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We examine the effect of long-range spatially correlated disorder on the Anderson localization
transition in d =2+@ dimensions. This is described as a phase transition in an appropriate non-
linear o. model. We consider a model of scalar waves in a medium with an inhomogeneous index of
refraction characterized by scattering strength y and spatial correlations of range a decaying (i) ex-
ponentially y&a e ' and (ii) by power laws y~(a +x ) (m )0). A replica-field-theory repre-
sentation is utilized in the calculation of the one- and two-particle Green s functions. In addition to
the usual diffusive Goldstone mode of the field theory arising from energy conservation, the non-
linear o. model is shown to possess a discrete spectrum of low-lying nondiffusive modes associated

with approximate wave-vector (k) conservation in the geometric optics limit ka ))1. For waves it
is shown that all states are localized for d (2 with diverging localization lengths in the low-

frequency limit and that the mobility edge in d =2+@ separating high-frequency, localized states
from low-frequency, extended states is characterized by the same critical exponents as for spatially
uncorrelated disorder provided m ~ e. The problem of electron localization in a long-range correlat-
ed random potential is also described within the same universality class.

I. INTRQDUCTIQN

The phenomenon of Anderson localization' is a funda-
mental property of waves in a disordered medium. The
nature of this transition from extended to localized states
has been studied extensively for elementary excitations in
systems in which the disorder is spatially uncorrelated. In
this paper, we consider the transport properties of waves
in a medium with long-range correlated disorder. For ex-
ponentially decaying correlations, we examine the nature
of normal modes of the disordered system as the range of
correlations is made long compared to the wavelength of
the excitation. The infinite-range case of power-law-
decaying correlations is also discussed in detail. This
latter case may be of importance for phonons in an elastic
medium possessing vacancies, dislocations, or other topo-
logical defects in the crystalline structure. The long-
range strain field associated with a quenched distribution
of such defects gives rise to a scattering potential for pho-
nons with power-law-decaying corelations. Another ex-
ample is that of electronic conduction in solids possessing
a quenched distribution of defects with power-law-
decaying impurity potentials. Also, in a polar semicon-
ductor power law, correlations may be realized by means
of structural disorder. Here, the local charge imbalances
associated with the deviation of atoms from their crystal-
line position produce long-range correlated random elec-
tric fields familiar from the problem of the Urbach
optical-absorption edge.

We show from first principles using the methods of
field theory and renormalization that the localization
transition for waves in a long-range correlated random po- m (x)=mp+m'(x), (2.2a)

tential is in the same universality class (see Note added in
proof) as the spatially uncorrelated case. Ail states are lo-
calized in two dimensions and below. The crossover in
d &2 from localized to extended states as the range of
correlations is made longer, and hence the potential
smoother, is found to occur only in the limit of a com-
pletely flat potential. It is shown that in the presence of
arbitrarily weak disorder, increasing the smoothness of the
potential results simply in a corresponding increase of the
localization lengths. Above two dimensions the mobility
edge separating low-f'requency extended states from high-
frequency localized states is shown to be characterized by
critical exponents in accord with the theories of Wegner
and Abrahams et ah. of electronic conduction in a short-
range correlated random potential. As the range of corre-
lations is made longer, this mobility edge moves to higher
frequencies.

l

II. THE MQDEL

We consider the general problem of wave propagation
in a medium with a correlated spatially varying index of
refraction. For simplicity we consider a scalar wave equa-
tion in the continuum-field-theory limit. For concreteness
we choose a model for elastic waves described by a dis-
placement field P, in a medium consisting of atoms with
spatially varying random masses m(x) and constant
"spring stiffness" Vo,

Q2p
m(x) —VpV p=o. (2.1)

Qt2

The random masses here fluctuate about a mean value mo,
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and are characterized by spatial correlations which we
write as

ficient in terms of the long-time behavior of the vibration-
al energy E (x, t),

(m'(x)m'(y) ) =B(x —y),
(m'(x) ) =0 .

(2.2b)

(2.2c)

f d xx (E(x,t)),„„D= lim- f d x (E(x,t)),„„,l, (2.3a)

We assert that the critical properties of the present scalar
model near the localization transition are identical to
those of a general vector field propagating in an isotropic
medium with inhomogeneous index of refraction.

As in the case of spatially uncorrelated disorder we
probe the nature of normal modes of this system by intro-
ducing a spatially localized zero-momentum phonon wave
packet and examining its subsequent time evolution as it
scatters from random mass fluctuations in its environ-
rnent. It is convenient to define an average diffusion coef-

I

Here, the energy density takes the form

E(x,t)= —,'m(x)P + —,
'

Vo
i V$ i

(2.3b)
/

The angular brackets denote an average over all possible
realizations of the random-mass field compatible with
conditions (2.2). By standard methods the diffusivity can
be expressed in terms of a product of the retarded and ad-
vanced phonon Green's functions in the weak scattering
limit,

B(x —y)/mo «1,
f dcoco' f d"xx'(G(x, 0;co+)G(x,0;~ )),„„bl,D= lim

dcocu d"x G x,O;co+ 6 x,O;~ ezgemble

(2.4a)

