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The nuclear spin-lattice relaxation time Tl of ' Cs in one-dimensional easy-plane ferromagnet
CsNiF3 has been measured with external fields between 1.5 and 12 kOe applied in the easy-
magnetization plane at temperatures between 1.5 and 20 K. The primary purpose of this work is to
find experimental evidence for solitons in this compound. First the experimental data are compared
with the numerical calculations for the two-magnon and the three-magnon relaxation processes
based on linear spin-wave theory. The data for relatively low temperatures and relatively high fields
are found to be interpreted by the sum of the relaxation rates of both processes quantitatively as
well as qualitatively. A significant contribution of the second-order exchange-scattered three-
magnon process is revealed. For other field and temperature regions, however, there appear
discrepancies between the experiment and the calculation, thus suggesting the appearance of the ef-
fect of solitons. Next we consider the relaxation mechanism due to collision between the nuclear
spin and one-dimensional dilute soliton gases. This approach leads to a qualitative equation such
that Tl ' —T 'exp( —e, /k&T), where e, is soliton activation energy given by 8S(2JSgp~H)'
When e,lk iss chosen as 10.3~H K (H in kOei, this equation explained well the relevant experi-
mental data qualitatively. Quantitative calculation carried out by taking account of the contribu-
tions of the solitons passing on the nearest three linear chains resulted in the relaxation rate which is
larger, by a factor of 5, compared with the data. The soliton energy obtained from the above best-
fit relation is smaller by about 30% than the classical theoretical value estimated using the exchange
parameters. In view of the validity of the soliton feature, the characteristics of soliton in CsNiF3
were discussed.

I. INTRODUCTION

Recently, the sine-Gordon soliton in one-dimensional
easy-plane ferromagnetic system CsNiF3 has attracted
considerable interests. Mikeska first argued that the spin
Hamiltonian of CsNiF3 with moderate external field ap-
plied in the easy-magnetization plane is equivalent to the
sine-Gordon equation provided the out-of-plane spin com-
ponents are neglected. ' Subsequently Kjems and Steiner
found evidence of thermally excited soliton gases from the
central peak for the longitudinal spin fluctuation observed
by neutron inelastic scattering. This interpretation, how-
ever, has been the subject of some controversy; Loveluck
et al. indicated the importance of a multimagnon differ-
ence process based on a nearly isotropic model. Reiter
also discussed that the scattering from spin-wave density
fluctuation provides a rather better interpretation. Quite
recently, on the other hand, Steiner et aI. supported the
contention presented in Ref. 2 by observing the central
peak for the transverse spin fluctuation. ~

The purpose of the present work is to use nuclear mag-
netic relaxation to get information about the soliton
dynamics in CsNiF3 from a different standpoint. We
have measured the spin-lattice relaxation time T& of ' Cs
in this compound in the temperature range from 1.5 to 20
K applying the external fields between 1.5 and 12 kOe in
the easy plane.

There has already been the measurement of T& of ' Cs
for sufficiently high fields by Cohen et al. The experi-

mental results have been interpreted in terms of the three-
magnon process by Huber and Ghosh. In order to clarify
soliton contribution in T~ of ' Cs, it is first necessary to
understand magnon contribution. In view of this, we
compare our experimental results with the numerical cal-
culations for the two-magnon and the three-magnon relax-
ation processes within the framework of linear spin-wave
theory. As we shall show, a good agreement between the
experiment and the calculation is obtained for relatively
high fields and relatively low temperatures. For other re-
gions, however, there appear discrepancies between them,
thus suggesting the appearance of the effect of the soliton.
We next consider the nuclear relaxation mechanism due to
collision between the nuclear spin and one-dimensional di-
lute soliton gases. This approach gives a reasonable ex-
planation of the relevant experimental data. A prelimi-
nary account of this work has already been presented in a
previous paper.

