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Effect of nonmagnetic impurities on antiferromagnetic superconductors
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By the treatment of the electron-impurity scattering exactly by means of a t matrix, the effect of
nonmagnetic impurities on antiferromagnetic superconductors has been investigated in detail. Our
study is an extension of the recent work of Nass, Levin, and Grest to the strong-scattering case.
The appearance of bound states due to impurities for H& ~ 6 is discussed (here H& is the antifer-
romagnetic molecular field and 6 is the superconducting order parameter). Investigating the densi-
ty of states [X(co)], we show the growth of the "impurity band" with the increase in impurity con-
centration. The "dirty"-limit behavior of the system and the condition for the appearance of the
gaplessness are discussed analytically.

I. INTRODUCTION

Recently, there has been considerable interest in the
problem of coexistence of antiferromagnetism and super-
conductivity. ' The mean-field theory of antiferromagnet-
ic superconductors (AFS) has been developed by introduc-
ing the antiferromagnetic (AF) molecular field into the
Bardeen-Cooper-Schrieffer (BCS) model. The effect of
impurities on AFS has been studied by Nass, Levin, and
Grest (NLG).

In Ref. 5, the electron-impurity scattering is considered
by using the lowest-order Born-approximation theory of
Abrikosov and Gor'kov (AG), and NLG have pointed out
some similarities in the behavior of nonmagnetic impuri-
ties in AFS with that of magnetic impurities in the usual
superconductors. For the latter case, the works of Shiba
and Rusinov have shown that an exact treatment of the
electron-impurity scattering brings about remarkable
changes in the properties of the BCS superconductors.
Thus it is important to investigate the influence of non-
magnetic impurities on AFS by considering the scattering
of the conduction electrons from the impurities exactly.
Such a study has been carried out in the present paper.
For the single-impurity problem, we discuss the appear-
ance of the impurity bound states for H& & 4 (where 0&
is an AF molecular field and 6 is a superconducting order
parameter). Such bound states in the coexistence region of
spin-density wave and superconductivity in highly aniso-
tropic organic conductors were considered by Machida. '

For the finite-concentration problem, we show the growth
of the "impurity band" with the increase in impurity con-
centration. The appearance and the disappearance of the
gaplessness are also discussed. We give an analytical in-
vestigation of the interesting behavior of the impurity-
concentration dependence which was demonstrated nu-
merically by NLCx.

The plan of the paper is as follows. In Sec. II we out-
line the general formalism. The single-impurity problem

is discussed in Sec. III. We consider the problem of the
finite impurity concentration in Sec. IV, and obtain the
so-called u„equation. In Sec. V we calculate the density
of states as a function of the impurity concentration. Sec-
tion VI is devoted to summary and discussion. Some of
the detailed calculations are given in Appendixes A and B.

II. FORMALISM

The mean-field Hamiltonian for an AFS is

—& g (Ct-„,&t -, +H. c. )

k, a k

(tr, ) p(C- - C +H.c.),Q k ( O ) p
k + Q, ~ k, P

where e is the single-particle energy measured from the

Fermi level, C- is the creation operator for the conduc-k, a
tion electron, a and 13 are spin indices, o, is a Pauli ma-
trix, 5 is the superconducting order parameter, H- is the

Q
AF molecular field (considered temperature independent
in this paper), Q is the wave vector characterizing the AF
order, and k~~ is the component of the wave vector k
parallel to Q. The superconducting order parameter b, is
determined self-consistently by

a=gg(c „c„),
k

where g is the BCS coupling constant and the angular
brackets denote the thermal average. We have taken 6 as
real and positive.

We introduce the finite-temperature Green's function

G „„,(.) = —
& ~,~y„( )y'„,(o)~& (2.3)

having an eight-dimensional base with
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pt-„=(c', ,c',c,c,c' c',c,ck k, t' —k, g' k, t' —k, g k+ Q, & —k —Q, l' k+ Q, t' —k —Q, g

and T, as the ordering operator for the imaginary time r.
The unperturbed Green's function is given by

G ~ (t cong ) = (2 copy
—&gp3 —&p &&pi —+p2cr2+ ~~ rip3cr3)

(2.4)

(2.5)

with

1

2 (e~+t~ ~ )
k k+Q (2.6)

1

Eg =
2 (E~ e'~ ~—),k+ Q

(2.7)

where co„ is the Matsubara frequency [i.e., co„=rrT(2n + 1), with T as temperature and n as an integer]. Further, cr;, p;,
and r; (i =1,2, 3) are the 2&(2 Pauli matrices operating on the ordinary spin states, the electron-hole states, and the
positive- and negative-momentum states, respectively. A direct product such as ~2p2o.

