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In situ high-resolution x-ray scattering experiments have been carried out to study in-plane inter-
calate structure and phase transitions as a function of temperature in a single crystal graphite host.
For the case of bromine-intercalated graphite the intercalate plane has three sublattices and each
sublattice has a centered (v 3 X 7) rectangular structure with four Br2 tnolecules per two-
dimensional unit cell in the commensurate phase. The coherently ordered in-plane bromine regions

0

exceed 10000 A in size. Above the commensurate-incommensurate transition (342.20 O. OS K), a
stripe domain phase becomes established in a single domain of a sublattice along the sevenfold
direction. The incommensurability as a function of reduced temperature exhibits a power law with
an exponent of O. SO+0.02, confirming the existing theories. The relative shifts observed for the
various harmonics are accurately predicted by a sharp-domain-wall model with 4m. /7 phase shifts.
A power-law line shape is observed for the incommensurate intercalate layer, yielding values for the
exponent g consistent with model calculations. Results on the temperature dependence of the inten-
sities, linewidths, and line shapes of several Bragg peaks around the melting transition are present-
ed. The intercalate layer exhibits a continuous melting transition from a two-dimensional solid
phase to an anisotropic fluid phase, occurring at 373.41+0.10 K for a stage-4 compound.

I. INTRODUCTION

Phase transitions in two-dimensional (2D) systems have
been the subject of intensive study motivated both by ex-
perimental observations and by intrinsic theoretical chal-
lenges. ' Among the most interesting transitions taking
place in two dimensions are commensurate-incom-
mensurate and melting transitions. Perhaps the sim-
plest realization of such systems have been rare-gas mono-
layers physisorbed onto the (001) basal plane of gra-
phite. Another important class of 2D, or more accu-
rately quasi-20, materials is graphite intercalation corn-
pounds.

Graphite intercalation compounds are layered com-
pounds of graphite which are formed by the insertion of
atomic and molecular layers that are periodically arranged
in a matrix of graphite layers. Graphite intercalation
compounds are thus classified by a stage index n denoting
the number of graphite layers between adjacent intercalate
layers.

The types of ordering prevalent in graphite intercalation
compounds include staging, stacking order of the graphite
layers, in-plane ordering in the graphite and intercalate
layers as well as interlayer correlations between these
layers, commensurate and incommensurate molecular or-
dering, and interlayer intercalate stacking order. The in-
tercalation compounds occur in highly anisotropic layered
structures where the intraplanar binding forces are large
in comparison with the interplanar binding forces. There-

fore, the transitions between the ordered phases may pro-
vide good examples of phase transitions in quasi-one- and
-two-dimensional systems.

Br2-intercalated graphite compounds are particularly
interesting because of the existence of several structural
orderings in the intercalate bromine layers and the oc-
currence of phase transitions between these ordered
phases. ' " The types of in-plane orderings prevalent in
Br2-intercalated graphite compounds are commensurate,
incommensurate, and fluid phases. Several independent
experiments on Br2-intercalated graphite compounds ex-
hibit anomalous temperature-dependent behavior above
room temperature. X-ray diffraction" from the a face of
a desorbed Br&-intercalated graphite compound has pro-
vided evidence for the existence of a commensurate-
incommensurate transition (CIT) at approximately 340 K,
in addition to a melting transition at 373.7 K in the inter-
calate layer. The temperature dependence of the Rarnan
line shape, linewidth, frequency, and intensity of the inter-
calate bromine molecular stretch mode' of Br@-
intercalated graphite compounds has yielded information
on the CIT and melting transitions, consistent with these
x-ray experiments.

X-ray diffraction has proven ' ' to be an extremely
useful probe of the structures and phase transitions in 2D
systems. Not only can the crystal symmetry and lattice
constants be deduced, but detailed line shape analysis can
yield information about the extent and form of the inter-
planar and intraplanar correlations. Therefore, x-ray
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scattering was chosen to study quantitatively the nature of
the phase transitions in Br2-intercalated graphite corn-
pounds.

Following the pioneering work of Frank and van der
Merwe, ' a large number of theories have been constructed
for the CIT based on the domain-wall mode). ' ' These
theories model the incommensurate phase by locally com-
mensurate regions separated by sharp domain walls in
which the structure shifts from one sublattice to another.
The CIT then involves the spontaneous generation of
domain walls. These theories are most complete for one-
dimensional (1D) domain walls in a 2D lattice; that is, for
a 2D system which exhibits a CIT in only one direction.
This structure is called a stripe domain phase.

Frank and van der Merwe' considered a model where
an array of atoms connected with harmonic springs in-
teract with a sinusoidal substrate potential. Treating the
adatom positions as a continuous variable, they predicted
a certain critical amount of misfit below which the mono-
layer is in the commensurate state and above which the
monolayer is in an incommensurate state described by the
domain-wall model. McMillan' used a phenomenological
Ginzburg-Landau free energy to treat the CIT in the lay-
ered compound TaSe2. Considering only phase fluctua-
tions in the order parameter, McMillan' obtained a free
energy identical to the Frank and van der Merwe model
and solved it numerically. Later, Bak and Emery solved
McMillan's model analytically, again rederiving the exact
solution of Frank and van der Merwe.

Pokrovsky and Talapov ' ' investigated the stripe
domain phase by generalizing the Frank and van der
Merwe model into two dimensions and found a continu-
ous CIT. They predicted that for this system at finite
temperatures the domain-wall density, that is, the number
of domain walls per unit length, should exhibit the simple
behavior p-(T —T, )~ with P=0.5. Fisher and Fisher'
studied the effect of the fluctuation-induced wandering of
the domain walls on the nature of the uniaxial CIT in a
d-dimensional system and found P= (3—d) /2(d —1 )

in agreement with Pokrovsky and Talapov for d =2.
Moncton et al. ' first provided strong experimental evi-
dence that the 2D hexagonal-hexagonal CIT for low-order
commensurate systems is, in fact, a melting transition.
Following this, Coppersmith et al. and Villain et al.
predicted that in the stripe domain case the CIT should
also be a melting transition for commensurability

p & 2V 2, where p is the ratio of the superlattice period to
the underlying lattice period. For p &2W2, the domain
walls are not stable to the spontaneous creation of disloca-
tions in the stripe domain phase. Only for p &2~2
should one have a solid-solid transition with the incom-
mensurability simply related to the domain-wall densi-
t 23 24

It has been shown by many theoretical studies ' '

that there is no long-range order in 2D incommensurate
solids. Instead, the 2D incommensurate phase is a float-
ing phase with an algebraic decay of the positional corre-
lation function. In these systems the long-range order is
destroyed by the existence of a Goldstone mode with
divergent amplitude, and therefore one anticipates q +"

power-law singularities rather than true Bragg peaks. In
the incommensurate phase, the Goldstone mode corre-
sponds to the acoustic branch of the domain-wall lattice.
For a commensurate system, the phonon spectrum has a
gap at q=0; therefore there are Bragg singularities limited
only by the finite size. Shultz calculated the correlation
function of domain walls in a stripe domain phase for
2'/d phase slips by using a fermion description and
found an anisotropic XF model with gG ——2/d, where

0

Go is the smallest reciprocal-lattice vector in the incom-
mensurate direction. The incommensurate Brz layer may
be an ideal system to test these predictions, because in this
system the domain-wa11 structure in the incommensurate
phase is well understood.

The nature of the solid-fluid transition in 2D incom-
mensurate solids has been under intense investigation in
recent years. Kosterlitz and Thouless first suggest-
ed the possibility of a continuous melting transition medi-
ated by dislocation unbinding. A high-resolution syn-
chrotron x-ray scattering study of xenon on graphite by
Heiney et al. revealed a continuous melting transition
consistent with the theory of dislocation-mediated melt-
ing. Ostlund and Halperin considered the dislocation-
mediated melting of anisotropic layers of molecules and,
depending on the symmetry of the Burgers vector of the
dislocation, they predicted 2D solidlike, 2D smecticlike,
2D nematiclike, and quasi-isotropic behavior. The
graphite-Brq system appears to be an ideal system for test-
ing these theories of anisotropic 2D melting, since the 2D
bromine lattice is highly anisotropic and it becomes in-
commensurate only in one direction.