The crystal structure and the magnetic properties of
CsNiF3 are reviewed briefly in Sec. II. The experimental
results are presented in Sec. III. Section IV is devoted to
the analyses, which are followed by discussions in Sec. V.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES

The crystal structure of CsNiF3 belongs to hexago-
nal symmetry (P63/mmc) with the lattice constants of
ao =bo =6.23 A and co ——5.21 A, as illustrated in Fig. 1.
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The spin-echo signal of ' Cs (I= —', ) was observed as a
single broad spectrum. The spectrum had a trend to
broaden with increasing field and decreasing temperature.
For example, the width at 4.23 K was about 300 and 800
Oe for 3 and 12 koe, respectively. There appeared a large
spin-echo amplitude modulation with a period of about
150 psec. Probably this is due to the fact that the quadru-
pole interaction has a small in-plane asymmetry besides a
large axial asymmetry of 0.4 MHz. ' The resonance field
Hp at a constant operating frequency co& was always
shifted from the normal values H, =cozly~ (y~ ——5.585
MHz/10 koe) to the lower side. This implies that a posi-
tive internal field H;„, is produced at the nuclear site by
field-induced magnetic moments. Figure 2 shows the
temperature dependences of H;„, obtained for various
operating frequencies using the relation H;„,=H„,

(Hp Hd), where —Hd is—the demagnetizing field. The
estimation of Hd was made by calculating the demagneti-
zation coefficients on the assumption that the shape of the
specimen is an ellipsoid whose principal axes are of the
same lengths as three dimensions, and by using the data of
magnetization for powder. ' For instance, when Hp is
changed from 2 to 12 kOe along the longer side of the a&-
plane of the specimen, the magnitude of Hd was calculat-
ed to vary from 250 to 450 Oe at 3 K and from 50 to 300
Oe at 6.4 K.

The relaxation times were measured as the function of
the applied field at constant temperatures, and also as the
function of the temperature at constant applied fields and
at constant resonance frequencies. The experimental re-
sults are shown in Figs. 3—5. No angular dependence of
T& was observed for Hp in the a-b plane, as is demonstrat-

T (K)

FIG. 5. Temperature dependence of T& of ' Cs at constant
resonance frequencies with Ho~~a. The values of applied field
Hp vary depending on T according to the relation
Hp =ct)N /p~ +Hd —H' 1. The dashed and the solid lines used
have the same meanings as those in Fig. 3. A part of the data of
Cohen et al. (Ref. 6) are presented for the comparison.

ed in Fig. 3 at the measurement at 4.23 K. The experi-
mental curves exhibit remarkable field and temperature
dependences. We notice that the field dependences of T,
below and above about 4 K take somewhat different as-
pects, and that there appears a small bend in some of the
experimental curves. These features suggest the presence
of two important relaxation mechanisms. In the following
section we shall examine the experimental results in view
of magnon scatterings and solitons.

IV. ANALYSES

~N g ~hyp+ g +dip
jp ——1

with

(4.1)

A hyp
——2 I(SJ i +Sq i +i)

A. Nuclear Hamiltonian of ' Cs

The cesium iona in CsNiFi are located at ( —,, —,, —,
' ). We

designate the Ni + spins on the jth linear chain by the
suffix j and label the nearest six Ni + spin surrounding
each Cs ion as jplp and jp, lp+1 with jp ——1, 2, and 3. (See
Fig. 1.) The hyperfine and the dipolar interactions for the
cesium nucleus can be described by the Hamiltonian
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2 j) 3(I rJi)(Sf( rp)
~g;p gp——gy~fi g I.S~i—

1 7'j1

—3

~ =A ii+A i+c.c.

A
~~

I+ QQD,f~'Sgr, —
j 1

3
'

A i I+ g (2/2)(S——J i +SJ i +i)
jo ——1

(4.2)

(4.3)

where A is the isotropic hyperfine constant and rid is the
position vector of the jlth Ni + spin. The quadrupole in-
teraction is not considered in this equation, because it is
not essentially related to the present problem.

When an external field Ho is applied in the easy plane,
the magnetic moments associated with Ni + spins are
aligned along the direction of Ho because of the lack of
in-plane anisotropy.