(2.4b)

Here, co+ =to+i rt denotes the addition of an infinitesimal
imaginary part to the phonon frequency in the retarded
and advanced Green's functions, respectively. This latter
form suggests a spectral decomposition of the diffusivity
into contributions D(co) from normal modes of a given
frequency ~,

dMD co + co
D=— (2.5)

dc' E(co)

Here, E(co) is the spectral density of energy excited in the
medium by the initially injected phonon wave packet. The
behavior of D (co) on sufficiently long length scales, in the
renormalization-group sense, determines whether normal
modes of a given frequency co are extended or localized.
If states of frequency co are localized, then D(co) will re-
normalize to zero, whereas extended states of frequency co

gives rise to a finite value of the diffusivity at that fre-
quency.

III. FIELD-THEORY FORMULATION

In order to calculate the diffusivity D (co) we utilize the
replica-field representation ' of the two-particle phonon
Green's function,

G (x,y;co+ )G (x,y;co )

= lim D '+x '+y '-x '-y
n+ —+0
n —+0

Here we have introduced two sets of replica indices denot-
ed by superscripts + for the retarded and advanced
Green's functions, respectively. Accordingly, the contours
of integration are chosen for the + replicas as shown in
Fig. 1 so that the infinitesimal imaginary parts +i' en-
sure convergence of the functional integrals. The symbol
DP denotes functional integration over all of the replica
fields.

The conditions (2.2) may be implemented by the proba-
bility distribution for the fluctuating part of the mass den-
sity,

P [m'(x)]

=const exp ——,
' f d x d y m'(x)B,~'(x —y)m'(y)

(3.2a)

where B,~' refers to an operator inverse of B(x —y) with
respect to its two coordinate-space arguments,

f d zB(x z)B~&'(z —y—)=5 (x —y) . (3.2b)

Averaging over all possible realizations of the random-
mass field we obtain

Complex P plane

—(L + +L )Qe (3.la) Re

where

l. +—= —,
' f d "x P [co+m (x)+ Vo V ]P, a = 1, . . . , n+

(3.1b)
FICJ. 1. Contour of integration for the retarded (+ ) and ad-

vanced ( —) replica fields.
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&
I
«xy ~+) I'&,...-b].

lim D x + y z y
n+ ~0
n ~0

int
—(Lo++Lo +L )

(3.3a)

where Lo are obtained from L —by replacing m (x) by its
mean value m0 and

4

L;„,= f ddxd"yP (x)P (x)8(x y)P—~(y)P~(y) .
(3.3b)

It is convenient to reduce this quartic replica-field cou-
pling, generated by averaging, through the introduction of
a set of intermediate bilocal fields

Q ~(xy), aP= 1, . . . , (n++n ) .

The interacting part of the field theory (3.3b) can then be
expressed as a functional integral over this set of fields as
follows:

e '"'=const f DQ exp ——,
' f d"x d"y[8 '(x y)Q —~(x,y)Q ~(x,y)+co Q ~(x,y)P~(x)P~(y)] (3.4a)

Here, and in subsequent discussions, B refers to the reciprocal of the correlation function,

18 '(x —y)—:
B(x —y)

(3.4b)

In terms of the intermediate fields, the generating functional for the averaged Green s functions may be expressed as a
quadratic form on the P fields,

Z(J)—:lim f DgdQ exp ——, (P,A (Q)P) ——,
' f d x d y[8 '(x y)Q ~Q—~+2J ~(x,y)Q ~(x,y)]

n+ ~0 (3.5a)

where

(P,A(Q)P) = f d x d"y cj] (x)A ~(Q)P~(y)

and

(3.5b)

(mpco++ VpV )6"(x —y)I 0

0
&(Q) —= +CO

Q
+ +(xy) Q

+ (xy)
(3.5c)

(moco + VoV )& (x y)I —Q +(xy) Q (xy)

Here I denotes the n+ Xn+ identity matr]x in replica space. Differentiation with respect to the source J (x,y) before
and after integration over the p fields yields the following relations between the averaged Green s functions and the Q-
correlation functions:

(Q ——(x,y) ) = ——,co 8(x —y)(G(x,y;co+) ),„„b],,
(Q (x],y] )Q+ (x2,y2) ) = ,' co 8 (x] —y—])8 (xp —y2)(G(x],x2, co+)G (y],y2, co ) ),„„b],.

(3.6a)

(3.6b)

IV. SPONTANEOUS SYMMETRY BREAKING
AND THE AVERAGED ONE-PARTICLE

GREEN'S FUNCTION

Straightforward integration over the replica P fields in
(3.5) yields a field theory in ti]e bilocal fields Q of the
form

Z(0)= lim f DQe
n+ ~0
n ~0

(4.1a)

where

L [Q] = —,
'

ln detA ( Q)

+ —, f d"xd"y Q ~(x,y)Q~~(x, y)8 '(x —y) .
(4.lb)

these are quantitites relevant to the calculation of the
average density of states and energy diffusivity, respec-
tively.