In this paper, the results of an extensive x-ray scattering
study of the phase transitions in stage-4 bromine-
intercalated graphite, C288r2, are presented. The stage-4
compound was chosen for study because of its weak inter-
planar interaction and resulting quasi-2D behavior. The
format of this paper is as follows. In Sec. II we describe
the experimental techniques; Sec. III presents the results
on the structure of the commensurate phase. Also in Sec.
III, we describe the measurement of the intercalate
domain size and the kinetics of the intercalation process.
Section IV gives the results on the CIT in the graphite-Br&
system. In Sec. V we describe the Br2 layer in the incom-
mensurate phase and discuss its behavior in terms of
current theories of continuous symmetry 2D solids. Sec-
tion VI gives the results on the melting of the incommens-
urate Br2 layer. A preliminary account of the CIT experi-
ments and their analysis was given in Ref. 10.

II. EXPERIMENTAL DETAILS

Kish graphite single crystals of very high quality were
used in these experiments. The samples, which had typi-
cal sizes of 2~1)&0.1 mm, were intercalated in situ on
the x-ray spectrometer by a vapor transport technique in
a Pyrex chamber. The system for the in st, tu experiment is
shown in Fig. 1. Two separate two-stage ovens were used
to control the temperature of the sample and of the pris-
tine bromine, independently. The sample was glued to a
nickel block from its c face by using a minute amount of
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FIG. 1. Experimental arrangement for the in situ x-ray ex-
periment.

bromine-resistant epoxy as shown in the inset of Fig. 2.
There was no observable epoxy-induced strain in the crys-
tal before and after the intercalation. This is due to the
fact that the crystal expands only in the c direction during
intercalation. The temperature measurements were made
by attaching a precision thermistor to the nickel block.
The temperature stability of the sample was adequate for
these studies; the temperature drift was about 5 mK in 4
h. After intercalation to stage 4, the bromine pressure was
kept constant at 57 Torr (bromine temperature was —3'C)
during subsequent measurements to ensure chemical sta-
bility.

The experiments were carried out on a three-axis x-ray
spectrometer with the use of MoKa (A, =0.7107 A) radia-
tion from a Rigaku 12-kW rotating anode x-ray source.
Figure 2 gives a schematic representation of the experi-
mental arrangement. The x-ray beam is collimated by
successive slits Si, S2, and S3 before the sample and slit
S4 after the sample. For most of the measurements, pyro-
lytic graphite crystals were used as monochromator and
analyzer. The longitudinal resolution was 1.7)& 10 A
halfwidth at half-maximum (HWHM) and the transverse
in-plane resolution was 1.4 & 10 A ' HWHM at
q=1.45 A '. For the measurements of the intrinsic

III. STRUCTURE OF COMMENSURATE PHASE

005

Graphite-Brp

STAGE 4
&c=1707+0.0f A

A. Out-of-plane ordering

Figure 3 shows a typical 8—28 scan in the (001) direc-
tion taken for stage determination. The inset of Fig. 3
gives the details of the scattering configuration. All of the
(001) peaks observed can be indexed on the basis of reflec-
tions from a stage-4 bromine-intercalated graphite com-
pound. The c axis repeat distance I, is I,=c =17.07
+0.01 A, in agreement with previous measurements. In
a stage-4 compound, there are four graphite layers be-
tween two adjacent intercalate layers.

Interlayer correlations between the bromine intercalate
layers have been studied via the (Okl) reflections. Figure
4(a) indicates reciprocal-lattice points in the h=O plane.
The reciprocal-lattice points which have contributions
from both bromine and carbon correspond to true three-
dimensional (3D) peaks (triangles). The pure bromine su-
perlattice points (solid circles) exhibit Bragg rods rather
than points in reciprocal space. The rods, which are
oriented in the 1 direction, indicate the absence of long-
range order in the c direction in real space. To demon-
strate this point, we performed scans along the Bragg rods
passing through the in-plane peaks Br(0,4,0) at k= 1.455
A. ' and Br(0,6,0) at k=2. 185 A ', which are respectively
labeled in Fig. 4(a) as B and A. Figures 4(b) and 4(c) show
the data obtained at room temperature for scans B and 3,
respectively. The solid lines are fits of the scattered inten-
sity to a constant plus sinusoidal l dependence, corrected
for the increasing scattering volume with increasing 1. At
room temperature the rods show about 30% sinusoidal
modulation due to the correlations between nearest inter-
calate planes. It is of significance to note that these scans
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FIG. 2. Schematic diagram of the x-ray spectrometer. Inset
shows the details of the bromine-intercalated graphite sample
holder.

0

000
00f 006

I l I

5 l0 I5
Diffraction angle 28(degrees)

007 008

I 1

20 25

FIG. 3. 0—20 scan taken for stage determination. Inset gives
the details of the scattering configuration for the (OOI) scans.
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FIG. 4. (a) Reciprocal plane h =0. The reciprocal-lattice points which have contributions from both bromine and carbon corre-

spond to true 30 peaks (triangles). The pure bromine superlattice points (solid circles) exhibit Bragg rods rather than points in re-
ciprocal space. Inset shows the scattering geometry. (b) Scan at T=296 K along the Bragg rod passing through the in-plane peak
Br(0,4,0) at k=1.45S A which is labeled as 3 in (a). (c) Scan at T=296 K along the Bragg rod passing through the in-plane peak
Br{0,6,0) at k=2.185 A ', which is labeled as 8 in (a). (d) Same as (c) but at T=325 K.

indicate the absence of long-range order at room tempera-
ture in the c direction. However, a partial correlation be-
tween nearest-neighbor intercalate planes is found. The
periodicity of the Bragg rod modulation is 16+2 A, which
is equal to I, determined from (00l) reflections within the
error. However, as the temperature is raised to 32S K the
modulation for scan A has vanished, as shown in Fig. 4(d).
This indicates that at these higher temperatures the inter-
calate layers are completely uncorrelated and the Br2 layer
is essentially a 20 system.

Another important observation in Figs. 4(b) and 4(c) is
that the phase of the sinusoidal modulation for the rod at
k=1.455 A ' is shifted by 180'+20' with respect to the
phase of the rod at k=2.185 A '. This indicates that at
room temperature onc 1ntcr'calatc plane 1S tl anslated by
(0.25+0.003)b with respect to the nearest-neighbor inter-
calate plane in the sevenfold direction, where b is the unit
cell dimension in the sevenfold direction. In the com-
rnensurate phase, the closest possible translation to the
value (0.25+0.03)b in the sevenfold direction is 3b/14 for
the stacking arrangement AIABA BIB. This expected
translation due to stacking of the intercalate planes is
close but slightly smaller than the measured value. Fur-
ther work with a more intense x-ray source is needed to
understand dearly the stacking arrangement in the
bromine-intercalated graphite.