Let us here define the orthogonal coordinate system
(x,y, z) with the z axis parallel to the applied field and the
y axis along the linear chain. It proves that the transverse
components of the field-induced dipole field always van-
ish. So the internal field H;„, at the cesium nucleus,
which is the sum of the field-induced hyperfine and the
dipole fields Hhyp + Hdlp is just along the z axis, and ac-
cordingly the nuclear and the electronic quantization axes
coincide with each other. From Fig. 2 we find
(H;„,),„~=4.5 kOe at 0 K. On the other hand, the magni-
tude of Hd;p can be evaluated by the direct summation
over a large number of lattice points. %'e get Hd;„——0.65
kOe for S=1 using g=2.28.' Thus we obtain Hh„p
=3.85 kOe, which yields hyperfine field hf per one Ni +

spin of 0.64 kOe or A/A'=2m. X3.5X 10 rad sec
The transverse terms of the nuclear Hamiltonian (4.1),

which are responsible for the nuclear spin-lattice relaxa-
tion, are expressed as

+2
Nj &

FICJ. 6. Relationship between the orthogonal xyz system {z,
direction of Ho,' y, chain direction) and polar coordinates of the
position vector of the joloth Ni + spin with respect to the cesium
nucleus 8J I and PJ i . This relation is extended to the jlth N~+

spin. The vector r J I is the projection of r~ I on the a-b plane,Joo Joo
and g~ i is the angle between r J i and the z axis. The suffixes~oo Joo
are omitted in the figure for the clarity.

quasimagnons are well established, we apply linear spin-
wave theory. Following Holstein-Primakoff representa-
tion, we introduce the Fourier-transformed magnon opera-
tors ak and ak. By transforming these operators to new
normal mode operators o;k and ak by a canonical transfor-
matron, ak ——ukak —uk' k and ak ——ukak —uk' k, the
Hamiltonian (4.5) is diagonalized as

A,„=Acokakak +Eo

ficok =ek =[Xk —(D'S)'1' ' (4.6)

with D' = (S ,
' )D /S an—d X—k 4JS[1—cos(ka)] ——+ D'S

+gp&H, where a is the lattice spacing along the chain,
and D is modified by a quantum correction factor. ' The
coefficients uk and Uk are given by

uk =coshi9k

+(gVarx&)gg(D'i 'Si +DI+ Si )

j 1

and
uk ——sinhOk

(4.4)
where D&1' and DJ1

—' represent the components of the di-
polar coupling tensor connecting I+ and Sj1, and c.c.
designates the complex conjugate. Figure 6 shows the
orthogonal coordinate system (x,y, z) in the case Ho~~a,
which is our experimental situation, and the relationship
between this system and various notations with respect to
the joloth Ni + spin, which will be introduced later.

with

tanh(20k ) =D'S/Xk .

The relaxation rates due to magnon scatterings can be
obtained on the basis of the standard formula by express-
ing the electron spin operators in Eq. (4.2) with the mag-
non operators. The first term A t~, Eq. (4.3), induces the
two-magnon (2 mag) process in which annihilation of one
magnon and simultaneous creation of another magnon
occurs when the nuclear spin flips. The relaxation rate for
this process is given by

B. Relaxation process due to magnon scatterings

First we consider the nuclear spin-lattice relaxation due
to magnon scatterings. The exchange Hamiltonian of the
linear chain system of CsNiF3 is expressed as

)2 .s= (gear+&) G
4m 2

A'Ã

X g (ukuk+Ukuk) (nk)((nk)+1)(4.5)~ex= —2Jg SI Si+i+D g(Sf)' gpss~ QSf—
1 1 1

with J/k& ——11.5 K, D/k& ——9.0 K, and g=2.28, ~here H
represents magnetic field in the a-b plane. Assuming that

X 5(6k —~k' —~N ) i (4.7)

where N is the total number of the electron spins on a
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Geometrical factor

G
(10 cm )

