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The P model for structural phase transitions in two dimensions is studied using the Migdal
renormalization-group method and a Monte Carlo coarse-graining calculation. The methods em-

ployed are useful for more general models of surface reconstructive transitions. Particular emphasis
is placed on accuracy of phase diagrams and the nature of the "crossover" from order to disorder
behavior above (in temperature) but close to the phase transition and displacive behavior at higher

temperatures. The Monte Carlo coarse-graining calculation is found to give the fullest information
on this crossover and the short-range order above the transition and also verifies the accuracy of the
more economical Migdal calculation of the phase diagram. The results are discussed with reference
to the surface reconstruction phase transition of the clean W(001) surface.

I. INTRODUCTION

The study of surface phase transitions has attracted
much attention recently. This is due to both the increas-
ing availability of experimental data for adsorption sys-
tems' and the theoretical interest for ordering in two di-
mensions. Most of these phase transition studies concern
the different phases of adsorbates arising from adsorbate-
adsorbate and adsorbate-substrate interactions. However,
it has also been discovered that a large number of metal
and semiconductor surfaces exhibit reversible phase tran-
sitions even in the absence of the adsorbates. ' These
transitions are usually from a high-symmetry structure to
one of lower symmetry as the temperature is lowered
This is the case, for example, on the (001) surface of W
where the transition is from a (1X1), i.e., the two-
dimensional (2D) symmetry of the bulk termination, to a
c(2&&2) structure occuring somewhat below room tem-
perature. ' " The lower-symmetry phase can also be in-
commensurate with the underlying bulk layers as exempli-
fied by the low-temperature phase of Mo(001). Occasion-
ally a whole sequence of transitions between different
structures can take place as the temperature and/or cover-
age is varied. All these diverse intrinsic surface phase
transitions are truly 2D in character, since experimental
studies have confirmed that only atoms in the first few
layers are displaced from their bulk positions. ' ' This is
in contrast to the layer compounds where because of inter-
layer coupling, the character of the phase transition suffi-
ciently close to the transition temperature is still three di-
mensional (3D).' From a theoretical point of view, this
rich variety of 2D structural phase transitions provides an
exciting test for various concepts.

Prior to the observation of surface structural phase
transitions, bulk structural transitions in the ferroelectric
compounds of the perovskite family such as SrTi03 (Refs.

1S and 16) and LaA103 (Ref. 17) had been extensively
studied. A key question in these studies concerned the
distinction between the "displacive" and "order-disorder"
character of the phase transition. ' ' In the displacive
regime the transition is thought to occur via gradual dis-
placement of groups of atoms from their high-
temperature equilibrium positions as the temperature is
lowered. This is often described as the condensation of a
soft mode whose frequency goes to zero at the transition
point. ' By contrast a transition of order-disorder charac-
ter occurs when groups of atoms have several equivalent
(usually displaced relative to the bulklike positions) sites
and a long-range correlation in the occupation of these
sites develops at the transition in a manner analogous to
transitions in spin systems. ' The modern theory of
structural phase transitions unifies these two points of
view, and it is now recognized that even in a displacive
system, clusters of atoms will develop an order-disorder
character, and that the conventional soft-mode picture is
inadequate for describing the dynamics and the short-
range order. " ' The validity of this new concept depends
crucially on the dimensionality of the system. In three di-
mensions, theoretical and experimental evidence for a
cluster picture are not pronounced. "' However, accord-
ing to existing theories, the cluster character should be
more evident in lower™dimensional systems. " ' Thus the
actual realization of experimental systems is extremely
important for establishing the new unified view of
structural phase transitions. In this paper we present a
Monte Carlo and renormalization-group study of a model
Hamiltonian that contains the essential features of a 2D
structural phase transition. Particular emphasis will be
made on the development of short-range order just above
T, and the crossover from order-disorder to displacive
behavior at higher temperature. We then review the ex-
perimental data for W(001) and argue that this provides
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qualitative support of the theoretical cluster picture near
T, that emerges from our study.