Correlations in the site ordering of the intercalant in
sequential intercalate layer planes has also been observed
in a number of compounds, particularly in stage-1 com-
pounds. ' ' Because of the relatively large size of the in-
tercalant ions or molecules relative to the carbon atoms,
the correlation of the site arrangement of the intercalant
on sequential layers allows for closer packing of the inter-
calate layers in the 3D stacking of the crystal. Even when
long-range correlation is absent, these close-packing con-
siderations imply that the placement of the intercalant on
a particular site on one layer tends to exclude the place-
ment of the intercalant on a similar site in the nearest-
neighbor intercalant layer. ' It is of significance to note
that at high temperatures in stage-4 bromine-intercalated
graphite, even the correlation in the stacking of bromine
intercalate layers disappears. To establish that we have
true Bragg rods, we have performed several scans perpen-
dicular to the Bragg rods. Figures 5(a) and 5(b) show the
scans perpendicular to the Bragg rods passing through the
in-plane peaks Br(0,4,0) and Br(0,6,0), respectively, at
various l values. All these scans at various / values yield-
ed the same line shape and linewidth within the error.
The linewidth is resolution-limited for each Bragg rod, in-
dicating the existence of long-range order in the plane.
This should be contrasted with the absence of stacking site
ordering along the c direction.
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TABLE I. Observed and calculated structure factors for in-
plane Br2 ordering in the commensurate phase.
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FIG. 5. Scans perpendicular to the Brag g rod passing
through the in-plane peaks: (a) Br(0,4,0) at various l values, and
(b) Br(0,6,0) at various l values.

B. In-plane structure

Information on the in-plane intercalate bromine ar-
rangement is, of course, obtained by studying (hk0) re-
flections. The Bragg spots in reciprocal space form three
equivalent subsets corresponding to three equivalent sub-
lattices in real space rotated by 120' with respect to each
other. As will be described in Sec. III D, the size of each
domain can be larger than 10000 A. The Br2 layer struc-
ture is defined as one of the three rotationally distinct in-
plane sublattices of the intercalate layer.

The observed in-plane reflections occur for h +k =2n,
where n is an integer. We did not observe the additional
in-plane reflections reported earlier. The result
6 +k =2n is an indication that the in-plane unit cell is
face centered. We find, in agreement with others, that at
room temperature each Br2 domain exhibits a centered
(~3X7) rectangular superlattice structure with four Br2
molecules per 20 unit cell. This structure corresponds to
a stoichiometry of C7„Br2, where n is the stage index, con-
sistent with the determination from (00l} reflections.
The sevenfold axis of the Br& unit cell is oriented along
the [110] direction of the graphite lattice. Those reflec-
tions, which have indices k that are a multiple of 7, lie at
the positions of the normal graphite (hk0) reflections and
their intensity is determined by the precise positions of the
bromine atoms relative to the graphite layers as well as by
the relative positions of the bromine atoms with respect to
one another. The remaining h and k re'flections which are
superlattice peaks are sensitive only to the relative posi-
tions of the bromine atoms. We have used eight superlat-
tice reflections to determine the in-plane atomic arrange-
ment in a Br2 unit cell as shown in Table I. This structure

1 /2
R~= gw( ~F' '~ —~F""~ )' gw ~F' '~' (4)

where w is a weight defined for each observation in terms
of the structure factor variance o. , such that w =o.
The residual R and the weighted residual R~ for the struc-
ture are 0.12 and 0.05, respectively. The calculated struc-
ture factors were based on the coordinates given in Table
II with four nonzero coordinates as adjustable parameters

is quite close to that originally proposed by Eeles and
urnbull.
The experimentally measured integrated intensities I~kp

were converted to structure factors Ffk'o using the relation

I(a'o=SCI. C~Cg lFIk'o '
where S is a scale factor and Cl is the combined Lorentz
and polarization correction, which for nonpolarized radia-
tion takes the form CL ——[1+cos (20)]/sin(20). The ab-
sorption coefficient C~ has a very small angular depen-
dence in the transmission configuration for a small sam-
ple; therefore, we can neglect this correction. The factor
Cg is necessary to correct for the absorption by the glass
ampoule, but because the ampoule is cylindrical, we can
also neglect the angular dependence of this correction for
(hk 0) reflections.

The structure factor FI',k p is given by the sum of the dif-
fracted amplitudes contributed by each of the atoms in the
unit cell,

Ff k'o = g fJexp(2mihxz+2~ikyz),
J

and contains information on the structure projected onto
the xy plane. Here (xj,yz} denotes the coordinates of the
Jth atom within the unit cell. The scattering factor for
bromine atom J is given by

fJ ——fqexp[ —BJ(sin 0)IA. ],
where fz is the scattering factor for a bromine atom at
rest, and Bz is the Debye-Wailer temperature factor.
Table I lists the observed structure factors F~kp along with
the corresponding calculated structure factor FI', k'o for a
number of (hk0) points. The standard measures used to
assess the agreement between FI',k p and Fhkp are the residu-
al or the weighted residual,
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TABLE II. Bromine atom positions in a base in the com-
mensurate phase. Positions are given in the units of the centered
(W3 &(7) unit-cell lattice vectors.

+4.26AQ

0
0
0
0.5

0
0.13
0.32
0.31

17.22 A

during the least-squares fit and an isotropic Debye-'%aller
factor 8=5.5 A as given in an earlier work. We also
used the least-squares structure refinement program
RFINE4 (Ref. 38) to obtain more precise values for the
structural parameters; however, the analysis yielded pa-
rameters not significantly different from the ones given
earlier.

The structure determination is approximate because of
the limited number of reflections used. Further studies
employing more (hk0) and (hkl) reflections are needed to
determine the precise molecular arrangement in the unit
cell. The areas per Br2 molecule are, respectively, jI8.33
and 19.53 A in the intercalate Br& layer and in the pris-
tine Br2 layer. It is interesting to note that the inter-
calate Br2 layer is denser than the pristine bromine layer
in the commensurate phase. This fact and the small Br-
Br distances (2.14 and 2.24 A) for the intercalate Br2 sug-
gest that the Br& molecules are tilted with respect to the
plane. Assuming that the intercalate Br—Br bond length
is 2.27 A, which is the bond length for bromine molecules
in the solid phase, then we expect tilt angles of 21 and 13
for the intercalate Br2 molecules. Recent extended x-ray
absorption fine-structure (EXAFS) measurements on a
Br&-intercalated highly oriented pyrolytic graphite
(HOPG) indicates a tilting of the Br2 molecules by a simi-
lar amount. A phase with tilted Brz molecules is also
observed in bromine molecules adsorbed on graphite. '

The graphite-bromine-graphite sandwich thickness in the
Br2-intercalated graphite compound is 7.0 A, which is
large enough to accommodate a small tilt in the molecule.
Figure 6 shows the in-plane intercalate Br2 unit cell and
the atomic arrangement in the extended lattice superim-
posed on the graphite lattice. Both the (v 3 &(7) rectangu-
lar unit cell and the primitive unit cell are shown in Fig.
6. By comparing our calculated structure factor and the
experimental intensities, we can clearly rule out the
C~4„Br2 structure in favor of the C7„Br& structure for
the samples used in the present work. This interpretation
is consistent with the work on similarly prepared samples
by Leung et al. " to determine the in-plane density of the
intercalate layer, where the stoichiometry C~7+2~„8r2 was
obtained. There is no direct information on the relative
positions of the bromine and carbon atoms. However, an
earlier observation by EXAFS indicates the Br atoms
have a tendency to be situated close to the center of a
basal-plane hexagon.

yii

C. Kinetics of bromine intercalation in graphite

We have investigated the Br(0,6,0) Bragg peak as a
function of time to probe the kinetics of Br2 intercalation
into single-crystal Kish graphite. The scans through the
Br(0,6,0) peak position taken at various times after the in-
troduction of Br2 gas are shown in Fig. 7. After 4 h, no
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FIG. 7. Scans through the Br(0,6,0) peak position taken at
various times after the initiation of intercalation. Solid lines are
the results of fits by resolution-limited Gaussians.