Gt
(104' cm-')

Gll

(10 cm )

Autocorrelation
l'=l

3.12

2.87

—1.73

Pair correlation
l'=1+1 l'=l+2

1.49 0.013

1.04 0.034

—0 561 0

Coupling constant (10 ' erg )

Two-magnon process Quare@'G 2.83

Three-magnon process 12 A

2
1.53

(gus'Vw&) G 2.39 4.12

(glare&) G"—
2

0.202

TABLE I. Numerical values of geometrical factors and cou-
pling constants for the two-magnon and the three-magnon pro-
cesses.

magnon process, as the lowest-order process, in which the
nuclear spin flip is accompanied by annihilation (creation)
of one magnon and simultaneous creation (annihilation) of
two magnons. This process requires, on the basis of ener-

gy conservation, that twice the minimum magnon energy
must not exceed the maximum energy. As is seen from
the dispersion relation (4.6) this condition is satisfied as
long as the applied field is not extremely strong. This is
the present case.

Now let us consider the second-order exchange-scat-
tered three-magnon process. ' This process takes place
through the perturbation interactions like I+S in Eq.
(4.4) in such a way that a virtual magnon emitted by the
nuclear spin flip and thermal magnons interact with each
other via the four-magnon terms of the exchange interac-
tion, thus resulting in scattering of three thermal mag-
nons.

Similarly terms like I+S+ in Eq. (4.4) cause the
second-order process which accompanies the absorption of
a virtual magnon. The four-magnon exchange-scattering
terms of the exchange Hamiltonian (4.5) are expressed in
terms of the magnon operators ak and ak as follows:

3 (kl k2 k3 k4)ak ak ak ak
k), k~, k3, k4

linear chain, fuu& is the nuclear Zeeman energy, and (nk )
is the Bose-Einstein distribution function for the number
of magnons. In this equation, G is the geometrical factor,
and is expressed as

with

X5(k)+k2 —k3 —k4)

p(k $ k2 k3 k4 ) =cos[(k2 —k4)a ]

(4.9)

G = g g ,' rji ref sin—(26Jf)sin(28jf )cos(pzf pjf ), —
j I„l'

(4.8)

where 8&f and Pjf are polar angles of r JI. (See Fig. 6.)
We here assumed that the time pair correlations of dif-

ferent electron spins on each linear chain are equal to the
time autocorrelations of the individual electron spins.
Hence the effect of the interference of the different spins
appears only in the geometrical factor. The value of the
geometrical factor for the pair correlation diminishes very
rapidly as the distance of the relevant two spins increases.
(See Table I.) Thus the above assumption applies only to
the nearest, and at most the second-nearest two spins.

Another term A z, Eq. (4.4) brings about the three-
I

——,[cos(k & a) +cos(k&a)

D+cos(k 3a) +cos(k 4a) ]+ 4J
By combining this with the one-magnon term A z"' of
Eq. (4.4), the effective perturbation interaction is given as

ff=2A (A g '/ek) (4.10)

where ek represent the virtual-magnon energy, and the
prefactor 2 results from the participation of two virtual
magnons with wave vectors k3 and k4 or k

&
and k2. The

total perturbation interaction for the three-magnon (3
mag) process is then given by the sum of the first-order
interaction and the above second-order interaction. We
obtain the following expression for the relaxation rate:

(T ) )3m' — 3
C g 1+ y(1,2, 3,4) 4 uu2u3+v~v2v3+2v~u2v3+2u &vzu3

16JS 2 2 2 2 2 2 2 2 2 2 2 2

fiSN ) 23 &4

1
+2Q iQ2Q3U)U2U3

V(

Q Q2 Q3 U] U2 U3+ + + + +
U2 V3 Q ) Q2 Q3

X (n~)(n2)((n3)+1)5(~]+kg e3 ~iy) (4.11)

I

with k4 ——k&+k2 —k3, where 1, 2, 3, and 4 refer, respec- represents the coupling constant. In this equation, the
tively, to the wave vectors k&, k2, k3, and k4, and C first and the second terms in the first set of large
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parentheses represent the direct three-magnon contribu-
tion and the exchange-scattering contribution, respective-
ly. The coupling constant C is given by

r ~ r

C= 12 — + (gag y~A') 6'+ (gag @~A)G" — (4.12)
2 2

with

respectively, and the third term corresponds to the in-
terference between them. In deriving the above equation,
we have assumed that the time pair correlations of the two
different spins are equal to the time auto correlations of
the individual spins as in the case of the two-magnon pro-
cess.