II. MODEL HAMILTONIAN

A standard model Hamiltonian that contains the essen-
tial features of structural phase transitions is given

21(a),23 V, = ——,Au + —„Bu2 & 4 (2.3)

may be better described by a vertical scalar displacement
rather than an in-plane movement. Thus the study
of a scalar model is of more than qualitative interest. In
keeping with the bulk of the literature, we shall take the
potential V, to be the simplest one displaying a double-
well character,

H=T(I p-, J )+ V(I u-, I),
where

T
2m

1

NN
V= g V, ( u-, )+—g ( u-, —u-, , )

1 1, 1

(2.1a)

(2.1b)

(2.1c)

This simplification is not actually necessary in our cal-
culation but it does facilitate the comparisons between our
results and existing work in the literature. For 2 ~0, V,
has a pair of minima at uo ——+(A/B)' . Of particular in-
terest is the dimensionless quantity,

V, (u, )

2 8C

Here, u- and p- describe, respectively, the displace-
1 1

ments and momenta of a set of atoms whose high-
temperature phase equilibrium positions occupy a square
lattice I 1 I. The on-site potential V, has double-well
character. In the usual 30 study of this model Hamiltoni-
an, V, is thought of as arising from a sublattice of "inert"
atoms which do not participate actively in the phase tran-
sition. In the case of surfaces, if u- and p- refer to the

1 1

surface layer atom coordinates only, then V, arises natur-
ally from the underlying layers of atoms. Of course a
simple Hamiltonian as given in (2.1a)—(2.lc) is not suffi-
cient for describing the incommensurate phases or more
complicated superlattice structures with large unit cells.
It is, however, appropriate for describing the most studied
surface structural transition on W(001) with two qualifica-
tions. First, since the transition on clean W(001) is from a
1X1 to c(2X2) structure, the actual displacement of an
individual surface atom is not u but

lC ~ —+g
1 1

Then

(2.5a)

—Hu2, —
2

1

K(8+ 1) 4
1

u ~

This is just the ratio of well depth to the bond energy
associated with moving one particle from the top to the
bottom of the well. The limit s ~&1 represents the order-
disorder limit, while for s «1, the thermal energy at T, is
large in comparison to the well depth V, (uo), correspond-
ing to the displacive limit.

We shall study the Hamiltonian only in the classical re-
gime. For evaluation of the configuration partition func-
tion, it is convenient to consider an effective Hamiltonian
A = —PV. Also, following Beale, Sarker, and Krumhansl
(BSK), we can eliminate one of the parameters by rescal-
ing the field variable,

+ +

u -, = u -, cos( k. 1 ), (2.2)
NN

u~ —u~,
1, 1

(2.5b)

with k = (n./a, n. /a ); a is the lattice constant.
The phase factor cos(k. 1 ) provides an alternating sign

on adjacent sites that converts a uniform displacement u
into one appropriate for a c(2X2) structure. This is
analogous to the relation between the ferromagnetic and
antiferromagnetic states. Second, detailed low-energy
electron diffraction (LEED) intensity analyses' ' have
shown that the transitions occuring on W(001) involves
the in-plane motion of surface atoms (see, however, Refs.
25—27). Thus the displacement vector u- in (2.1c) is

1

properly a two-component vector. However, in this paper
we shall restrict ourselves to a single-component scalar
displacement u . This simplifies the calculations allow-

1

ing better understanding of the qualitative features which
should carry over into the two-component situation also.
%'e have also undertaken calculations on the two-
component model. These will be discussed in a forthcom-
ing paper.

It is interesting to note that in the presence of a strong
electric field, such as that employed in a field ion desorp-
tion experiment, the structural phase transition on W(001)

with the dimensionless parameters,

pc"K= (1+8),8 (2.5c)

0=-
C

(2.5d)

E is the inverse temperature measured in appropriate units
and 0, being proportional to s defined in (2.4), is a mea-
sure of the displaciveness of the Hamiltonian.