FIG. 6. This figure is similar to Fig. 1 of Ref. 10 except that
the Br2 moleeules are drawn more closely to scale. Rectangular
in-plane intercalate Br2 unit cell (dashed lines) and the atomic
arrangement in the lattice superimposed on the graphite lattice.
Dashed-dotted line show the primitive unit cell.
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Bragg peak nor diffuse background appeared, indicating
that no intercalation had taken place. However, after 330
min, the Br(0,6,0) Bragg peak grows very rapidly, indicat-
ing the start of intercalation. Figure 8 shows the integrat-
ed intensity of the Br(0,6,0) peak as a function of time
during the intercalation process. The absence of intensity
until t=330 min may be interpreted to imply either that
the intercalation process has not yet not started or that the
intercalated Br@ molecules are completely disordered in
the graphite matrix. The absence of any observable
change in the background scattering implies the absence
of disordered intercalant. We further note that by t —800
min, the integrated intensity of the Br(0,6,0) Bragg peak
reaches its saturation value. These observations provide
evidence that the majority of the intercalated Br2 mole-
cules form ordered intercalate domains.

Another important feature in Fig. 7 is the observation
that the linewidth remains resolution-limited throughout
the intercalation process, although the integrated intensity
increases with time. This provides evidence that large
domain sizes are formed starting with the initiation of in-
tercalation. Because the experiments in this section are
performed using a graphite monochromator and analyzer,
we place a lower limit of 2000 A for the average domain
size during intercalation. It is conceivable that these
domains are as large as the domains of saturated stage-4
compounds as discussed in the next section.

D. Measurement of in-plane domain size

For the measurement of the intrinsic Brz in-plane
domain sizes, Ge(111) crystals were employed as mono-
chromator and analyzer in the W configuration. We
have measured the resolution function of the nondisper-
sive configuration by a reflection from a Si(111)crystal at
the sample position. By scaling the measured resolution
function to Br2 superlattice peaks, we show that although
the width of the longitudinal scan is resolution limited,
the transverse scan has some finite-size broadening, in ad-
dition to the linewidth contribution from the mosaic
spread. The finite-size contribution to the transverse
HWHM of the Br(0,4,0) peak is of the order of 0.0003

0
A ', which corresponds to an intercalate bromine domain
size larger than 1 pm in the commensurate phase. This is
the largest in-plane domain size reported in an intercala-
tion compound and is consistent with the prediction of the
domain sizes by Safran and Hamann for systems not
constrained kinetically. There is no observable change in
the linewidth with increasing temperature until the CIT
temperature T, =342.20 K.

Figures 9(a) and 9(b) show the longitudinal scans of
Bragg peaks agg peaks md Br(b,6,0), respectively, in the
commensuratmmensurat') and incommensurate (342.82 K)
phases. We (ases. We (e only the peak widths since the
peak positiorak DositioLnsities will be discussed in Sec.
IVB. As shown in Fig. 9 there is a broadening in the
linewidth in the incommensurate direction for the bro-
mine superlattice peaks Br(0,4,0) and Br(0,6,0). In addi-
tion, the linewidth broadening is related to the incommen-
surability, giving larger broadening to the Br(0,6,0) peak
due to the larger exponent g for this peak as will be dis-
cussed in Sec. V. Also, the distribution of chemical poten-
tials for domain-wall formation may contribute to the
linewidth very close to T, . Figure 10 shows the transverse
scans of the peak Br(0,6,0) in the commensurate and in-
commensurate phases, which provide evidence that even
in the incommensurate state the in-plane intercalate coher-
ence size is more than 1 pm.

IV. THE COMMENSURATE-INCOMMENSURATE
TRANSITION

A. Theory

The Hamiltonian for an array of adatoms connected
with harmonic springs in a cosine potential is given by

Il;
H = g —(x„+&—x„bo)+ V 1 ——cos x„n+ n

Q

where x„ is the position of the nth atom, and IC is the
force constant between the adatoms. In the absence of the
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FIG. 8. Integrated intensity of the Br(0,6,0) peak as a func-
tion of time during the intercalation process.
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FIG. 9. Longitudinal scans of Bragg peaks (a) Br(0,4,0) and
(b) Br{0,6,0) in the commensurate (340.69 K) and incommensu-
rate (342.82 K) phases.
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FIG. 10. Transverse scans of the Br(0,6,0) peak in the com-

mensurate (340.69 K) and the incommensurate (342.82 K)
phases.

periodic potential V, the harmonic term would favor a lat-
tice constant bo which, in general, would be incommensu-
rate with the substrate lattice constant pao, where p is a
rational number. We assume that, bo is very close to pao.
The commensurate adatom lattice constant b is defined by
b =pao. Introducing the phase P(n) by the equation

H = I —5 + V(1 —cos(pP)) dn,Kb dP
8~2 dn

2m (bo b)—
b

is the misfit between the two lattices.
The state P(n) =0 is the commensurate state, and the

unperturbed incommensurate phase ( V=O) is given by the
straight line P(n)=5n Bak and E. mery observed that
the function P(n) for which the integral in Eq. (7) is a
minimum will satisfy the sine-Cxordon equation,

d =pA sin(p P ),
dn

one solution of which is the soliton 6(n) or domain wall,

P(n) =6(n) =—tan 'exp(pv A n) .
p

(10)

This solution as shown in Fig. 11(a) describes a domain

x„=nb+ P(n)
b

2'
and transforming to the continuum limit, the Hamiltonian
becomes

I

100
I I I

200 300 400 500
y(o)

FIG. 11. (a) Single soliton solution of the sine-Gordon equa-
tion [Eq. (6)]. The soliton is a domain well between two com-
mensurate regions. For the atomic arrangement shown above,
p=1. (b) Soliton lattice solution to the sine-Gordon equation
[Eq. (6)]. Straight line corresponds to the unperturbed adatom
incommensurate structure. Flat regions correspond to the com-
mensurate domains between the solitons. Solitons are separated

0 0

by L =200 A and the thickness parameter Lo ——5 A. Phase shift
over a domain wall for bromine-intercalated graphite is 4~/7.

P(y) =$0+ +6(y —mL),
p

where m is the closest integer to y/L, y =nb, the function
6(y) is defined in Eq. (10), and Pc is a constant. Later, we
will use the phase function given in Eq. (12) to calculate
the structure factor in a stripe domain phase.

The energy density of a regular array of domain walls
with spacing I was calculated by Bak and Emery as

4~2
~

2m.
p+

p

32~3 pv A
p exp

p p
(13)

where p= 1/L is the domain-wall density. The first term
in Eq. (13) is proportional to the domain-wall density p
and may therefore be considered as the domain-waH ener-

wall, centered at n =0, which separates two commensurate
regions, one with /=0, the other with /=2m/p. The
domain-wall width is

L = = PIC/V.1 b

p A 2mp

For large substrate interaction V, we expect sharp-domain
walls, and this occurs for the case of bromine-intercalated
graphite. In general, the solutions are regularly spaced
domain walls with a lattice constant L [as shown in Fig.
11(b)] due to the repulsive interaction between them.
These solutions have a functional form,
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gy. The second term decays exponentially with the dis-
tance between domain walls and thus represents an effec-
tive repulsion between the domain walls. When 3 be-
comes sufficiently small or 5 sufficiently large so that the
domain-wall energy becomes negative, the commensurate
phase becomes unstable with respect to spontaneous for-
mation of domain walls.

We may understand the existence of a CIT in Br2-
intercalated graphite at high temperature simply from the
following argument. In the bromine-intercalated graphite
compound, the graphite plane is very rigid, and therefore
the in-plane unit-cell dimension does not change much
with varying temperature. However, the intercalate Br2
plane is very soft and anharmonic; therefore the increas-
ing mismatch with increasing temperature drives the CIT
at 342 K.

In the preceding calculations at T=O, fluctuations of
the domain walls are completely neglected. Pokrovsky
and Talapov ' ' studied the stripe domain pease in 20 at
finite temperatures. By using the connection between the
quantum mechanics of a 1D system and the statistical
mechanics of the 2D problem, they translated the problem
into a fermion description. Here the coordinate along the
domain wall (x axis) plays the role of the time. The
motion of the domain wall in time in a 1D quantum sys-
tem corresponds to bending of the domain walls in the 2D
statistical system, and the fermion statistics ensure that
the domain walls do not cross. In the quantum picture,
domain walls have kinetic energy which should be added
to the energy given in Eq. (13) to obtain the total energy
density. The kinetic energy density for a fermion system
in one dimension with density p is given by

domain-wall lattice.
Because the CIT takes place only in one direction, we

consider only the y direction. To simplify the formulas,
we assume an atom with unit scattering intensity occupy-
ing each commensurate lattice point in the commensurate
phase.