We here define the state density of magnons from
dispersion relation (4.6). It is given by

6'= g g [1——,(sin OJ'~+sin OJI )
j l, l ' N(ek) =ek[4JSa sin(ka)Xk] (4.13)

+ ', sin —OJIsin 8~'~ cos (/~I PJ~ )]—rz~ r~I

o+6"= g g [(1——', sin 8~,~)rJ, ~

jp ——1 1,l '=lp

+(1——'sm 0.
~ )r ~'],

where the meanings of the various notations are described
in Sec. IV A and Eq. (4.1). The first and the second terms
are due to the hyperfine and the dipolar interactions alone,

With the use of N(e'), the sums with respect to the wave
vectors in Eqs. (4.7) and (4.11) are replaced, respectively,
by the integral and the double integral with respect to the
magnon energy. Then, as is seen from the above expres-
sion, N(ek) has a singularity associated with one dimen-
sionality at k =0 or at the magnon gap energy. To avoid
the resulting divergence of the integral, we cut off, follow-
ing Huber and Ghosh, the lower limit of the integral at
k=g' ', where g is the correlation length of the one-
dimensional planar system which is given as $=8J/kz T.
The integrals were then performed numerically on a com-
putor. The geometrical factors were also calculated by
direct summation over the lattice points of 10)&10&&20
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FIG. 7. Results of the numerical calculations for the relaxation rates for magnon-scattering processes and for soliton model:
(T ] )2 g {T] )3 g {cxchangc enhanced process) (T l— ) (T l— )2 g + (T ] )3 g (T ] )3 g (the first-order
three-magnon process); and, (T ~

' ), (soliton model). (a) Field dependences at T=4.23 K. (b) Temperature dependences at
Hp =6.1 kOe. A part of the data are shown.
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along the crystal axes. The numerical values of these fac-
tors and the coupling constants for the two processes are
given in Table I. In these calculations, we used the nu-
merical values of J/kz ——11.5 K, D/kz ——9.0 K, g=2.28,
and 2 /fi =2m' X 3.5 )& 10 rad sec

Typical examples of the calculated field and tempera-
ture dependences of (T ~ )2,s and (T

& )3,s are shown
by the dotted lines in Fig. 7 together with the correspond-
ing experimental values. As is seen, the magnitudes of
both rates are of comparable order to each other. Thus
the relaxation rate is determined by the sum of the rates
for both processes, which is given by the dashed line in the
figure. The dot-dashed line in Fig. 7 represents the relaxa-
tion rate for the first-order three-magnon process calculat-
ed similarly.

As is seen, the contribution of the second-order ex-
change enhanced process is very significant. The enhance-
ment factor is about 2 orders of magnitude. In Figs. 3—5,
we represent by the dashed line the calculated curves for
T~ corresponding to the experimental curves, which are
normalized at the curves for T=2.68 K, Ho ——6.1 kOe,
and co~ ——5.0 MHz, respectively. The qualitative agree-
ment between the experiment and the calculation is good
for the relatively low temperatures and the relatively high
fields. As is also seen in Fig. 7, the calculated values for
the relaxation rate agree with the experimental values
within the difference of a factor. Thus the quantitative
agreement between the experiment and the calculation is
satisfactory as well. Although both the two-magnon and
the three-magnon processes are effective in the present
field and temperature regions, it is difficult to identify the
two relaxation mechanisms distinguished in our experi-
mental curves as these two processes alone. Note that the
total relaxation rate exhibits a rather smooth curve, and

that the two-magnon process predicts by itself much more
gentle behavior of T& than the experimental features. We
suppose the deviation of the experimental curves from the
theoretical prediction of the magnon-scattering process is
due to soliton contribution.