Qo++ (x,y) = —,' co 8 (x —y)Gp(x, y;co+)—,

Qp (x,y) = ——,
' ~'8(x —y)Go(x, y;~ ),

Qo+ =Qo + =0,
where

Go(x,y;co+)—:I [(mp+Qp
+—)co++ VoV ]

(4.2a)

(4.2b)

(4.2c)

(4.2d)

Condition (4.2c) corresponds to our choice of a replica di-

Evaluation of the expectation value (Q) with respect to
the above action in a saddle-point approximation yields
the generalization to the case of spatially correlated disor-
der of the coherent-potential approximation" (CPA) for
the one-particle G-reen's function. Expanding the La-
grangian L [Q] about a point Qo and requiring that there
be no linear terms in the small fluctuation Q =Q —Qp
gives the condition that Qp be the required saddle point of
the field theory. A straightforward calculation' yields
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agonal saddle point. Since averaging restores translational
invariance, the CPA Green's function Go depends only on
the difference of its coordinate space arguments. Defining
the Fourier transform

Q+-(k)—:f d"(x —y)e' '" «'Qo+-(x —y), (4.3)

condition (4.2d) on the one-particle CPA Green's function
may be rewritten as

Go+(k) = 1

[ma+ Q+(k)]co+ —Vok

Q+(k)= —2' f d"qB(k —q)GO+(q) .

(4.4a)

(4.4b)

Q~ UQU (4.Sa)

This leaves L [Q] invariant for the set of all "pseudo-
orthogonal" matrices

coshO E' sinh0
—&' sinhO coshO (4.5b)

The saddle-point solution (4.2) corresponds to a state of
the field Q in which this symmetry is spontaneously bro-
ken. This broken symmetry is manifested in the ima-
ginary part of Qo for frequencies at which the density of
states and hence ImQ+(k) is nonzero,

I 0 I 0
Qo(k) =ReQ+(k) 0 I +i ImQ+(k) 0 I . (4.6)

As usual, ' by applying the symmetry operation U to
this solution we may generate a continuous manifold of
distinct saddle points of the Langrangian l. [Q].

The CPA equations (4.4) must, in general, be solved
self-consistently since the self-energy (4 4b) of the Green's
function involves the full propagator itself. We present
approximate solutions to these equations for some particu-
lar choices of the correlation function B(x) in the weak
scattering limit (2.4b). Since the average mean free path
for waves propagating in the disordered medium is related
to the imaginary part of the self-energy, we concentrate on
the evaluation of this quantity,

In the last equation we have introduced the Fourier
transform of the correlation function,

8(k)—= f d"x e'" "8(x) . (4.4c)

As noted by Schafer and Wegner, ' the Lagrangian
I. [Q] possesses an internal global symmetry among the
replicas. In the limit as g~0, the symmetry between the
retarded and advanced replica fields may be expressed as

2
ImQ+(k)= — (8(k —coq})-N(a) ) . (4.9a)

Here we have introduced an angular average of the corre-
lation function over the directions of the unit vector q,

f dQ-B(k —cg)q)
(B(k —coq) )-:—

dQ-
q

(4.9b)

N(co ): —f d"q ImGO+(q) (4.9c)

is the phonon density of states which has an asymptotic
behavior -co in the low-frequency limit.

We examine the dependence of the phonon mean free
path

M
A(co) = ImQ+(co)

~0
(4.10)

on the length scale of correlations in d dimensions by
means of the normalized, exponentially decaying correla-
tion function

2

8(x)= e
a

(4.11)

Here y and a determine the scattering strength and range
of the correlations, respectively. It is shown in Appendix
A that in the limit of correlation length a very large com-
pared to the phonon wavelength, the angular average in
(4.9a) has the asymptotic behavior

1/2

(d —].)/2
2

(COO)
X(co ) yco

(4.12b)

We also consider the behavior of the self-energy (4.9a) in
the limit of very-long-wavelength phonons. It is also
shown in Appendix A that for any exponential correlation
of the type (4.11) or any power-law-decaying correlation
of the form

2

8(x)= z, 2m &d(x+a )
(4.13)

the low-frequency (co~0) asymptotic behavior of the
self-energy is the same as for uncorrelated disorder,

(8)—= [(B(k—q))-]„— „,, »1 . (4.12 )
(boa)"

It follows that the mean free path diverges in the same
limit as

ImQ+(k)= ——,'~' f d'qB(q —k)ImGO+(q) . (4.7)
ImQ+((0) —co, 2m &d . (4.14a}

ImGo (q)~ —m5(co —q ) with mo ——Vo ——1 . (4.8)

In this limit, the correlation function appearing in (4.7)
may be evaluated for

~ q ~

=co and pulled out of the in-
tegral,

In the weak scattering limit, ImQ+(k) is correspondingly
small and so the imaginary part of the propagator (4.4a)
takes the form of a 6 function,

ImQ+(co)- .