In the incommensurate phase the domain walls modu-
late the commensurate lattice. Let us consider explicitly
the case where there is a net displacement of r across each
domain wall, with the walls occurring every X unit cells.
We thence have a new unit cell of length L =Nb +r with
N atoms at positions y„. The structure factor is then
given by

S (q~ ) =
~ f (q~ )

~

5 q„—a
Nb +~

where

N

f(qr)= pe "". (18)

Here a is an integer and the 5 function expresses the
Bragg condition. Two limits are calculated in a straight-
forward manner. First, for uniform expansion, that is, for
very broad walls, f (qr ) =0 unless a is an integral multiple
of N. Second, for perfectly sharp-domain walls,

sin (Nba /2)
I f (qy )

I

'= (19)
sin (bq~/2)

In this limit it is convenient to refer the incommensurate
Bragg peak to the nearest commensurate position given by

q~ =k (2m/b); accordingly, we write
(14)

where 8 is a constant. Thus the total energy density takes
the form

2'
k

2~ 2m k
CX =k + r ——

Nb+
'

b L p
(20)

F. = (5—5, )p+ Cp exp( D/p)+ —,Bp— (15a)

where C and D are constants.
Close to the transition temperature the second term in

Eq. (15a) can be neglected compared with the third term.
In this case, the energy density in Eq. (15a) becomes

Z~(5 —5, )p+ —,Bp
so that

~ [(k/p) r]— (21)

where k and r =a kN are integ—ers and p =b/r It is.
straightforward to show that for Nb large, Eq. (19) simpli-
fies to

Minimization with respect to p yields

5) 1/2 (16a)

If(q, )l'= f q, kb— (22)

or

(T T )1/2 (16b)

In Sec. IVB, the experimental results on the CIT will be
compared to these theoretical results.

In scattering experiments the structure factor provides
the medium for quantitative comparison between the ex-
perimental results and theoretical predictions. In Sec.
IIIB, use of the structure factor for structure determina-
tion was discussed for the commensurate phase. Here we
discuss the extra features introduced into the structure
factor of the commensurate phase by the presence of a

y„=(n —1)b+ e(n —N/2),6
2'

where

(23)

e(n —N/2) =—tan 'exp[pub (n —N/2)], (24)

Henceforth we will use the notation [h, (k, r), l] to denote
the modulation peak r associated with the commensurate
peak (h, k, I).

For the general domain-wa11 model,
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f (qy ) = g expIiqy [(n —1)b +(b/2m')e(n —X/2)] I
n=1

To calculate relative intensities Eq. (25) must be evaluated
numerically.
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B. Results and discussions
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FIG. 12. (a) Br(1,5,0) diffraction profiles in the commensu-
rate (341.12 K) and the incommensurate phases (342.46 and
342.91 K). (b) Br(0,6,0) diffraction profiles in the commensurate
(341.12 K) and the incommensurate phases (344.70 and 348.14
K). Solid lines are all results of fits by resolution-limited Gauss-
ians at the positions indicated by arrows.

0
230

2
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We utilized the in-plane Bragg peak positions, intensi-
ties, linewidths, and line shapes to investigate the CIT in
Br2-intercalated graphite compounds. These parameters
exhibit anomalous behavior across the CIT temperature.
As the temperature is raised above 342.20+0.05 K, the
Br2 Bragg rods shift along the qz direction, simultaneously
developing a composite line shape. To within an accuracy
of 10 A. ' the Br2 Bragg rods shift only in one direc-
tion; namely, the system remains commensurate in the v 3
direction (see Fig. 6).

Typical profiles in the sevenfold direction for the
Br(1,5,0) and Br(0,6,0) peaks are shown in Fig. 12. The
solid lines are all results of fits by G-aussians at the posi-
tions indicated by arrows. In the incommensurate phase
for the Br(1,5,0) diffraction profile, the peak positions are
at qz ——5~o ——,'e and q~ =5~o+2e as shown in Fig. 12(a),
where e is the temperature-dependent incommensurability
for the principal component of the Br(0,6,0) peak. In the
incommensurate phase for the Br(0,6,0) diffraction pro-
file, the peak positions are at q~ =61o —

2 e and q~ =6~o+ e
as shown in Fig. 12(b). The directions of the shifts of the
principal components of the peaks around the commensu-
rate positions are indicated by arrows in Fig. 13. Also, in
Fig. 13 the peaks represented by the open circles, solid cir-
cles, and half-filled circles exhibit shifts of —,

'
e, e, and —,

'
e,

respectively, from their commensurate peak position dur-

8 il

6 il

0 1

cI (
27T

)

2
FICr. 13. Quadrant of the I=0 reciprocal plane of a Br2 sub-

lattice. Circles correspond to Bragg rods originating from the
2D Br2 superlattice. Triangles represent 3D graphite and bro-
mine peaks. Arrows at each Br& peak show the directions of the
principal peak position shifts during the CIT. Bragg rods
represented by the open circles, solid circles, and half-filled cir-
cles exhibit shifts of t/2, e, and 3e/2, respectively, from their
commensurate peak positions during the CIT.

ing the CIT. It is evident that these qz displacements can-
not be understood on the basis of a uniform expansion or
contraction of the intercalate lattice, since the principal
Bragg peak positions are no longer low-order integral mul-
tiples of each other. This implies that the unit cell of the
weakly incommensurate phase must be extremely large,
suggesting a domain-wall or discommensuration model.

A domain-wall model has previously been suggested"
for alkali-metal intercalants; in the Br2 case, the effects
are much more pronounced. Indeed we show that all of
the observations can be explained by the scattering from a
stripe domain phase as described in Sec. IVA. For the
moment, we concentrate on the peak positions predicted
by Eq. (20). All of the peak shifts are consistent with the
choice p = —,.

For example, the major and minor peaks shown in Fig.
12(a) around Br(1,5,0) in the incommensurate phase can be
labeled as [l,(5,1),0] and [1,(5,2),0], respectively, using the
notation introduced in Sec. IV A. Similarly the major and
minor peaks shown in Fig. 12(b) around Br(0,6,0) in the
incommensurate phase can be labeled as [0,(6,2),0] and

[0,(6,1),0], respectively. It is of importance to note that
the incommensurability e is given by e=4rr/7L, where L
is the distance between the domain walls. Then the
domain-wall density p is given by p=7e/4'. This is a
very useful result since it provides for a direct measure-
ment of the domain-wall density. The phase shift at the
domain wall is 4m/7, which corresponds to a displacement
slip of 2b/7 over a domain wall in real space. Good
agreement is obtained between the measured and calculat-
ed shifts for T=348.15 K as shown in Table III, where
the shifts for a number of modulation peaks are given
along with their indices.
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[h, (k, r), l] peak Calculated shift (A '}

TABLE III. Measured and predicted peak shifts at T=348.15 K.
0

Measured shift (A ')

[0,(4, 1),0]
[0,(10,3),0]
[1,(3,1),0]

0.0048+0.0005
0.0050+0.0006
0.0045+0.0005

—,a=0.0051

[0,(6,2),0]
[1,(1,0),0]
[2,(6,2),0]

0.0098+0.0005
0.0098+0.0005
0.0110+0.0010

m=0.010

[0,(12,3),0]
[1,(5,1),0]
[1,(9,3),0]