C. Soliton model

We will now proceed to the soliton model. Let us sup-
pose a soliton passing on the linear chain of CsNiF3. The
resulting 2m rotation of the electron spins in the easy
plane gives rise to the time-dependent transverse interac-
tion at the cesium nucleus via the hyperfine and the dipo-
lar couplings. If thermally excited solitons are regarded as
dilute gases, the interaction which the nuclear spin under-
goes has a close analogy to the nuclear interaction associ-
ated with collisions of nonmagnetic ideal gases. The
dynamics of a nuclear spin based on such a model has
been studied theoretically by Huber. ' He obtained the
transition probability of the nuclear spin flip by applying
the theory for nonadiabatic level crossing in atomic col-
lision. His theory, however, does not include explicitly the
effect of the applied field which plays an essential role in
the soliton in CsNiF3. It also turns out that the level
crossing is not guaranteed in our case because of the actu-
al Zeeman splitting which is much larger than the magni-
tudes of the hyperfine and the dipolar interactions.

We here evaluate the transition probability using the
analogy of our problem to the nuclear magnetic relaxation
in nonmagnetic monoatomic gases. Then we derive the
equation for the relaxation rate following the procedure
presented in Huber's paper. ' The essentials are referred
to in our previous paper.

The following is our final result:

(T, i), 32
v'3m.

2 1/2
4AS 2J

fi D ksT 2 2 AS

' 1/2
3ak& Tgp&H

2JSA'
(4.14)

with E, =8S(2JSgp~H) ', where e, is soliton (antisoliton)
activation energy, and y is Euler's constant.

Here only the hyperfinq interactions with the two
nearest Ni + spins on the linear chain were considered
temporarily. As is shown later, the term in the curly
bracket in the above equation is almost constant in our ex-
perimental condition. The relaxation rate is thus
described qualitatively as

(ri '), —T 'exp( cVH/T)— '

(4.15)

with c=8S(2JSgp~)'~ /ks.
The best fitting of Eq. (4.15) to the experimental results

was obtained by choosing c,„„,=10.3 K(kOe) '~ . The
results are shown in Figs. 3—5 by the solid line. The value
of c,„~, is smaller by about 30%%uo than the theoretical value
c,h„, calculated using the exchange parameters. The use
of c,h„, in Eq. (4.15) resulted in much more rapid field

I'

and temperature dependences of T~ as compared with the
experimental curves. As is seen in these figures, the ex-
perimental data which deviate from the prediction of the
magnon-scattering relaxation process are reasonably ex-
plained by the above equation.

Next, to make a quantitative comparison between the
theory and the experiment, we shall evaluate the coupling
constant for Eq. (4.14) properly. The predominant contri-
butions result from the nearest six Ni + spins on the three
linear chains via the hyperfine and the dipolar interac-
tions. We consider only these three linear chains. When
one soliton passes on one of these chains, which is labeled
as j„the time-dependent transverse field Hg(t) along the.
x direction is caused by the rotating spins on the j, chain
and the stationary spins on the other chains. The latter
contribution emerges as a result of the breakdown of the
cancellation of the transverse components of the static di-
pole field.