III. MIDGAL RENORMALIZATION
TRANSFORMATION

In this section we present a Migdal renormalization-
group calculation of the phase diagram of the model de-
fined in the preceding section. We follow the approach of
BSK, but our method differs from theirs in several impor-
tant respects as do our results. The Monte Carlo simula-
tions described in Sec. IV verify the validity of these im-
provements.
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A. Transfer-matrix implementation
of migdal approximation

The partition function may be written

Z= Trexp(A ),
= f + du exp[A ( I u -, I )]

1

(3.1a)

(3.1b)

~ --- 0

I I
0—~ ——-- ~—

I I
~ ~ ~

I
~ ~ ~

I I
~ ~ ~
I l I

(u)

~ — ~—
I I
~~ ~

I I

I I~—
I I
~ ~—
I

~ ~ ~ ~

~ ~ ~
i1

(d)
00

ff du - S(u -,u - )S(u -,u - )
1 71' 72 1 2' 737

XS(u, u -, )= exp ——(u -—u -, ) +~(u -,u -, )
2

1' 1' 2 1' 1'

and P denotes the on-site part of the potential

(3.1c)

(3.2a)
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~ ~ ~ ~

~ ~

~ I
~ ~

I
I

jl II

(e)

S„'(u,u —,) =[S„(u-, , u -, , )] (3.3)

Meanwhile, the sites which connect only to vertical bonds
can now be decimated giving a renormalized interaction in
the vertical direction,

S„'(u, ,u, , )= f du, „S„(u-, ,u -, „)S~(u -, „,u -, , ) .

(3.4)

The process is then repeated with the directions inter-
changed,

(3.5)S~"(u -,u, ) =[S~(u, u, , )]

S„"(u-, ,u-, )= f du-, S„'(u-, ,u-„„)S„'(u7„,u7, ),
(3.6)

F (u-,u, )=—X —(u +u )— (u
1 t 2 2 0+ 1 4 41' 1' 4 2 1 1' 4 1

(3.2b)

The factor of —,
' derives from the fact that each site at-

taches to four bonds in the square lattice.
S as defined by (3.2) is just the transfer "matrix" (here

in continuous form so that the appellation "transfer in-
tegrand" might be more apt), which can be used to solve
classical models on one-dimensional (1D) lattices. Since
the essence of the Migdal approximation is to reduce the
difficult decimation procedure to a 1D problem (usually
by moving bonds), the transfer-matrix formulation is
convenient.

We associate a transfer matrix with each nearest-
neighbor bond of the lattice, denoting horizontal bonds by
S and vertical bonds by Sz. The standard Migdal ap-
proximation for a square lattice (see Fig. 1) involves first
moving half the horizontal bonds one lattice spacing in
the vertical direction. This doubles the strength of the
remaining horizontal bonds so that

0 ~ ~ ~
I l I

(c) (0
FKJ. 1. Steps in the Migdal iteration. See text.

yielding a renormalized transfer matrix defined on a lat-
tice whose spacing has increased by a factor of 2 in each
direction, and whose number of sites has been reduced by
a factor of 2 . ' Equations (3.3)—(3.6) result in unsym-
metric transfer matrices (S„&S~). We therefore average
the renormalized couplings,

(3.7)

S' ' is the once renormalized (by a scale factor of 2)
transfer matrix. One can examine the effect of renormali-
zation on the Hamiltonian by considering the logarithm of
S' '. Numerical implementation of the iteration implied

by Eqs. (3.3)—(3.7) will be discussed below; we turn now

to our first divergence from the method employed by
BSK.

After each renormalization of S, BSK suggest mapping
the resultant renormalized Hamiltonian back onto the
original functional form by adjusting the coupling con-
stants K and 8. By contrast we have explored the conse-
quences of iterating Eqs. (3.3)—(3.7) without mapping
back onto the original Hamiltonian after each renormali-
zation. This procedure avoids ambiguities associated with
the fitting procedure used to determine renormalized
values for K and 8, and by eschewing truncation of the
Hamiltonian (i.e., disposal of higher-order terms in u-)

1

should allow more accurate calculation of phase boun-
daries. As will be seen below, this modification in pro-
cedure does lead to significant qualitative and quantitative
variance with BSK's results and good agreement with
Monte Carlo simulations.
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B. Numerical implementation

Like BSK we have found it convenient to perform the
decimation integrals in Eq. (3.4) and (3.6) by using a
Gaussian-type quadrature. After transforming the in-
tegration to the interval [—1, 1] using the substitution,

"'(u -,u -, , ) —P '"'(u, , u -, , ),
which to leading order should vary like ——,

' K(u-
—u -, ) . We thus associate K,rr with the curvature

around

z= tanhu, (3.8) (u- —u-, )=0.0, u-=O.
1 1

' '
1

we use the standard Gaussian points and weights to turn
the integral into a simple matrix product,

1/2
WI. WJ.