—co lnco, 2t1l =d
co™,1~2m &d
—minn, 2m =1

m /(1 —m)
2

(4.14b)

For longer-range correlations (0&2m &d), however, this
becomes
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The stronger scattering in the low-frequency limit ap-
parent in this latter case is associated with the nonintegra-
bility of correlation function (4.13) for 2m (d. Although
the overall potential is smoother, the long-range nature of
the scattering centers gives rise to scattering which is
stronger than the Rayleigh type, Eq. (4.14a).

Finally in the limit of an ensemble of completely flat
potentials B(x)=y, the CPA equation (4.4) reduces to a
simple quadratic equation with the solution

Gp (k) = I(mph —Vpk )2 4

and introducing the Fourier transform

C(K»K z, k&, k z)= f d"R&d"Rzd"s~d"sz

Xe i(K& R&+K2.R2+k& s&+k& s2)

X C(R &,Rz, s&,sz)

—:C(Ki, ki, kz)5"(Ki Kz—),
(5.3a)

(5.3b)

the Lagrangian for quadratic fluctuations may be ex-
pressed as

+[(Vpk —mph ) —2y co"]' (4.15)
L [Q]= —,

' f ddK d "k,d "kzg + (Kk, )

X C(Kk)kz)g +(Kkz), (5.4a)
We now proceed to examine the effect of these various
spatial correlations on the average energy diffusivity. where

C( Kki kz)=B '(k, —kz) ——,'co 5 (ki —kz)Gp (ki ——,'K)
V. GOLDSTONE MODES AND THE AVERAGE

DIFFUSIVITY XG, (k, + —,'K) (5.4b)

In a field theory with a spontaneously broken symmetry
there is an associated Goldstone mode. In the present sec-
tion we demonstrate the existence of a Goldstone mode as-
sociated with the symmetry (4.5) and discuss its relation to
the average energy diffusivity.

We consider the expa'nsion of the Lagrangian (4.1b) to
second order in the fluctuations about the saddle point Qp.
Retaining only those fluctuations Q+ transverse to the
direction of spontaneous symmetry breaking which enter
expression (2.4b) for the diffusivity [see also (3.6b)], we
may write

L [Q]=—, f d"x~ d xz d "x3 d x4 g + (x»xz)

f d'k, B(k, —k3)B '(k3 kz)=5 (k, —kz) . (5.4c)

The diagonal nature of this operator in K expresses simply
the translational symmetry of the theory resulting from
averaging over the disorder.

A Goldstone mode in the field theory corresponds to a
zero eigenvalue of the operator

C(O~kl~kz)=5 (ki —kz)[B '()Vk, ) —z~
I

Gp+(ki) ]
(s.sa)

In order to obtain this differential form of the operator we
have replaced the coordinate-space argument of the re-
ciprocal correlation function by i Vk,

where

X C (x»xz, x»x~)g +(x3,x4), (5.la) B '(iV'k)—= 1

B(x~i Vt, )
(s.sb)

C(x~,xz,x3)x4):B'(x)—xz—)5 (x) —x3)5 (xz —x4)

&
co Gp+(x] —x3)Gp (xz x4)

(5.1b)

By transforming to "center of mass" and relative coordi-
nates,

X I +X2 X3+X4
R) ——

2
' 2
R2=, S) =X) —X2, $2=X3 —X4

(5.2)
I

It is straightforward to verify, with the use of CPA equa-
tion (4.4), that there is in fact one zero eigenvalue in the
limit as zl~O for which the associated eigenvector is
Img+(kz ),

f d kzC(O, k&, kz)lmg+(kz) = —zlmpcp
I

Gp (k) )
I

—+0 as g~0 . (5.6)

Since the diffusion coefficient is related to the operator C
by the expression

D= lim
g —+0

rI f f d kid kz C '(Kk„kz)Ix p
CO dK

dkdk C Ok k
(5.7)

2

B(x)=
a +X

(5.8a)

the existence of the Goldstone mode guarantees that the
diffusivity is nonzero.

For the special case of a correlation function 4 2
y'c = —v'„+a' —

I
G,+(k)

I

'.
2

We may use the relation

(5.8b)

I

the operator C —=C (Ok
& kz ) takes the form of a

Schrodinger operator,
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y C = —V'k+ V(k), (5.10a)

—ImGp (k)
I
Go (k) I'=

p) Img+(k)

to rewrite this operator in the weak scattering limit (4.8)
as

consequence of this is that the energy diffusivity is infin-
ite, as can be easily verified by direct evaluation of (5.7).
Since in any particular realization of the mass density
there is no disorder, all phonon modes freely propagate.