&
means

2X2 2X2 2X2 ~1

04X4 —lp2 &1
~2P2~1 =

lp2 O1 04X4

2X2 2X2

02X2 O.
1

.—~1 o2X2

o2X2

2X2 2X2

2X2 2X2.

(2.8)

The interaction of a conduction electron with a non-
magnetic impurity is described by the Hamiltonian

I

function for the single-impurity case is obtained as

~; p
———g f„UQ-, ,

1

k, k'

with

U = ( Vi + V2r~ )p2,

(2.9)

(2.10)

G-„-„,(ico„)=G „(ico„+--,+G -(ico„)t(ico„)G-, (i

where the t matrix t (i co„) is given by

t(ico„)=(1—UF ) U,

(3.1)

(3.2)

where Vi (V2) is the scattering potential with small (large)
momentum transfer. The important role played by V2 in
the similar problem of impurities in charge-density-wave
systems is well known. "'

Although the four-dimensional base is enough for treat-
ing nonmagnetic impurities in AFS, we use the 8)& 8 nota-
tion for application to the magnetic impurity problem. It
should be noted that in the present notation, the rnornen-

tum k is restricted so that k
~ ~

&0 unless specified other-
wise.

III. SINGLE-IMPURITY PROBLEM

Since this problem has been considered by Machida' in
connection with the coexistence of spin-density wave and
superconductivity in organic conductors, we only sketch it
here briefly for use in later sections.

With the use of the definition given in Eq. (2.3) and the
Hamiltonians given in Eqs. (2.1) and (2.9), the Green's

I

with

F (ico„)=—gG-(ico„) .
k

(3.3)

In the above we include all terms with respect to V1 and
the even-order terms with respect to V2. The interaction
will be assumed short ranged and we set V1 ——V2 ——V at
the end of the calculation.

The general expression for F (ico„) obtained by using
Eqs. (3.3) and (2.5) is given in Eq. (A3) of Appendix A.
For a general three-dimensional (3D) electron band, the
rnornentum sum can only be evaluated numerically. In or-
der to bring out the essential new results of the present
problem, we assume a one-dimensional (1D) electron band
which satisfies the nesting condition Ek+g= —t"k for k
near —kF, that is, e, =0. The extension to the 3D case is
discussed in Sec. VI. Now Eq. (A3) gives

rTNO i cog) ( 1 + r p ii)c+ ri5+(p2c72 7 ipicr3) i co„(1 —r~p&cr& ) +b (p2cr2+ rip3cr3)

4 ( 2+g2 )1/2 (~2+~' )'" (3.4)

with

(3.5)

where No is the density of single-particle states at the Fer-
mi level in the normal metal.

I

An explicit expression for t (ico„) is not given here as we
only discuss the existence of the bound states within the
BCS gap. We obtain the poles of the t matrix for the real
frequency co by solving the equation

—co
+ + 2 2 1/2 2 2 1/2(b+ —co ) (b, —co )

(3.6)
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where w1th

(3.7) $=4U /(1~V ) (3.9)

co~ =(Hg —6)—2= 2 [4(1—g)b, ~g Hg]'
2(l —g)

Hg Hg,2(1—g)
(3.8)

We find that bound states due to the impurity exist if and
only if Hg & 6, and get the energy of bound states +coral as The variable g characterizes the strength of the electron-

impurity scattering and takes the values between 0 and 1.
When $~0, co~ ~(Hg b). Fu—rther, when g~ 1, coal ~0
In Fig. 1, the position of bound states is shown for /=0. 5
(curve a), 0.8 (curve b), and 0.95 (curve c). The cross-
hatched area in the figure represents the continuum of
states with peaks at co =b, +Hg and

~

b, —Hg
~

.