The phase angle of the rotating spin is given, in the con-
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tinuum and nonrelativistic limits, as

y —vt
P(t) =4 tan 'exp

da
(4.16)

where v is the soliton velocity and d is the characteristic
scale of soliton width in units of the lattice spacing a.
Then, referring to Eq. (4.1), we obtain the following ex-
pression for HN(t):

3gpgSrJ. 1

HN(t) = Q Q 5 sin(2' i)+
Jo&J,

sing(t)

i 2
gPgS 3 Jp1

2AS/DNA'+ g 3 z cos pj i(t) 1—
1 rJ1 rJ1

3gpgSrJ 1

+ g sin[2' i(t)]cosP(t)
1 2rJ 1

(4.17)

sing(t)~(8') ' J ~

sing(t)
~

dr=
1 —4~p(t (0

1 0&t &«p

and
(4.18)

cosP(t) 1~(4r—o)
' J [cosP(t) —1]dt = —1,

0 &
i

t
i

&2', (4.19)

with QJ i(t) =(QJ i)~(,~ o—P(t), where rz i is the projection

of rz ito the. a bplan-e, and gz i is the angle between the z

axis and rj' i. (See Fig. 6.) In the above expression, weJp
have neglected the phase lags of the rotating electron
spins, considering the fact that only the nearest and at
most, the second-nearest spins are effective actually.

The perturbation interaction is given by

A N(t) = yNfiHN(t—)I

The time dependences of sin[/(t)] and cos[(()(t)—1] are
shown in Fig. 8. As is seen, the first and the second terms
of HN(r) are effective only for the durations 0&

~

t
~
&4'

and 0& t
~
&2' with ro ——da/U, respectively.

Keeping this in mind, we here use the simple approxi-
mations such that

and 0 otherwise. (See Fig. 8.) Then, we approximate
HN(t) as the following stepwise function:

HN(t)= .

—47p&t & —27p

P) —P2, —2wp&t &0
0&t &27p

—P] 2'Tp ( t (47 p

(4.20)

with

82
P, =hf +T8&sin g~—

S

and

B)
P2 = sin(2' ),

2 S

where

8~ ——QRVIiSrz i/rz i, Bz ——g gpiiS/r& i,
I 1

and hf ——AS/y~A.
The probability amplitude for the nuclear transition

during each of the above time intervals 2~p is taken to be
of the order of q=yNHN(2'), where HN stands for the
respective amplitudes of HN (t). The transition probability
w for the perturbation interaction (4.20) is then given by

t{x—)
da

w=[2Pi+(Pi P2) +(Pi+P2—) ]XN(2')
We here rewrite this as

w=2q' =4(1—cosq')

(4.21)

(4.22)

FIG. 8. Behaviors of sing(t) and cosP(t) —1 associated with
the passing of one soliton. The soliton is assumed to be centered
at t=O. Narrow lines represent the approximate square-wave
forms used in the evaluation of the probability amplitude for the
nuclear relaxation.

C( j,)=2(2Pt+P2)'~ yN . (4.23)

It is noted that C( j, )varies depending on whether j,=1,
2, or 3, that is, which of the three chains the soliton passes

with q'=2(2Pt + P2)' yNro.
We are concerned with the case q'«1. This will be

discussed later. If we consider only the hyperfine interac-
tion in the perturbation interaction (4.20), we get the tran-
sition probability wo ——2q with q=(AS/fi)4'. Equation
(4.14) has been obtained using wo. Comparing w and wo,
we find the coupling constant which replaces (4AS/fi) in
Eq. (4.14) to be
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(
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V. DISCUSSION
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TABLE II. Numerical representation of the characteristics of soliton in CsNiF3. The numerical values were calculated using the
exchange parameters according to the classical expressions as given below. The values with an asterisk were obtained using our best-
fit relation e, /k~ =10.3V IIIC, M being in units of kOe. The unit a is the lattice spacing along the chain; a=co/2=2. 605 X 10 cm.

—1n,
H

(koe)

2.0
10

d
(a)

8.7
3.9

(g)

6.0X 10-"
1.3 ~10-"

e, /kg'
'(K)

21.2 (14.6*)
47.5 (32.6*)

var
(koe'"/K. )

0.3

0.6

(a /sec)
(cm/sec)

3.3 )& 10"
8.7&& 10'
2.4X 10"
6.2 g 10'

(a —')
(cm-')

1.0~ 10—"
3.8 && 10
7.1 &&

10-~
2.7&& 104

(a)
(cm)

1.0X10"
2.6X10 '~

1.4X10'*
3.0X10—'*

f

(sec)

3.0~ 10—'"
5.9X10-'*

'd (width) =(2JS/gpgH )'
M, (mass)=4% /a Dd.