S/J S(u;, uj )
(1—zg )(1—zj )

(3.9a)

u;= tanh z;, (3.9b)

where z; and w; are, respectively, the Gaussian points and
weights for the integration range [—1, 1]. Equation (3.4),
for example, then becomes

Sy rj
= g Sy gkSy kj .

k
(3.10)

The bond strengthening step of Eqs. (3.3) and (3.5) is also
conveniently handled in the matrix formulation just by
squaring matrix elements and accounting for the weight
factor,

(1—z; )(1—zj )
S„';,=(S,„,;, )

wg wj.
(3.1 1)

so that the b=2 Migdal iteration reduces to alternately
squaring matrices and their individual elements.

As mentioned above, there seems to be no particular
justification for mapping renormalized Hamiltonians back
onto the original functional form. Instead we allow the
flow to occur in the space of all two-body continuous
nearest-neighbor interactions allowed by symmetry. (Ulti-
mately the space is restricted by the discretization of the
transfer "integrand, " but the error introduced thereby can
be systematically studied and controlled by increasing the
number of grid points. ) The fixed points that occur in
this space are the low-temperature Ising (K~ ao, 8~ oo )

point, the Ising fixed point (K, =0.44068. . ., 8~ oo ), the
high-temperature (Gaussian) point (K~O, 8 arbitrary),
and the fully unstable point at (K=O, 8=0). To follow
the general direction of the flows it is useful to associate
effective values of K and 8 with a given renormalized
Hamiltonian on the basis of the lowest-order terms includ-
ed. To establish such an association we begin with the
Hamiltonian after (n —1) iterations,

(„) (1—z;)(1—zj )~".'= ln S-"'
WI. WJ

(3.12)

"'(u-,u, )
i „

=~'"'(u, ,u Q7 —Q7, —Q.

The purely bond part of the Hamiltonian is

(3.13a)

(3.13b)

The diagonal elements specify the on-site part of the po-
tential,

Thus we have

lnS'"'(u i, u i ) —lnS'"'(u i, u i )

201
(3.14)

where u1 ——tanh z1, and z1 is the first Gaussian point to
the right of 0. The on-site part of the potential is tracked
by using the first two diagonal elements of the transfer
matrix to determine effective values of the first two terms
in the expansion of the on-site part [see Eq. (2.3)] A,'ii' and
B,'ff'. Although the on-site part does not retain the scaled
functional form under renormalization, an approximate
value for 8dY in terms of K,rr is

g (n) +B(n)ff+ ff
(3.15)eff 2 ~(gg)

eff

The flow of K,'ii', 8,'ii' although it does not fully specify the
evolution of the Hamiltonian, allows detection of the
behavior under renormalization.

C. Moving the on-site potential

We have so far treated the on-site part of the potential
on the same footing as the bond part, i.e., a fraction ( —„'

for a 2D square lattice) of each on-site potential is at-
tached to the end of each bond and moved along with it.
Thus a fraction a equals one-half of each on-site potential
is moved away from the site before decimation. Emery
and Swendsen pointed out that within the framework of

- the Migdal approximation, there is no necessity for mov-
ing the on-site potentials at all. Thus one can consider u
to be an arbitrary (with the range [0,—,]) parameter. Ac-
cordingly the effects of varying o. have been investigated
for several models. We have found, for example, in a
study of the X-I' model with cubic anisotropy ' that
while the choice of a does not substantially effect the ac-
curacy of the phase diagram obtained, significant quanti-
tative improvement of the values of the eigenvalues is
realized with the choice a=O. We therefore investigated
the effect of varying a in the present calculation.

Implementation is straightforward in the transfer ma-
trix formulation, but in this case the results seem to be
rather insensitive in all respects save one to the choice of
a. The one major difference which effects neither the
phase diagram nor exponent estimates, is the shape of the
iterated on-site potential. %'hereas the choice u= —,

' never
produces unusual renormalized on-site potentials, the
choice a=O often gives on-site potentials after many
iterations with three "valleys" reminiscent of the free-
energy functional near a first-order transition. The
behavior is seen, however, only on approach to the high-
and low-temperature fixed points, and thus does not ap-
pear to have any physical significance.
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D. Results

e=o oo

0.2
Migdal a = l/2

Qlgdal (x = 0
Monte Carlo

0.4

C3

0.6

0.8

e=ao l. O
0.0 O. 2 O. 8 l.o
T=0 r& r~oo

C

tanh [(4K)-~]
FIG. 2. Phase diagram of the 8 model. Solid line is the re-

sult of BSK (Ref. 23). Open circles and triangles are our Migdal
renormalization group results with a=0 and 2, respectively.