0.0160+0.0020
0.0140+0.0005
0.0157+0.0020

2 @=0.0153

Figure 14 gives the shifts of the principal peak positions
as a function of reduced temperature for the Br(0,4,0),
Br(1,1,0), and Br(1,5,0) Bragg peaks. We have fitted the
Br[1,(1,0),0] incommensurability by a power law

e= eo( T/T, —1)~

as discussed in Sec. IVA; the best-fit parameters are
T, =342.20+0.05 K, ec(1,1,0) =0.076+0.011 A ', and
P=0.50+0.02. By using the predictions eo( 1,5,0)
= —,'eo(1, 1,0) and eo(0,4,0)= —,'eo(1, 1,0) of the domain-wall
model, and using the T, and P values determined above,
we have calculated the solid lines shown in Fig. 14 for
Br[1,(5,1),0] and Br[0,(4, 1),0] without any adjustable pa-
rameters. Clearly, the agreement for all three peaks is ex-
cellent. We emphasize that this power-law behavior holds
for e as small as 10% of its saturated value. Thus these
data are comparable in quality to those obtained in the
best studies of the model 2D second-order magnetic phase
transitions. The exponent P=0.50+0.02 agrees with the
prediction P= —,

' of Pokrovsky and Talapov to within the
errors. This experiment thence confirms this very impor-
tant theoretical prediction. ' ' ' Jaubert et al." have also
observed this square-root dependence at larger e for Xe on

0.015

Cu(110); however, for this system the commensurability is
p=2 so that the CIT should, in fact, be a melting transi-
tion. In that case the peak position may not be simply re-
lated to the domain-wall density.

Figure 15 shows the incommensurability of the
Br[1,(1,0),0] peak in a larger temperature range. It is not-
able that the power-law fit with P=0.50+0.02 starts devi-
ating from the experimental points around 348 K and e
reaches its saturation value at about 3S5 K. This behavior
is expected because in the calculation of P= —,

' the repul-
sive interaction term between the domain walls is neglect-
ed. However, with increasing domain-wall density this
term becomes large so that it hinders the creation of
domain walls in the highly incommensurate state. At sa-
turation, the domain walls are separated by about 130 A,
which is approximately 7.5 unit cells.

To explain the temperature dependence of the domain-
wall density properly over the whole temperature range,
the interaction between the domain walls should be con-
sidered along with the domain-wall crossings. The
domain-wall crossings are expected to be particularly im-
portant very close to the melting transition temperature
Tm because dislocation pairs may be created in this re-
gion. We note that there is no change in the positions of
the Bragg peaks which have indices k that are a multiple
of 7, in agreement with Eq. (20). We emphasize that all of
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FICz. 14. Shifts of the principal peak position as a function of
reduced temperature for the Br[0,(4,1),0], Br[1,(1,0),0], and
Br[1,(5,1),0] peaks. Solid curves show the power-law fits as
described in the text.

FICk. 15. Incommensurability of the principal Br[1,(1,0),0]
peak in the temperature range 337& T &370 K. Solid curve
shows the power-law fit as described in the text. CIT and melt-
ing temperatures are indicated by arrows.



6340 ERBIL, KORTAN, BIRGENEAU, AND DRESSELHAUS 28

l.O =--—
P

1 A a.m m w~wm~ P
(~)

0.8—
I.O— PP

the observed peaks in the incommensurate phase which do
not coincide with the graphite peaks are due to the
domain-wall lattice; namely, they are modulation peaks.

Study of the peak intensities provides valuable informa-
tion on the nature of a domain wall as suggested by Eq.
(21). In this connection, Fig. 16 shows the integrated in-
tensities of various peaks which are scaled with the ob-
served maximum intensity in the temperature range
338& T &348 K. The integrated intensities as a function
of temperature all exhibit discontinuities at T, . The
dashed lines in Fig. 16 show the discontinuities expected
for each peak using the structure factor given in Eq. (21).
The predicted intensities of the peaks [0,(4, 1),0],
[1,(1,0),0], and [1,(5,1),0] are 0.93, 0.76, and 0.52, respec-
tively, in units of their respective commensurate peak in-
tensities. Thus the intensity discontinuity across T, is ex-
plained well by a step-function domain wall. As shown in
Figs. 16(b) and 16(c) the experimental points deviate from
the predicted intensities above 343 K. This behavior,
especially for the [l,(1,0),0] and [1,(5,1),0] peaks, probably
arises from a temperature evolution in the power-law line
shape as will be discussed in the next section. Integration
of the intensity over a small q range neglects the scattering
at the wings and therefore falls below the predicted inten-
sity. Since the power-law singularity is sharpest for the
[0,(4,1),0] peak, the measured and calculated intensities
agree very well in this case at high temperatures.

Another test of the sharp-domain-wall model involves
the comparison of the integrated intensities of various
modulation peaks in the incommensurate state. For ex-

ample, the fitted relative intensity of the peaks [1,(5,1),0]
and [1,(5,2),0] is 1.9 compared with the calculated value
[from Eq. (21)] of 1.8.

We have made an explicit calculation to investigate the
dependence of the structure factor on the domain-wall
thickness. In this calculation we utilized the structure
factor formula given in Eq. (25) by using the function
e(y) in Eq. (10) to describe the domain wall. Our data are
consistent with a domain-wall thickness of less than one
unit cell. The uncertainty in the calculation of the
domain-wall thickness comes from the uncertainties in the
intensity measurements.

At temperatures very close to T, the incommensurate
peak coexists with the commensurate peak as shown in
Fig. 17. In this figure the solid lines are all results of fits
by two resolution-limited Gaussians at the commensurate
and incommensurate positions. The halfwidths of the
coexisting region have been measured to be 0.4 and 0.2 K
for two-different single-crystal Kish graphite samples.
We ascribe this to a slight distribution of chemical poten-
tials for the domain walls. A distribution of intercalate
domain sizes, defects, edge energies, and possible random
interplanar interactions would give rise to a distribution of
critical chemical potentials. Thus in contrast to the case
of krypton on graphite where extremely broad diffraction
profiles are obtained in the weakly incommensurate phase,
indicating a fluid intermediate state, ' the CIT in the Br2
layer is a solid-solid transition. We emphasize that the
CIT is completely reversible within our error limits and
there is no observable hysteresis.

V. ALGEBRAIC DECAY IN
THE INCOMMENSURATE Br2 LAYER

A. Line-shape theory and anal/818

In the incommensurate phase for general L, the bromine
system has a continuous rather than discrete symmetry. It
is well known that 2D solids with continuous symmetry
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FIG. 16. (a) Integrated intensity of the peaks (a) Br[0,(4, 1),0],

(b) Br[1,(1,0),0], and (c) Br[1,(5,1),0] in the temperature range
338& T &348 K. Dashed lines show the intensity jump at the
CIT temperature predicted by the stripe domain-wall model.
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FIG. 17. Scans for the Br(1,1,0) peak showing the coexistence
of the incommensurate peak with the commensurate peak at
various temperatures.
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exhibit power-law singularities ' rather than true
Bragg peaks. The explicit problem of a 2D lattice with
1D domain walls has been considered by a number of au-
thors, and their results may be readily adapted to the
case of incommensurate bromine.

