i K2SG(6)( ) G(6j( )
6~+ srI"

where Sr}- is the surface area contained in the closed con-
tour traced by first following the path I from r to 0, and
then taking the path I" from 0 back to r. This area is
counted with a positive sign for counterclockwise circuits,
and with a negative sign for clockwise ones. Thus, corre-
lation functions defined by different paths are related by a
simple phase factor. Path-dependent spin-correlation
functions behave in a similar way for uniformly frustrated
X1'spin models in 2D flat space.

In practice, it is most straightforward to compute
G r '( r ) choosing I to be the geodesic path I 0 joining the
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FIG. 8. Commensurate-incommensurate transition plotted by the same map as Fig. 3(b). Arrays of 1000 disks packed on the sur-
face of constant negative curvature with (a) ~d =0.9, (b) ~d =1.0, and (c) ~d =1.090 SS. The coordination number of a few outside
disks is affected by the boundary.
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Results for g(r) and Gr (r) for a variety of incommen-

surate curvatures are summarized in Table I.
D. Commensurate curvatures

A sequence of Bennett packings leading to a commen-
surate sevenfold lattice when Kd =K7d =1.09055 is shown
in Fig. 8. An interesting commensurate-incommensurate
transition takes place as every particle becomes seven-
coordinated in the limit K~K7. As shown in Fig. 9, the
radial distribution function for v =a7 has 5-function
Bragg peaks.

A commensurate eightfold lattice obtained for
Kd =K8d =1.528 57 is shown in Fig. 10 using the geodesic
projection discussed earlier. An infinite number of points
fall on the extensions of every geodesic bond in this
curved-space lattice. These are the analogs of Bragg
planes in H2. Points at infinity are mapped onto the rim
of the projection. Note that the intersecting 8rag g
"planes" l~ and l2 are both parallel to the Bragg plane l.

FIG. 9. Radial distribution function g(r) for the array plotted
on Fig. 8(c). This function consists of a number of well-

separated 5-function peaks.

two points in question. If the correlations have inversion
symmetry, G ~z~'(r) is real in this case. The precise
procedure used in our numerical computations is
described in Appendix B. The radially averaged geodesic
correlation function GP'(r) is plotted in Fig. 7 for
Kd =0.5. The orientational correlation length can be
found by fitting the envelope defined by the maxima of
the curve to an exponential decay. The orientational
correlation length is g6—2. 1d, which is roughly the dis-
tance between the excess sevenfold disclinations predicted
by Eq. (2.5). A breakup of orientational order on this
scale is to be expected. '
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APPENDIX A: GEODESIC DISTANCES IN H2

The formula (2.1) for the distance between two points in
H2 along the geodesic line joining them is just the formu-
la for great-circle distances on a sphere, analytically con-
tinued to imaginary sphere radii. We show here how (2.1)
follows by explicit integration of the hyperbolic metric
(1.1).

Consider two points A and 8 with corresponding polar
coordinates (rz, Pz ) and (rs, P~ ) on a manifold of constant
negative Gaussian curvature IC= —~ . The equation of a
geodesic in this space is

tanh(~r)cos(P —Pp) =Kkp, (A 1)

where kp and Pp are constants determined by the coordi-
nates of A and B. It follows that, along a geodesic,

sinh(scr)cosh(vr)
tan —

p
K

(A2)

independent of kp. The length of a geodesic joining points
A and B can be calculated by integrating the metric (1.1):

8 8
diaz

——f ds= f Id r+[sinh(~r)/a] d PI' 2

~~ sinh(vr)= f dP[cosh (ar)tan (P —Pp)+I]'

Kd =1.52857

FIG. 10. Geodesic projection of the octagonal lattice
(~d =1.52857). A few geodesics, which appear as straight lines
in the projection, are also shown.