Filled circles are points obtained with Monte Carlo techniques
(see Sec. IV). Dashed lines have no physical significance and are
intended to guide the eye.

One disturbing aspect of the calculation of BSK to us is
the poor agreement with our subsequent Monte Carlo cal-
culations. This may have been due in part to the semi-
qualitative nature of their "phase diagram. " However, we
have found that most of the discrepancy is real and in fact
results from the practice of mapping the iterated Hamil-
tonian back onto the simple two-parameter form of Eq.
(2.5b). Our phase diagram (for both a =0 and a= —, ), the
Monte Carlo results to be described in the following sec-
tion, and BSK's results are given in Fig. 2, using the scales
of BSK. The choice a = —, for the on-site convention
seems to give more favorable agreement. Our results also
show that the Migdal renormalization scheme can in fact
give a very accurate account of the phase diagram if the
flow is unrestricted for these continuous models. This
point is important because the Migdal calculation requires
very little computer time in comparison to the Monte Car-
lo work. Thus even though the Migdal calculation does
not give unambiguous information concerning short-range
order and the displacive —order-disorder dichotomy can-
not be straightforwardly addressed (see next section), it is
useful for rapid, quantitative determination of phase dia-
grams.

There is a second difference between our results and
those of BSK. They described on the basis of the flow of
their Migdal calculations, a crossover behavior in the
high-temperature region between order-disorder and
displacive behavior. We will discuss this point more fully
in Sec. V, but we find that this crossover behavior is not
real in any long-range sense. Instead the distinction be-
tween the two types of behavior depends on the size of the
region studied (i.e., the number of renormalizations done)

and it becomes less pronounced as K decreases. Thus
there is no well-defined boundary between the behaviors as
suggested by BSK. This boundary and the apparent fixed
point terminating it are artifacts of the restriction on the
Hamiltonian.

IV. MONTE CARLO CALCULATION

The Migdal renormalization scheme described in the
preceding section provides a simple and fairly accurate
way of analyzing phases associated with the Hamiltonian
(2.5b). Our results in this section will also attest to this
fact. The major drawback of the Migdal scheme for our
present study is that it does not yield clear information
about the short-range order just above the transition tem-
perature. By restricting the renormalization flow in a
two-parameter space, BSK produced a separatrix separat-
ing two regions in the (E,O) space above T„one flowing
towards the high-temperature Ising fixed point and the
other towards the Gaussian point. (T, denotes a critical
transition temperature. ) These two regions are then iden-
tified as having order-disorder character and displacive
character, respectively. Although this division bears a
qualitative relation to the presence or absence of short-
range order or domains above T„ the precise meaning of
this separatrix is unclear in 2D. As shown in the preced-
ing section, when one removes the restriction of the flow
to a two-parameter space, the separatrix disappears alto-
gether. Alternatively one can follow the initia/ flow in the
parameter space to get a qualitative picture of the short-
range order but again there is no way of mapping this in-
formation to the actual degree of short-range order above
T, . For these reasons, we have performed a Monte Carlo
calculation on the model Hamiltonian (2.5b). The purpose
of this study is twofold. The first is to check the accuracy
of the Migdal scheme for the phase diagram, especially
the relative merits of different ways of moving the on-site
potential in the renormalization transformation. Second,
the Monte Carlo results present a very clear picture of the
short-range order above T, and the cluster formation phe-
nomena even in a "displacive system. " The method we
use is based on the Monte Carlo coarse-graining and re-
normalization scheme recently introduced by Binder in a
calculation for Ising spin systems. The idea is to examine

the block order-parameter variable ul ( 1 ') defined as

1
ul( 1 ')= g u-,

1 EB(L, 1 ')

(4.1)

Ul =1—(ul )/(3(ul ) ),
(uL ) (uL )

2(ui )' 30(ul' )'

(4.2)

where 8(I., 1 ') represents the set of lattice sites in an

I. )&L block centered at 1 '. The Monte Carlo data are
analyzed by studying the various moments

ul. = f du u PI (u)

of the block variable distribution function Pl (u) for k =2,
4, 6, etc. , and their lowest-order cumulants defined as
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FIG. 3. Cumulant of block distribution function as a function

of block size in a 24)&24 lattice with 8=5.0.