For the case of decaying correlations such as (5.8a) we
may replace C ' appearing in the diffusivity (5.7) by its
projection onto the Goldstone subspace,

where

V(k)—:a —g6(k —o) ) with mp ——Vp ——1, (5.10b)
1

C '(K, k), kq)~ up(K, k) )up(K, kq) .
ihip(K)

(5.14)

1 q)g s111h(cuba)
=—8

gQ) boa
(5.10c)

and g is a frequency-dependent coupling constant. In
d =3, for instance, it is shown in Appendix 8 that

Xo(K)=Xo+K'Xo'(0)+ (5.15a)

Here, uo(K, k2) is the eigenvector of (5.4b) which as K~O
corresponds to the Cxoldstone mode ImQ+(k2) and the as-
sociated eigenvalue may be expanded for small K as

This is a 6-shell potential used sometimes in low-energy
nuclear scattering theory. ' It is shown in Appendix B
that there is precisely one l =0 bound state for which the
corresponding eigenvalue A, p of the operator C is zero.
This establishes the spherically symmetric Cxoldstone
mode Img+(k) as the ground state of this operator. Also
for sufficiently high frequencies,

gm ~2l+1 (5.1 1)

the 5-shell potential admits bound states up to and includ-
ing angular momentum l. In the geometrical optics limit
o)a »1 condition (5.11) is simply p)a & —,(21+ 1). In this
limit the disorder is extremely smooth on the scale of the
phonon wavelength and the scattering is correspondingly
weak. As a result the higher angular-momentum eigen-
values A, I of the operator C approach the Goldstone mode
A,p

——0,

where

The diffusivity can then be expressed as

D = —lim
q~p

2g f dp) p) N (o) )(Ap'(0)/Ap)

f do)o) X (p) )/kp

B(x)= y /(x +a )
((ua &+ 1)

where X(o) ) is the density of states (4.9c).
With the use of (5.6) we may write

(5.15b)

(5.16)

2l (I + 1)
~l coQ )) 1

p 2~2 (5.12)
4=0

This behavior is illustrative of the general case of correla-
tions B(x). For shorter-range correlations of the form
(4.11), the "kinetic energy" of the associated operator C,
rather than the usual form —Vk, will be exponentially
large. By analogy with the spectrum of a quantum parti-
cle in a box, we expect the separation between bound
states to be correspondingly large. In the opposite hmit of
correlations of longer range than (5.8a), the kinetic energy
of C will be less dominant and so the separation between
bound states smaller. Nevertheless, in the presence of ar-
bitrarily smooth disorder there is a gap between the Gold-
stone mode Xp and the first excited state A, ~. It is only in
the limit of an ensemble of completely Aat mass densities
8(x)=y that (5.5) has no kinetic-energy term,

(c) v(k)

g w]

e=o

(cua ++ l)

B(x)=y

lGp (k)
l (5.13b)

so that the continuous spectrum of (5.13a) includes an in-
finite set of Goldstone modes (see Fig. 2). An immediate

y C(O, k), kp)=5"(k) —kq)[1 ——,'y o)
l

Gp (k))
l ] .

(5.13a)

It follows from CPA equations (4.4) and (4.15), that for
(k —co ) (2p) y,

FIG. 2. Spectrum of the operator C(Oklk2). For cases {a)
and (b) of correlations B(x)=y /(x +a ), the Goldstone mode
(I=O) is separated from higher modes (I & 1) by a gap. The con-
tinuous spectrum begins at a . Iri the long-wavelength limit (a),
there is only a single bound state, whereas in the geometrical op-
tics limit (b) the higher angular-momentum bound states ap-
proach the Goldstone mode. For case (c), B(x)=y, the spec-
trum is that of a particle in a classical potential. There is no gap
between the continuous spectrum and the infinite set of Gold-
stone modes in the, range (k —m ) &2' y .
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Ao ———amoco' f d k
~
Go (k)

~

'Img+(k) I (x~x ) (p(x)t))tt*(x ~t) ),„ge~b)e (6.1a)

m OcoN (co ) .
7T

The coefficient A,o'(0) may be obtained by applying
lowest-order Rayleigh-Schrodinger perturbation theory to
the operator C (Xk) k2 ), treating the terms arising from an
expansion in small E as a perturbation to the operator
C(Ok)k2). This yields, to leading order in the scattering
strength y of the mass disorder,

= ( G(x, O;co+ )G (x', 0;co ) ),„„b),. (6.lb)

I (R,s)= 8 '(s)B '(0)(g+ (R,s)g+ (0,0)),

(6.2a)

where

This may be related to the present replica-field theory by
means of (3.6b),

l 0'(0)= f d k[Img+(k)] R = —,
' (x+x'), s =x —x'.

Introducing the Fourier transform as in (5.3),

(6.2b)

—4 G() (k) Go (k) . (5.18)
l I

I (K,q)=const f d"kB '(q —k)
CO

(6.3)

&(co) =p(co)D (co)

A,()(0) .
fPl p

(5.19a)

(5.19b)

By substitution of (5.17) into (5.16) and comparison with
(2.5) it is apparent that A,o'(0) is the conductance X(co) as-
sociated with phonons of frequency co,

and expanding

Q+ (E,k) = g Qi(K)vl(O, k)
I

(6.4)

in terms of the eigenfunctions of C(Ok) k2), the coherence
for small IC (large R) may be expressed as

Here we have introduced the density of states normalized
in the variable co,

1 UiA(q)I (K,q) =const
~I +&'~I"+

(6.5a)

p(co):2coN(co ) .— (5.20) where

U)
= f d k Ut(O, k) (6.5b)