IV. FINITE-CONCENTRATION PRQBLEM

In this section we consider the finite-impurity-concentration problem. %'e assume that the impurities are randomly
distributed and their concentration n; is low enough so that the impurity-impurity interaction is negligible. The Green s
function averaged over the impurity positions is connected with the self-energy Xk(i co„) by

Gk(ico„)=G--, (ico„)=[Gk(ico„) ' —Xk(ico„)] (4.1)

The self-energy is taken as the t matrix, Eq. (3.2), times the impurity concentration n;, with Gk replaced by Gk. This
procedure is the same as that used in the problem of magnetic impurities in usual superconductors. We make the an-
satz that the Green's function is given by

—1Gk(l con ) = (1co& —Ekr3P3 —i3 +P2cr2+1 A~ rlpl o 1 +Hgn rlp3o 3)
1 1

+( I+rlpl~l )+~k(r3P3 r2P2crl )+~ /( P2O2 rlp3cr3)]2 X„~

+ I &co. (1 &1pic-rl )+—&k(&+3+&2 P2~1 )+~n (P2cr2+ +-1p3cr3)] (4.2)

with

-2 2 2+n+ ~n++~k+~n+ ~

~n+ =~n+&n ~

A„P——6n+Hg„.
Then the self-energy Xk(ico„) is calculated as

Xk(ico„)=X'"(ico„)+X' '(ico„)

(4.3)

(4.4)

(4.5)

(4.6)

(ico„)=n; (x —iyrlcr3) (4.7)

2
~(2) . U . n~ ~n—
X (ico )= n; i x-

+
+g

+
—P202 X +

+

—V&P30 3 X
A+

Here we have used

~n~+ f 7 &P~G ] X
+

+y +

(4.8)
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2 ~n+~n —+ n+~n—
x =1+v

+

2 ~n —~n+ ~n+ ~n-
y=v

(4.10)

(4.11)

4 2 ~n+~n —+~n+~n-D=x +y =1+v +2v j+k (4.12)

In Eq. (4.9), the branch of the square root of A, + is chosen such that the real part of this function is positive. The self-
energy part X'"(ice„) given in Eq. (4.7) contains odd-order terms with respect to u and is related to the shift of the chem-
ical potential or the deviation from the complete nesting. This shift has an interesting effect on the property of AFS. '

This problem, however, will be left for a separate investigation, so that we discard X"'(ice„)hereafter.
Using Eqs. (4.1), (4.6), and (4.8), we can set up the self-consistency equations for co„+ and b,„+,

+i v
co„+—co„= (xylo„~+++„p) ~

mN DA,

Elj 2

(xb,„++yG„~) .
mXp D A~

Defining u„+ ——co„+/6„+, Eqs. (4.13) and (4.14) can be combined to give

1 (u„+—u„)(1+u„+)'

(2—g)(l+u„+ )'~ (1+u„)'~ +g(1+u„+u„)

(4.13)

(4.14)

(4.15)

where

2n;v

r~ (1+u ) ~No (1+u )
(4.16)

1 1

p (&gg ++&8 —)t uB 2 (~n+ un —)

Expanding Eq. (4.15) in powers of uz, we have

riHg /b," =u„ 1 — 2, ~~ +O(r)Hg) .
(1+u~ )'

(4.17)

(4.18)

Equation (4.15) is our generalized equation for u„+ and
Eq. (3.1) of Ref. 5 is retrieved from it by setting (=0 and
replacing ~& by ~&.

Now we comment on the "dirty"-limit behavior of the
system. We follow a method similar to the one used by
Fulde and Maki' while considering the spin-orbit scatter-
ing in usual superconductors in a magnetic field. We in-
troduce two quantities uz, uz defined by

This equation has the same structure as the one obtained
in Ref. 6 for the case of magnetic impurities in the usual
superconductors. For the present case of the AFS in the
short mean-free-path limit, the effective pair-breaking pa-
rameter a, is given by

a, =r)Hg/6 . (4.19)

In deriving Eq. (4.18) one must pay special attention to
the branch of the square root. In the extremely dirty lim-
it, a, ~O, and Eq. (4.18) gives the BCS result.

2.0

I.O

I.O 2.0
Hq

FIG. 1. Position of bound states due to single nonmagnetic
impurity for /=0. 5 (curve a), 0.8 (curve b), and 0.95 (curve c).
Cross-hatched area shows the continuum of states, which has
two peaks at co=4+H& (line I) and

~

4 H&
~

(line II). —

V. DENSITY OF STATES

Several thermodynamic and transport properties can be
calculated by using the u„equation (4.15). Here we con-
sider the superconducting density of states N(co), which is
given by

Xp Q+ Q
N(co) = Im 2»2 + 2»2, (5.1)

(1—u+ )'~ (1—u )'~

where Im stands for the imaginary part of the function.
Here u+ is the analytically continued value of u„+ and it
satisfies an equation obtained from Eq. (4.15) by replacing
iu„+—+u+ and ice„~co. In the present paper we consider
the order parameter 6 as given and scale various quanti-
ties with respect to h.