Above T„PL(u) becomes a Gaussian for L &)g (g' being
the correlation length, and hence UL, VL, . . . , tend to
zero as L~ oo ). Below T„PL (u) tends toward two delta
functions centered at +uo, the net displacement of each
atom, and hence UI, VL approach the values —, and —,', ,
respectively. Right at T„Binder has argued that UL ap-
proaches a nontrivial fixed value U* as I.—mao. (For
d=2, U*=0.52. ) The great advantage of this method is
that from one Monte Carlo run we obtain PL (u) for all L
simultaneously up to the size of the system used in the
calculation. Figure 3 shows the "flow" diagram for UL
based on Monte Carlo study of the Hamiltonian (2.5b) on
a (24X24) lattice. The value of the parameter 8 was tak-
en to be 5.0 for this set of runs. About 3000 Monte Carlo
steps per site are used. As can be seen from the figure,
one can easily extract the value of T, =1.01+0.01 from
the extrapolation of UL to large L. We have also tested
numerically that to this accuracy, larger lattice size and
longer runs produce no appreciable change of the transi-
tion temperature. Besides the transition temperature, the
various block variable distributions provide a wealth of in-
formation about the short-range order. In Fig. 4, we have
plotted the distribution P2(u) at various temperatures. At
a temperature slightly above T„the correlation length g is
still considerably longer than I. times the lattice constant,
and hence PL(u) maintains a double-peak character sig-
naling the presence of short-range order or clusters of size
larger than L, . As one moves away towards higher tem-
perature, eventually the correlation length becomes less
than the size of the block. At this point, the block vari-
able UL is distributed around zero and Pl. (u) shows a sin-
gle centered peak. This is a simple but accurate way of
determining the variation of the correlation length above

P, (u)

--0. I T= I,43
~ ——— T=l IO

the transition temperature and the presence or absence of
short-range order domains. Since Ul starts to decrease
significantly towards zero only when L exceeds g, an even
simpler way of deciding the transition between two re-
gions is to set UI to a certain value. Here, we have found
by comparison with the behavior of Pz(u) that a good
choice for a "crossover" temperature TI (8) is the condi-
tion,

UL [Tl (8),8]=0.2 . (4.3)

Note that if the block distribution PL (u) were a superposi-
tion of two Gaussians, the transition from single peak to
double peak would occur at UL ———,.

With this criterion, one can now define a whole series of
crossover boundaries, one for each L„besides the true
phase boundary. For T, (8) & T & TI (8), no long-range or-
der exists but there are clusters of size larger than L.
Thus the boundary T= TI (8) in the (T,8) plane separates
a high-temperature region with displacive character and a
low-temperature region just above T, (8) with order-
disorder character. In Fig. 5, we present the result for the
phase diagram together with the I, =2 and crossover
boundaries. It is clear that even for 8«1, the region just
above T, always has an order-disorder character as also
indicated by previous molecular dynamics and
renormalization-group studies. Another point to note is
that the true phase boundary can be viewed as the limiting
curve for a sequence of crossover boundaries Tl (8) in the
limit I.~co, corresponding to the fact that the correla-
tion length diverges at the transition temperature T, . We
note finally that the phase boundary obtained by the Mig-
dal transformation (especially with a = —,

'
) compares

favorably with the Monte Carlo results.

V. DISCUSSION

In the preceding sections we have presented both the
Migdal transformation and Monte Carlo results for a sim-
ple model Hamiltonian. The Migdal transformation pro-
vides an easy way of determining the phase diagram. It is,
however, difficult to extract details of the short-range or-
der from the results. Also, for a more realistic Hamiltoni-

I I I I I I I I I I I I I I I I I I I

—l. 0 —0.5 0 0.5 ) 0 u

FIG. 4. Distribution for 2)&2 block for temperatures well
above (solid line), somewhat above (dashed curve), and slightly
above (dotted-dashed curve) the critical temperature (T,= 1.01).
Double-peaked character at T=1.10 shows the persistance of
short-range order above T, .