VI. SPECTRAL CONTENT OF NORMAL MODES

The eigenfunctions UI(O, k) ) of the operator C(O, k), kz)
have a simple physical interpretation which we now
describe. The Goldstone mode uo(O, k)
=Img+(k) is associated with an exact pseudo-orthogonal
symmetry (4.5) of the replica-field Lagrangian. Physical-
ly, this symmetry expresses energy conservation for exci-
tations in the disordered medium and leads to the ex-
istence of an isotropic diffusion mode in the two-particle
Green's function. As the disorder is made smoother and
smoother a geometric optics limit is achieved in which
there is also approximate momentum conservation over
short length scales. The field theory realizes this approxi-
mate conservation law by means of an approximate
translational symmetry in the interaction Lagrangian
(3.3b). Namely, the replica fields P (x) and P~(y) can be
independently translated on length scales over which
8 (x —y) remains relatively flat. In the limit
B(x —y) =y this symmetry becomes exact, leading to an
infinite number of Goldstone modes [Fig. 2(c)]. The low-

lying eigenvalues ( l & 1) of the operator C (Ok ) k2 ) for
~a ~~1 are an expression of this approximate symmetry
and the propagation of plane-wave-like excitations in the
disordered medium over short distances.

If we introduce a transmitter of frequency ~ into the
disordered medium at a location x=0, the response far
away may be characterized by a coherence function'

Q)(q)—:f d kB '(q —k)UI(O, k) . (6.5c)

coa »1 .—1/2 Yco

2l(l +1) (6.6)

Clearly QI(q) represents the spectral content of the lth
angular-momentum component of the transmitted distur-
bance. For the isotopic diffusion mode (l =0),

Po(q)= f d"k 8 '(k —q)Img+(k)= ——,co ImGO (q),

(6.7)

indicating that sufficiently far away from an arbitrary
transmitter of frequency co, the set of wave vectors excited
in the medium is isotropic and highly peaked at

~ q ~

=co
in the weak scattering limit.

VII. NONLINEAR o MODEL

The nature of normal modes of frequency co is deter-
mined by the manner in which the conductance X(co) re-

A, t" is the expansion coefficient of the Ith eigenvalue kl(X)
of the operator C(IC,k),k2).

At large distances A from the transmitter, only the
spherically symmetric (l=0) component has an appreci-
able amplitude since A,p ——0. Higher angular-momentum
components are exponentially damped on a length scale
determine by (AI/Ai') '~ . At higher frequencies,
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normalizes as we integrate over short-wavelength fluctua-
tions of the field theory and rescale to longer lengths. For
frequencies at which X(co) renormalizes to zero we deduce
that normal modes of frequency co are localized. Extend-
ed states of frequency to are characterized by correspond-
ing X(co) which renormalizes to a nonzero value in the
long-distance limit. Expanding the field Q + in (5.4) in
terms of the eigenfunctions Ut(Kk, ) of C(Kk~kq) [see
(6.4)], the quadratic fluctuations about the saddle point
may be written

I.[Q]= Q f d"K At(K)Qt(K)Qt( K) .— (7.1)
I

1

co inn
1m 2 (7.5)

1 1

—m~' 0&m &

and for d=2,

This leads to the following localization lengths in d=1
and 2: For d=1,

Since there is a gap between the Goldstone mode (l=O)
and other low-lying modes of C(Ok&k2) for arbitrarily
smooth disorder, the critical behavior of the field theory is
determined by retaining the 1=0 term alone. The fluctua-
tions about the saddle-point manifold which we shall con-
sider tending to restore the spontaneously broken symme-
try (4.6) may be written as

e'/ m )12

e —1/co 1naP
7

2 (m (1
e —]./co 1ncg

2

I /~m/(1 —m) 10&m&2

(7.6)

I 0
Q(R, k) =i ImQ+(k) U(R) 0 I U (R) . (7.2)

I 0
Q 0(R) =iU(R) 0 I UT(R) . (7.3b)

Here we have made use of the low-momentum expansion
(5.15a) of Ao(K) and relation (5.19) between expansion
coefficient A,o'(0) and the conductance X(co). As in the un-
correlated case, all normal modes are localized in two di-
rnensions and below. In d=2+ e there is a mobility edge
co~ separating low-frequency extended states from high-
frequency localized states which is characterized by a lo-
calization length g diverging as

~

co —co, '/'. The diver-
gence of the localization length as co~0 for d &2 is
governed by the corresponding asymptotic behavior of the
bare conductance X(co). This is evaluated in Appendix A
using the solutions (4.14) of the CPA equation for correla-
tions of the form (4.13). The result is

1
2m )d

2m =d1

co lnco

Comparison with the eigenfunction expansion (6.4) and
using Uo(O, k) =ImQ+(k) yields a nonlinear cr model iden-
tical to that for uncorrelated disorder,

I [Q]=X(co)f d "KK Qo~(K)QO~( —K), (7.3a)

where

[—V +V(x)]g(x)=EQ(x)

with a random potential satisfying the conditions

( V(x) V(y) & =B(x —y),
(V(x)&=0,

(7.7a)

(7.7b)