=kp[1 —(Kk ) ]' 2 f cos (P —Pp) —(akp)

where we have used (Al) and (A2).
Performing the integration, we find

(A3)
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Ickpsi n(P ii—Pp) i «psin(Pz —Pp)
Keg —Slnh

2 2 1/2
—sinh-'

2 2 1/2[cos (4B $0) (Kkp) ] [cos (4A $0) («p) ]

Taking the cosh of both sides of this expression and using Eq. (Al) to eliminate «p, we find finally

cosh(~dzii )=cosh(xrz )cosh(arri )[1 (~k—p ) ]—sinh(xr„)sinh(sr~ )sin(Pz —Pp)sin(Pii —Pp)

=cosh(Krg )cosh(~rii ) —sinh(ar„)sinh(sr~ )cos(Pz Pz —)

(A4)

(A5)

APPENDIX 8: ORIENTATIONAL CORRELATION
FUNCTION

dp'g

d(de~ }

dna

d(dpi, }
(83)

For an arbitrary configuration of atoms on a hyperbolic
surface one can identify near neighbors via the Dirichlet
construction. It is convenient to associate an orientational
order parameter with every particle, rather than every
bond. This is done by averaging Eq. (2.15) over all bonds
terminating in a given particle. We are led to consider
any two atoms A and B with Nz and N& nearest neighbors
located at A~, A2, . . . , A&„and B],82, . . . , B~, respec-

tively.
A near-neighbor "bond" is defined to be the geodesic

linking an atom wtih its near neighbor. There is also a
unique geodesic, connecting atoms 2 and B. Below we
calculate angles between this geodesic and nearest-
neighbor bonds. If we know these angles
eg, O~, . . . , Og, Og, Og, . . . , Og then the radially

averaged orientational-order correlation function for p-
fold orientational symmetry is

Gr —— g exp(i@9~ )

T

B
X g exp( —ipe~ ) l,Ng „

where we average overall pairs of points 3 and B in a con-
figuration with a given length of a geodesic connecting
them. We use the fact that angles do not change when
parallel transported along a geodesic. ' The equation for a
geodesic on a uniform hyperbolic surface is given by Eq.
(Al).

As discussed in Appendix A, the distance between B
and an arbitrary point a along the geodesic BA is

«psin(Pii —Pp}
Kd~. =sinh-'

[cos (Pii —Pp) —(«p) ]'

cp(8)—:
dna

d(da, )

K ko

[1—(«p) ]'~ sinh (~r~)
(84b)

Note that both pp and kp in (82) depend on pii and re via
Eq. (Al). Similarly, for the geodesic connecting point 8
to its near neighbor B„, the unit tangent vector t „has
components

c„(8„):—
dp'g

d(dBb )n b„=&

Kk„

[1—(«„) ]' cath(mr~ )tan(P~ —P„),

d Piicp(8„)=-
d(drab ) pg b„=B

K k„
[1—(«„) ]' sinh (sr~)

where b„ is a point along the geodesic joining 8 to B„,
parametrized by the constants k„and P„. If 8& is the an-
glebetween tz and t „,then

(85b)

where e, and e~ are unit basis vectors for polar coordi-
nates in H2. Using (82) we find

dTg
c„(8)=-

d(dg, )

Kk()
coth(arri )tan(P~ —Pp)[1—(zk ) ]'

—smh
«psin(P, —Pp)

[cos (P, —Pp) —(«p)']' (82) sinh (a.r~ )
cos(Hid ) =c„(8)c„(8„)+, cp(8)cp(8„) .

K
(86)The geodesic BA must be parametrized as in Eq. (Al).

The unit tangent vector along the geodesic AB at point B
1$32

I

Substituting Eqs. (84) and (85) and using Eq. (82) we find
finally

cosh (Kriss )t (agni' —Pp)tan(P~ —P„)+1
cos(8& ) = —

2[cosh (arri)tan (Pii —Pp)+1] [cosh (a're)tan (P~ —P„)+1]2 1/2 2 2 ]./2 (87)
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