Specifically, if u(x, y) represents a domain-wall dis-
placement, then the part of the free energy due to the
long-wavelength domain-wall Goldstone modes may be
written

F= —,
' f d'r Z„

2
BQ

y gy

2

(26)

where E and Xy are the elastic constants associated with,
respectively, resistance to bending in the x direction due to
the domain-wall stiffness and compression in the y direc-
tion due to the entropic repulsion. In the domain-wall
limit, as shown by Coppersmith et al. the concomitant
structure factor may be written as 8(q) =a +bx +cx2, (32)

where the function SI( q ') is given in Eq. (27). We neglect
the convolution of the vertical resolution function (z
direction) since the scattering cross section is a Bragg rod
in this direction. In addition, there are several other
weakly q-dependent factors which must be included.
These are the Lorentz-polarization factor CL and the
structure factor F""(q) as discussed in Sec. IIIB. Then
the scattered intensity will be

Iz(q)=CLF'"'(q)Ii(q) .
In addition to the modulation peaks that we are interested
in, there will also, in general, be a diffuse background due
to scattering from substrate phonons, Compton scattering,
scattering from the air, scattering from the Pyrex sample
chamber, etc. Since this background is generally only
weakly q dependent, it is modeled by a second-degree po-
lynomial,

SI(q) = So

[K„(q„—G„) +K@(qy —Gk „) ]

k, T(Z„rC„) '" G„„—-k
2

2

(27)
where x:—

~ q —q, ~

. The parameters a, b, c, and q, are
determined by least-squares fits to a scan in the commens-
urate phase close to the CIT and are then fixed. It is as-
sumed that the background parameters do not change
when the sample is heated to the incommensurate state.
This is a reasonable assumption because the intercalate
Br2 molecule density change during the CIT is negligible.
Then the total scattering intensity will be of the form

(28b) I3(q)=B(q)+CLF""(q)I&(q) . (33)

Here So is a constant, 6 is the reciprocal-lattice vector in
the ~3 direction, and Gk „——[h, (k, r),0]. Schultz has
shown that for the peaks with the smallest incommensura-
bility the power-1aw singularity exponent is given by
gG ——2/d, where d is the number of possible sites a bro-
mine lattice can have in the y direction.

In applying the above to the bromine system it is im-
portant to note that the phase shift at the domain wall is
4'/d, not 2m/d as implicitly assumed in the theories.
Thus, the minimum g is found for Gk, such that
r —2k/7=+ —,; peaks exhibiting the minimum g occur,
for example, around the commensurate peaks (0,4,0),
(0,10,0), and (1,3,0).

The intrinsic profile SI( q ) in Eq. (27) is to be convolut-
ed with the instrumental function R ( q —q ') to obtain the
expected signal I~(q). For the graphite monochromator-
spectrometer configuration the resolution function
R ( q —q ') is given by

(29)

where o.
&

——1.16&10 A ' and & ——1.37&10
k=1.45 A '. In scattering experiments, by changing the
incoming and outgoing angles, one moves the resolution
function R(q —q ') through reciprocal space and mea-
sures the overlap of R ( q —q ') and the intrinsic scattering
function SI(q '). Then the intensity is given by

Ii(q)= f f d q'R(q —q')SI(q'), (30)

The scans taken in the q„and q„directions for a peak
were analyzed using least-squares fits to the predicted line
shape I3(q) given in Eq. (33). The fitting parameters con-
sisted of the scattering amplitude So and position
[h, (k, r),0] of each peak, the exponent gk „and the ratio
(rc, /rc„)'".

B. Experimental results and discussions

At temperatures well above T„we have observed con-
siderable changes in the line shapes of the incommensu-
rate solid phase relative to those observed in the commens-
urate phase. In the commensurate phase, the peaks are
all, to a good approximation, resolution-limited Gauss-
ians; in the incommensurate phase the scattering in the
wings increases dramatically with increasing temperature.
The scattering in the wings is larger for the higher incom-
mensurability peaks. Also, as the temperature increases,
the peak intensity decreases faster for the higher incom-
mensurability peaks. Figures 18(a) and 18(b) show the line
shapes for the modulation peaks [0,(4, 1),0] and [0,(6,2),0],
respectively, at various temperatures. The solid lines are
the results of least-squares fits to the power-law line
shapes convoluted with the instrumental resolution
(dashed line), as described previously. The least-squares
fits yield X values less than 2. In each scan, the flat por-
tions of the Gaussian resolution-limited curves indicate
the background levels obtained from the commensurate
phase. The value of the fitting parameter gk „ is given for
each temperature in Fig. 18.

Although gI, „depends both on the order of the peak
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and the temperature, we find that the parameter
(K~/K„) '~ remains constant within the error at
0.22+0.02 for all the lines analyzed. Figure 19 shows the
value of rI6 2 as a function of temperature for the modula-
tion peaks Br[0,(6,2),0], Br[1,(1,0),0], and Br[0,(4,1),0].
Below 371 K, the g values for [0,(4, 1),0] are not shown in
Fig. 19; because these q values depend strongly on the
background subtraction, they are not reliable. The accura-
cy of g is about 20%. As shown in Fig. 19, the rI value is
almost a constant in the temperature range 345 & T& 365
K, but g starts to increase very rapidly as we approach the

VI. MELTING OF THE Br2 LAYER

To probe the nature of the melting of the bromine layer
we have studied the intensities, line shapes, and linewidths
of the various peaks close to the melting transition. On
the fluid side of the transition we expect a Lorentzian
scattering profile, corresponding to the exponential decay
of the positional correlations in the intercalate layer.
Then the intrinsic line shape is an anisotropic Lorentzian,

M
I+/„'(q„—hp) +g»(q» —ko)'

(34)

where g„and g» are the correlation lengths in the q„and
q~ directions, respectively. The intrinsic line shape is con-
voluted with the resolution function R ( q —q ') and
corrected for the form factor and the background scatter-
ing to compare with the experimental line shapes as
described in detail in Sec. VA. The scans taken in the q
and q» directions for a peak were analyzed using least-
squares fits to the predicted line shapes at the same time.
The fitting parameters consisted of the amplitude M, the
position [h, (k, r),0] of the peak, and the correlation
lengths g„and g».

The line-shape parameters exhibit dramatic changes
around the melting temperature. The peak intensity of
the Br[0,(4,1)0] peak decreases rapidly between 372 and
374 K as shown in Fig. 20(a). The intensity is reversible
upon heating and cooling within the error. It is of signifi-
cance to note that the intensity of the Br[0,(4,1),0] peak
remains almost constant in the temperature range
343 & T& 372 K. Also shown in Fig. 20(a) is the peak in-
tensity of the Br(2,0,0) peak as a function of temperature.
It is important to emphasize that the intensity of the
Br(2,0,0) peak remains constant through the melting tran-
sition. Since almost —, of the Br(2,0,0) intensity comes
from Br2 molecules, this peak also should exhibit a
dramatic decrease similar to the Br[0,(4,1),0] peak at the
melting temperature; therefore the absence of a discon-
tinuity in the Br(2,0,0) intensity suggests a melting into an
anisotropic fluid. The diffuse scattering at the point
(0.005, 1.455,0) A ' close to the Br[0,(4,1),0] peak is

melting temperature T . The increase in q close to T
may be understood qualitatively by noting that the elastic
constants K and Ez are renormalized to smaller values
near melting, thereby yielding larger g. Well below T
for d =7, the value predicted for r1 [0,(4,1),0] is

gG ——2/d =0.04. Thus the formula of Eq. (28b) with

rj —(r —2k/7) predicts a value of 0.16 for both
rI[0,(6,2),0] and g[1,(1,0),0]. As may be seen in Fig. 19
this agrees within the errors with the best-fit values. This
overall agreement is certainly very suggestive, although we
have by no means demonstrated the uniqueness of this
description. It is of interest to note that
rI[0,(4, 1),0]=0.33+0.07 at the melting transition tempera-
ture T =373.41 K, which will be discussed in the next
section. Perhaps coincidentally this g value is close to the
value of —,

' predicted by Kosterlitz at the dislocation-
mediated melting temperature.
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shown in Fig. 20(b) as a function of temperature. The dif-
fuse scattering is proportional to the wave-vector-
dependent susceptibility and exhibits a maximum at
T~ =373.41+0.01 K due to critical fluctuations. We have
tentatively identified T as the melting transition tem-

perature; this is consistent with the previous measure-
ments. ""

The linewidth is observed to increase rapidly and con-
tinuously above T, indicative of decreasing correlation
lengths and a solid-fluid transition. Figures 21(a) and
21(b) show the scans through the Br[0,(4, 1),0] peak in the
q„and qz directions, respectively, at various temperatures
close to T . The solid lines are the result of least-squares
fits to anisotropic Lorentzian line shapes by using both
the q„and q~ scans taken at the same temperature.
Lorentzian line shapes describe the data well above T as
expected for a fluid phase. The line shapes for the
Br(0,4,0) peak are described equally well by power-law
singularities and Lorentzian profiles in the temperature
range 373.1 & T& 373.5 K. However, just below
T =373.41 K the correlation length of the Lorentzian
line shape becomes larger than 4000 A, and therefore it is
probably more appropriate to describe this region as solid-
like.