(7.7c)

the quantity analogous to the energy diffusivity (2.3) is the
diffusion coefficient for the locally conserved electron
probability density,

D =— lim
f~ao

—' f d"x x'(
~
q(x, t)

~

'&,„„„,
f d'x(

~

q(x, t) ~'&,„„.b„
(7.8)

Here g(x, t) is the electron wave function. The spectral
decomposition of the diffusivity into contributions D(E)
from electron eigenstates of energy E [compare with (2.5)]
now takes the form

f dE D (E)p(E)
D—: (7.9)

dE p(E)

where p(E) is the electron density of states at energy E.
The derivation of a nonlinear o model (7.3) follows in an
analogous manner to that presented for the wave equation
(2.1). The coupling constant X(co) is now replaced by the
dc electrical conductance

Similarly, the problem of electron localization in a
long-range correlated random potential is described within
the same universality class. For the case of a Schrodinger
equation

X(co)- to, 1&2m &dd-z (7.4)
X(E)=D(E)p(E) . (7.10)

—CO
d —2 2m =1

co inc@
'

0&2m &1 .d —2
m/(1 —m) '

Again, there is a gap between the Goldstone mode and
higher angular-momentum modes of the nonlinear o.
model,

'

for arbitrarily long-range correlations B(x —y),
leading to a lower critical dimension of two. All electron
eigenstates are localized for d & 2. For d=2+ e there are
two mobility edges +E, characterized by localization
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lengths diverging as g'-
~

E+E,
~

' '. As in the case of
uncorrelated disorder, the conductance vanishes linearly at
the mobility edges,

X(E=+E,)-(E+E, )', t =1 . (7.11a)

For the case of a system of noninteracting electrons in a
long-range correlated random potential filled to a Fermi
level EF, the response to an external electric field of fre-
quency v is characterized by the ac conductance X(EF,v).
The critical exponents (see Note added in proof) are the
same as those described in previous theories. ' ' We
have

&(Ep.——E„v)-v' "~" as v~0. (7.11b)

Also the static electrical polarizability diverges from the
insulator side of the transition,

no longer be irrelevant in the renormalization-group sense.
Rough arguments indicate that this may occur in d =2+e
dimensions when m & e. This case is being investigated
further. The case of ferromagnets with long-range corre-
lated disorder in the exchange interactions near four di-
mensions has been investigated by %'einrib and Halperin
[Phys. Rev. B 27, 413 (1982)], who show that the critical
dimension and critical exponents are changed by the
long-range correlations. The magnetic problem near d=2
with long-range correlated disorder is similar to the
present problem and is also under current investigation.
We wish to thank Professor B I.. Halperin for a useful
discussion and for pointing out that higher-order terms
may not be irrelevant in the present problem for these ex-
treme power-law correlations.

a(EF.—+E„v=0)—
i
E~+E„

i
(7.11c) ACKNOWLEDGMENTS

VIII. SUMMARY AND DISCUSSION

We have shown that the Anderson localization transi-
tion for waves in a disordered medium with spatial corre-
lations as long as 8(x)=y /(x +a ) (m&0) can be
described as a phase transition in an appropriate nonlinear
o. model in 2 + e dimensions. Owing to the existence of a
gap between the Goldstone mode of the field theory and
higher modes, this nonlinear o. model is in the same
universality class as that of uncorrelated disorder. Since
the Goldstone mode and higher modes can be interpreted
as the bound states of a quantum particle in a suitable po-
tential well with a generalized kinetic energy, we argue
that for arbitrarily smooth disorder, the low-lying spec-
trum of the nonlinear o. model is discrete and hence leads
to the same critical behavior as discussed in the theories of
Wegner and Abrahams et al. The effect of long-range
correlations in the geometrical optics limit era »1 is to
produce a corresponding increase in the mean free path or
for d & 2 an increase in the localization lengths.

This is in contrast to the critical behavior of a Heisen-
berg ferromagnet with power-law-decaying exchange in-
teractions. For example, in the case of spins with interac-
tions falling off with spatial separation as R '"+ ' and
(0&o &2), the associated nonlinear o model has a weak
singularity of the form E leading to the existence of a
phase transition between the paramagnetic and ferromag-
netic phases for all dimensions d &o.. ' In the present
case of eigenvalue A,0(K) of the operator C(IC, k&, k2) is an-
alytic near K=O leading to the usual K term in the non-
linear cr model (7.3). The only way that a lowering of the
lower critical dimension could arise in the present model
is by the existence of a continuous spectrum of
C(O, k&, kz) touching the Goldstone mode A,0=0. This,
however, occurs only in the hmit 8(x)=y of perfect or-
der within each realization of the mass field m (x).

Note added in proof. In the nonlinear o model (7.1) we
have only considered terms quadratic in the fluctuations
Q~, i.e., terms of the form (VQq) in the Lagrangian. It is
possible that in the case of long-range correlations
8(x)=y (x +a ) the higher-order terms in VQ~ re-
sulting from the expansion around the saddle point may

Qne of us (S.J.) would like to thank Professor Edouard
Brezin for some helpful conversations. This work was
supported in part by the National Science Foundation
under Grant Nos. DMR-82-07431 and the Materials
Research Laboratory at Harvard University and DMR-
81-06151 at Rutgers University.