The density of states is qualitatively different for the
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cases H& & anH 6 d H ~ A. As an example of the former
case, the %(co) for H& ——0.4b„g=O, 0.5, and 1.0, an
(r,h) '=0.2, 1.0, and 5.0, respectively, are shown in Figs.
2(a)—2(c). The g dependence in various figures should be
noted. The large-concentration behavior shown in Fig.
2(c) is easily understood by the dirty-limit analysis given
at the end of the last section.

Now we consider the case H& )6 where the impurity
bound states arise. In Fig. 3 we show the density of states
X(co) for H~ ——2. 5b, . The arrow indicates the position of

3.0

1.0

a I

N(~)
Np

I.O-

2.0 5.00 tl.o Cal

FIG. 3. Impurity concentration dependence of the density oof
states X(co) for 0&=2.55 and /=0. 8. Value of (~~6) ' is tak-
en as 0.05 (curve a), 0.1 (curve b), 0.2 (curve c), 0.5 (curve d), and
1.0 (curve e). The arrow indicates the position of one-impurity
bound state.

3.0

N((u)

Np

I.O-

0

3.0

N(")
Np

2.0-

I.O

I

IO

the single-impurity bound state. One may note that the
impurity band grows and that the gaplessness appears as
the impurity concentration increases. It may be men-
tioned that for a much larger impurity concentration the
X(co) is governed by Eq. (4.18). Thus for such concentra-
tions the gap would appear again and the overall behavior
of the density of states will become AG-like (ultimately
Bcs-like). This behavior has been numerically demon-
strated for a quasi-30 model by NLG within the lowest-
order Born approximation (Fig. 6 of Ref. 5).

Next we consider the condition for the appearance of
the gaplessness in more detail. We note that from the
analytical properties of the Green's function, the real part
of u+ is zero at co=0. Then the density of states at ~=
becomes finite only if the imaginary part of u+ is
nonzero. Investigating Eq. (4.15), we find that the condi-
tion for a finite density of states at co=0 is

H —5 jI Hg —6
1 —g( )(5.2

g2

for H~ & A. Of course, there is no possibility of the gap-
lessness, for H~ (6, which was already pointed out by
NLG. The derivation of the condition (5.2) is given in
Appendix B. In Fig. 4 we show the condition for the gap-
lessness graphically.

VI. SUMMARY AND DISCUSSION

I.O-

I.O 2.0

FIG. 2. (a) Density of states X(co) for H~ ——H =0.46
(r&h) '=0.2, and /=0 (curve a), 0.5 (curve b), and 1.0 (curve c).
Same values of FI& and g are used in (b) and (c). (b) X(co) for
(7 &6) '=1.0. (c) N(co) for (~~6) '=5.0.

We have studied the effect of nonmagnetic impurities
on AF superconductors by considering the electron-
impurity scattering exactly. The bound states due to non-
magnetic impurities appear when H~ ~ . gThe rowth of
the impurity band and the existence of gaplessness with
the increase in the impurity concentration have been in-
vestigated. The dirty-limit behavior of the system has
been analyzed. We have also studied the condition for the
gaplessness analytica11y.

Now we comment on the magnitudes of H~ and A. In
a pure AFS with a 1D electron band at T =0 K, the coex-
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3.0

2.0-

1.0-

0 2.0 5.0

isting state becomes unstable for HQ ~ Ap, where Ap is the
zero-temperature superconducting order parameter in the
absence of Hg. However, for temperatures near the su-
perconducting transition temperature, 4 becomes small
and Hg/6 & 1 is permitted. The latter condition should
also apply in the present case where 6 depends on the
temperature, the impurity concentration, and HQ. In the
present paper we have kept HQ as a constant which is
especially valid for materials having a superconducting