The best-fit parameters to a Lorentzian line shape are
shown in Fig. 22 as a function of temperature in the tem-
perature range 373.2& T&374.1 K. Fitting of Lorentzi-
ans to the Br[0,(4, 1),0] fluid peaks has produced different
correlation lengths g„and g» for the sevenfold and the
V 3-fold directions, respectively, as shown in Fig. 22(b).
Specifically at T, g is about 2.5 times larger than g».
The ratio g„/g» shown in Fig. 22(c) decreases continuous-
ly with increasing temperature; indeed, around 373.8 K
this ratio drops below one, exhibiting opposite anisotropy
from that very near Tm. This apparent crossover in the
anisotropy is suggestive but not conclusive, because the
background subtraction may introduce large errors in the
determination of the small correlation lengths. Further
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VII. SUMMARY AND CONCLUSIONS

In this paper we have reported an extensive x-ray
scattering study of the intercalation process, intercalant
structure, and the intercalant melting and commensurate-
incommensurate transitions in stage-4 bromine-inter-
calated graphite C28Brp. The intercalation process itself
and the intercalant structure show a number of unexpect-
ed features. For single-crystal Kish graphite at room tem-
perature in equilibrium with a bromine vapor of 57 Torr,
the intercalation is initiated only after approximately 5.5 h
and is completed after 14 h; during the entire intercalation
process the bromine island size exceeds 2000 A. One of
the most dramatic results is that the material remains of
very high quality even after intercalation; in particular,

work with a more intense x-ray source is needed to
characterize this novel behavior more clearly. It is clear,
nevertheless, that the anomalous behavior both in the
Bragg peak intensities and in the anisotropy of the corre-
lation lengths suggests the existence of an anisotropic
melting in the 2D bromine layers. This raises the exciting
possibility that the "fluid" phase may actually be a 2D
realization of a smectic liquid crystal as predicted theoreti-
cally. However, more complete high-resolution mea-
surements are required to establish this identification de-
finitively.

It should also be noted that in this system dislocations
involve seven domain walls annihilating at a point. Thus
the characteristic length for a single dislocation is about
900 A. It is therefore not at all clear that melting theories
based on the unbinding of pairs of dislocations due to
screening have any relevance to this system which can
contain at most 10 dislocations in all, in a 1-pm particle.
Thus it may be necessary to develop an alternative melting
theory to describe this system.

the intercalated graphite in-plane mosaicity is less than
0.05'. In addition, the bromine domain size exceeds 1 pm
in both the commensurate and incommensurate phases.
I'hese large sizes, in turn, have made possible quite de-
tailed studies of the intercalate phase transitions.

At room temperature, the Br2 molecules form a cen-
tered (V3&&7) commensurate superlattice structure with
the sevenfold axis oriented along the graphite [110]direc-
tion; each unit cell contains four Br2 molecules. In the
sample as a whole, three sets of equivalent domains are
observed corresponding to the three [110] directions.
From fits to eight peak intensities we deduce an in-plane
structure quite close to that suggested by Eeles and Turn-
bull and others. A much more complete study is re-
quired to obtain precise positional and vibrational parame-
ters. The Br2 superlattice peaks take the form of rods in
the c direction. At room temperature the rods exhibit a
30% sinusoidal modulation, indicating that nearest-
neighbor Br2 planes are partially correlated. Again, more
detailed studies are required to establish precisely the ex-
plicit form of these correlations. When the temperature is
raised to 325 K the modulation vanishes completely and
the Br2 scattering thence takes the form of true Bragg
rods. This indicates that at these higher temperatures the
intercalate layers are completely uncorrelated and the Br2
layers form essentially independent 2D systems.

The 8r2 layers exhibit a particularly interesting
commensurate-incommensurate transition. The graphite
plane is very rigid, and therefore the in-plane unit cell
does not change much with varying temperature. The Br2
plane, on the other hand, is very soft and anharmonic.
The concomitant difference in thermal expansion causes
the Br2 planes to undergo a CIT with increasing tempera-
ture; the scattering in the incommensurate phase demon-
strates clearly that the Br2 molecules predominantly occu-
py commensurate sites with the thermal expansion being
accommodated by shifts from one sublattice to another in
the sevenfold direction. This, in turn, means that the CIT
and the incommensurate phase in general should be well
described by a domain-wall model.

A detailed theory for a 1D CIT in a 2D lattice has been
given by Pokrovsky and Talapov. ' They predict that the
domain-wall density and hence the incommensurability
should initially rise as (T —Tc)'~ but should saturate as
the domain-wall density increases. We observe just this
behavior. It is found, in addition, that the incommensu-
rate peak position and intensities are well described by a
sharp-domain-wall model with domain-wall widths less
than one unit cell and with a displacement at the ~alls of
2b/7, where b is the lattice constant in the sevenfold direc-
tion.

Because of the continuous symmetry in the incommens-
urate phase the Br[h, (k, r),0] peaks with r —2k/7&0 are
expected to have the form of power-law singularities rath-
er than true Bragg peaks. We find that the Bragg profiles
in the incommensurate phase do indeed exhibit extended
tails. The data thence may be fitted quite well to the
power-law form in Eq. (27). This description, however, is
by no means unique so that the fits can only be considered
as a demonstration of consistency. It is interesting to note
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that (IC~/IC„)'~ is a constant within the error for all the
lines analyzed, and further, g[0,(6,2),0] and g[1,(1,0),0]
both agree with the prediction of Schultz. A high-
resolution, high-intensity study of the Bragg profiles in
the incommensurate phase using synchrotron radiation
would be invaluable to probe these power-law singularity
effects further.

The Br2 layers exhibit a particularly unusual melting
transition. We observe that the profiles evolve continu-
ously from a power-law to a Lorentzian form suggesting a
second-order transition. On the solid side of T
=373.41+0.10 K, the gk, values are observed to increase
drastically as T is approached. In most anisotropic sys-
tems, the length ratio is a constant; however, for the Br2
intercalant fluid the length ratio in the sevenfold and v 3
directions evolves from approximately 3 very near T to
&1 at a temperature 0.4 K above T . In addition, the
Br(2,0,0) peak, which involves contributions from both the
Br2 and the graphite, exhibits no measurable change
through T~; for melting into a 2D fluid this peak should
have exhibited a dramatic decrease in intensity (-75%).
This suggests that in the fluid phase, substantial order has
been maintained in the v 3 direction, that is, the fluid is
actually a 2D analog of a 3D smectic liquid crystal. The
2D smectic, of course, is stabilized by the graphite. Melt-
ing of a 2D anisotropic solid into a 2D smectic has been
predicted by Ostlund and Halperin. Our study of the
Br2 melting was seriously inhibited by both intensity and
resolution limitations. A much more detailed study, again
using synchrotron techniques, is required before this novel

melting transition will have been properly characterized.
The initial results, nevertheless, are quite enticing.

Clearly, C28Brz exhibits unexpectedly rich behavior.
The most important feature is that this stage-4 material
exhibits almost ideal 2D behavior in both the commensu-
rate and incommensurate phases. Studies of lower-stage
materials to observe possible 3D effects would be most in-
teresting. Similarly high-resolution, high-intensity mea-
surements of the incommensurate phase and the melting
transition in C2sBr2 are required to elucidate fully these
novel phenomena. Finally, extensions of these studies to
lower temperatures to observe a possible CIT due to
thermal contraction would also be quite interesting.
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