APPENDIX A: ASYMPTOTIC BEHAVIOR
OF THE MEAN FREE PATH
AND THE CONDUCTANCE

[ImQ+(k)]~ „= 1+ z ~y co, boa &&1 .p co 1

2 1+(2coa)

For d=2 we may write

(8 ) = —, j dx xJD(coax)8 (x)

dx e "~'J0(coax),
2 Ba

(A2a)

(A2b)

where JD is a Bessel function. The integral here may be
expressed as a complete elliptic integral K(s) of the first
kind, "

(8)= [sK(s)]
7T Bs Bp

where

(A2c)

s=y/(I+y )'~, y=—2coa . (A2d)

In the limit of the correlation length much longer than the
phonon wavelength cuba »1, we may use the asymptotic
form of the elliptic integral

The behavior of the mean free path, the energy dif-
fusivity, and hence the localizations lengths in the asymp-
totic regimes co~0 and ma &&1 are governed by the solu-
tions of CPA equation (4.4) in these same limits. In the
weak scattering limit these follow from the evaluation of
the angular average (8)=[(8(k—coq))-]~ . First we
consider the case of exponentially decaying correlations
(4.11). In d = 1, this average is trivial and yields
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K(s)- —,ln as s~116
1 —$

leading to the required asymptotic behavior

y'
2m. (cuba)

' (A2f)

With the use of

Go (k) = —[Go (k)] —2k;+co Q+(k)
l

(A9b)

Finally for d =3, the angular average may be expressed in
terms of the spherical Bessel functions jo,

2 00(8)= f dxx jo(vox)e
2+a

(A3a)

1= r (A3b)
4m 1+(aco)

X(co)—f d k k [ImGO+(k)] (A9c)

d 2

Img+(co)
(A9d)

the most singular contribution to the conductance as
co~0 may be written (see also Ref. 8, Appendix B)

We consider also the low-frequency (co~0) limit.
From (4.9a),

Img+(co) co~-(B ) . (A4)

With the use of the asymptotic behavior of the self-energy
Img+(co) from (A4), (A5), and (A8) we obtain the re-
quired result (7.4).

For any integrable f d"x B( x)& oo correlation function
(B) approaches a finite constant as co~0. For power-
law correlations of the form (4.13) in the nonintegrable
range 1 (2m (d,

APPENDIX B: SPECTRUM OF THE NONLINEAR
cr MODEL

We consider the spectrum of the Schrodinger equation

[—~k+ «k)]» =y'~ivy—In(cuba), 2m =d
1

) 1(2m (8d —2m '
(A5) for the 5-shell potential

y 5(k —co )

N(co )(B)
For d=3,

y~~ (n x jo(cox)
N(co )(B)= f dx

x +a

If 2m & 1, the 5-function approximation (4.8) to the CPA
Green's function is now longer self-consistent. Long-
range power laws of this form result in a singularity in the
angular average of the Fourier-transformed correlation
function

(Bla)

(Blb)

(B2a)

(8(k —q))-- t

nlk —q I, 2m

1
2m (1.

ik —q i'
(A6)

y, sinh(cga)
e

2 cuba
(B2b)

This establishes the result (5.10c). The potential may be
rewritten in the form

This leads to a divergent self-energy if the approximation
(4.8) is used. More generally, we may write

co qd —1

Img+(k)-co f dq (q, )(kq)"-""
~

k —q ~

'-'-

V(k) =a —g5(k —co),

where

=coaj

o(icosa)ho(icosa)

.

(B3a)

(B3b)

It follows that

Img+(q)
(co —q ) +co [Img+(q)]

(A7)
Here, the spherical Bessel and Hankel functions have a
pure imaginary argument. It is possible to show' that the
condition for a bound state of angular momentum l is
given by

2m

[I g +( )]2—2m

—co lnco, 2m =1 (A8)

(A9a)

yielding the required result for the low-frequency asymp-
totic behavior of the self-energy (4.14b) for 2m & 1.

The low-frequency behavior of the conductance (5.18) is
governed by the term

4
X(co)- f d k[Img+(k)] Go (k) Go (k) .

4

1 =pj ~(i p)hi(i p), (B4a)
gCO

where P is related to the eigenvalue y A,
~

of the operator
(Bla) by

y X —a p~/co (B4b)

Clearly there is precisely one solution for 1=0 (p=coa) for
which the corresponding eigenvalue Xo——0. For sufficient-
ly large values of cuba the equation (B4a) admits higher
angular-momentum bound states. In the geometric optics
limit boa ~~1, these excited states (l &1) approach the
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ground state l=O. Using the asymptotic (large-p) forms
of the Bessel function, Eq. (84a) becomes

l(l+1)p-coa— (85b)

1 1 l(l+1)
2coa 2P P~

(85a)
Substitution into (84b) yields the asymptotic behavior of
the Ith bound state

It follows that
21(1+1)

coQ )) 1
2~2 (85c)
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