'e, (energy) =8S(2JSgp~H )'

(u, ) (mean velocity) =(2k~T/m. M, )'~ .
'n, (density) =(da) '(2'/7Tkg T )' exp( —eg/kg T ).
t, (mean collision time) =n, '/(u, ).

ing. Quite recently Mikeska has indicated that the soli-
ton energy for the spin system of CsNiF3 becomes about
10% below the classical value due to the quantum correc-
tion.

Thus our value of the soliton energy may be said to be
reasonable. Looking at the numerical values in Table II,
we find that the characteristics of the soliton in CsNiF3
resemble those of actual ideal gases. For the N2 molecules
(radius ro=1.9 A) at O'C and 760 Torr, for example, we
have the following values: m (mass)=4. 6X10 g, nN

(density) =2.7X 10' cm, (uN ) (mean thermal velocity)
=(3k&T/m)'/ =4.5X10 cm/sec, (t, )N, (mean collision
time) =(rrm/k& T)/(4nN, 4rrro) = 1.3 X 10 ' sec, I (mean

free path) =(t, )N, (uN, ) =5.8X 10 cm. (As for the den-

sity, the difference in the dimensionality must be con-
sidered. )

The average duration of the collisions between the nu-
clear spin and the soliton gases, which is given by
r, =da/(u, ), is found to be of the order of 10 "sec. For
example, this value yields the probability amplitude of
q'=10 for the coupling constant C( j,= 3)
=3.6X 10 y~. [Refer to Eqs. (4.20) and (4.23).] Thus the
use of the approximation q' =2(l —cosq') in Eq. (4.22)
may be justified for almost all soliton gases whose veloci-
ties are determined by the one-dimensional distribution
function. We also find that the average duration of the
collisions is much less than the nuclear Lamour period—1
N~

The term in the curly bracket in Eq. (4.24) is given as
In[5.7X 10' HT/2C( j,)]. When we apply C( j,=3)
=3.6&& 10 y&, this term takes, for example, the values of
9.1 for H=2 kOe and T=4 K and 10.4 for H=10 kOe
and 10 K. Only slight field and temperature dependences
arise from this term over the whole regions where the soli-
ton model is applied. We, therefore, used Eq. (4.15) in the
procedure of the qualitative fitting between the experi-
ment and the theory.

Borsa has discussed independently the nuclear spin-
lattice relaxation due to sine-Gordon soliton on the basis
of the same theoretical background as ours. He obtained
the following equation for a ferromagnetic chain:

T
&

'-HT 'exp( cv H /T —) .

This equation differs from our result, Eq. (4.15), in its
field dependence. In deriving this equation, the average
duration of the collisions between the nuclear spin and the
soliton gases has been taken as rf ——b/(u, ), where b is a
field-independent distance of closest approach. We think
the parameter b should be identified as the soliton width
which has the field dependence like H '/. In this case,
Borsa's result agrees with our result essentially.

To summarize, we have investigated T& of ' Cs in
CsNiF3 for the purpose of finding experimental evidence
for solitons. The experimental results were first compared
with the numerical calculations for the two-magnon and
the three-magnon relaxation processes carried out within
the framework of linear spin-wave theory.

The experimental results for relatively low temperatures
and relatively high fields were found to be interpreted by
the sum of the relaxation rates for both processes. There
have appeared deviations of the data for other regions
from the predictions of the magnon-scattering relaxation
mechanism. A theoretical approach based on one-
dimensional dilute soliton gas model explained such exper-
imental situations reasonably. Although the possibility of
the higher-order magnon scattering is not necessarily
ruled out, it seems unlikely that such processes result in a
rather simple behavior of T& as was observed over the
wide field and temperature ranges. We believe the present
work may provide experimental evidence for solitons in
CsNiF3.
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