MONTE CARLO AND RENORMALIZATION-GROUP STUDIES OF. . . 637S

8=0
2
4

L =24

——ESD (~„i
—.—EELS (v, )—LEED I ( —', —')

FICx. 5. Crossover boundaries for various block sizes in the P4
model. Scale is the same as that used in Fig. 2. Boundary corre-
sponding to infinite L is the phase boundary; in Fig. 2 the phase
boundary is taken to be the L =24 crossover boundary.

l I I I

200 300 400 500
FIG. 6. Schematic sketches from data obtained in different

types of experiments on the surface reconstruction phase transi-
tion of W(100) which measure the degree of order at different
length scales (see text).

an appropriate for the description of surface structural
phase transition, more than just nearest-neighbor interac-
tions would be involved, and it is difficult to generalize
the Migdal transformation to this situation. On the other
hand, the Monte Carlo coarse-graining analysis of the
block distribution function can be applied to more compli-
cated Hamiltonians. In the presence of a small amount of
adsorbates such as in the case of hydrogen on W(001),
we have shown that the absorbate degree of freedom can
be integrated out and the resultant effective Hamiltonian
would still be of the form presented in (2.1), with a poten-
tial energy V( I u - I; T,n ) depending on both the tempera-
ture and fractional coverage n of the surface. Thus by
mapping the model calculation described in this paper to
the effective Hamiltonian, we can study the phase dia-
gram in the temperature-coverage (T,n) plane. This can
be readily measured experimentally, and data for many
adsorption systems are available for comparison with the
theory. '

The Monte Carlo coarse-graining method also provides
an easy analysis of the block variable distribution function
Pl (u) and the clustering phenomena above the transition
temperature. Experimentally there is a set of data on
W(001) that are relevant to this question. In Fig. 6, we
have sketched schematically how three different quantities
from different experiments on W(001) develop as a func-
tion of temperature. The first quantity is the intensity of
the half-order spot in LEED data taken from Refs. 10 and
40. This is a measure of the (long-range) order parameter,
i.e., the average displacement of the surface atoms. (Actu-
ally, LEED is limited to a coherence length of 100—300
A. ) The next curve refers to a local vibrational mode (v~)
of hydrogen absorbed on the W(001) surface taken from
Ref. 41. This mode is sensitive to the bond angle between
H and W and hence to the local displacements of the W
atom. Finally the last curve refers to the ionic current

yield in an electron impact desorption experiment of H
from W(001) from Ref. 42. Again the strong variation of
this yield as a function of the temperature can be inter-
preted as an implication that the desorption yield is a sen-
sitive function of the surface atom displacements. It is in-
teresting to note the similarity between these sets of curves
and the theoretical results in Fig. 5 for crossover at dif-
ferent values of the coherence length. This can be inter-
preted as evidence that the three different types of experi-
ments, LEED, inelastic electron scattering spectroscopy
(measurements of local vibrational modes), and electron
impact desorption, are probing different ranges of order
with regard to the structural phase transition on W(001);
the LEED experiment probing the longest range and the
desorption experiment probing the shortest. There are
also other experimental data such as high-energy ion
scattering which obviously probe very-short-range order
that fits into this description. One should bear in mind
that the actual order parameter for W(001) transition has
two components whereas the present study is for a scalar
parameter. Nonetheless, we believe that the qualitative
features presented here should carry over. Calculations
for the two-component order parameter are underway and
will be reported elsewhere. Quantitative comparison of
the theory with the experimental data is not warranted un-
til better theories for the dependence of surface vibrational
modes and electron impact desorption yield on the surface
structure are available.

Finally we should mention that the original motivation
for considering the cluster picture in the study of 3D
structural phase transitions is the appearance of a central
peak in the dynamic structure factor data for SrTi03. ' '
This is currently understood as arising from the slow
motion of domain walls as opposed to the other time scale
set by the soft-mode phonon. " ' As various theoretical
studies have shown, the clustering phenomenon and the
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presence of short-range order should be much more pro-
nounced in the lower-dimensional surface transitions.
Therefore, detailed dynamic studies of the surface
structural phase transition through inelastic scattering ex-
periments should provide particular interesting results and
fruitful comparison with the current theoretical ideas.
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