FIG. 4. Condition for gaplessness, Eq. (5.2). Curve a
represents the upper bound (Hg —5 )/6 for (v~5) '. Values of
lower bound (H& —b, )(1—g)/IIah for /=0. 0, 0.5, and 1.0 are
denoted by curves b, c, and d, respectively.

transition temperature below the AF ordering tempera-
ture. '

Nass, Levin, and Grest have employed the quasi-3D
model in their study. In this model, the Fermi surface is
divided into two regions designated I and II. It is as-
sumed that in region I the nesting condition is satisfied
and Hg is important. In region II the effects of Hg are
neglected. Machida' has used essentially the same ap-
proximation for treating highly anisotropic materials.
The extension of the present work to the above-mentioned
scheme is straightforward. The pair breaking due to non-
magnetic impurities only belongs to region I. Therefore,
the main results of the present study, which are the ex-
istence of impurity bands and the appearance and disap-
pearance of gaplessness in AFS, will be valid also in the
quasi-3D model. We also note that our mean-field Hamil-
tonian, Eq. (2.1), has a 1D character in itself because we

consider only one characteristic wave vector Q.
Next we comment briefly on the deviation from the

complete nesting condition. Now e, defined in Eq. (2.6) is
nonzero and the renormalized Green's function has a form

Gk(&~n ) (i~n ~snp3 ~a 3p3 ~np2rr2

+ l 0 r&np&cT& +Hgnr &P3(73+gsnr)o'3) ' . (6.1)

The necessity of esn and gsn is understood by noting the
structure of F (iso„) given in Appendix A. The self-
consistent calculation in this case is quite involved and is
left to a planned future study.
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APPENDIX A: CALCULATION OF I' (i co„)

Using Eq. (2.5) for the unperturbed Green's function G -(i con), we obtain
k

G-(leon ) = —
o I (tcon+&sp3+&, r3P3+Ap2o2 Hgr~p3o—3)(ro„+&,+&, +b, +Hg —2&s&nr3)
n

+ [(icon +esp3+ enr3P3+ b p2o 2)r)p3cr3 Hg ]2(esHgp3+—b Hgp2o 2) I, (A 1)

where

1.„=(co„+e,+e, +6 +Hg) 4(e,e, +e,Hg+—b, Hg) .

Then F (icon), Eq. (3.3), is calculated as

p . 1 1F (ice„)=——g o (in„a~+@,a2P3+ba3P2cr2 Hga4r~p3a3 —ice„aqr~p~o~+—e,a6r~O3), '

nk

where

(A2)

(A3)

] ~n+ s+ a+~ +HQ 2 ~n+~s a+~ Q

a3 ——~„+e,+e +6 —HQ, a4 ——co„—e, +e —6 +HQ, a5 ——2bHQ, a6 ——2ico„HQ .

In deriving Eq. (A3), we have considered the symmetry of e, .
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APPENDIX B: CONDITION FOR GAPLESSNESS

For the real frequency co, the functions u+ satisfy the equation

1 (u+ —u )(1—u+ )'

(2—g)(1 —u+ )' (1—u )' +g(1 —u+u )

In the above, the branch of the square root should be chosen such that Im[u+ /(1 —u+ )'i ] is not negative.
At co =0, the real part of u+ is zero because of the symmetry condition u (co)= —u*( —co). Thus we set

u+(co=0) =ipiu|,
u (co=0)=ip2u2,

where u1 2 is real and nonnegative, and p1 2 ——+1. The coupled equations for u1 and u2 are

u16+ u26 Plu2 P2u1

(1+u, )' (1+uz)' ii (2—g)(1+ui)' (1+uz)'~ +g(pip2+uiu2)

(81)

(82)

(83)

(84)

1
Q1 ( (Q2,

71
(85)

In (84), the positive branch is taken for the square root.
For H& (6 one can easily show that the only permitted

solution is u1 ——u2 ——0, which indicates no possibility of
gaplessness. (On the other hand, the nontrivial solution
with u i&0 and u2&0 is possible for H& )A. After some
algebra, we obtain the condition for the nontrivial solution
as

Hg —62 2

CX2 =
Q2

(87)

It should be noted that p1 ——+ 1 for all the regions
ai &(rlh) '&a2. However, p2 is + 1 for
a&&(r&h) '&a3 and p2 is —1 for a3&(rih) '&a2,
where a3 is given by

with

(86)

(Hg —b, )[Hg + (1—g)b, ]
a(H~S)'" (88)
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