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Decay of the supercurrent in tunnel junctions
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The current state in a Josephson junction is metastable. Thermal and quantum fluctuations de-
stroy such a state and make its lifetime finite. By lowering the temperature the role of quantum
fluctuations increases. If there is a gap in the excitation spectrum, then for quantum tunneling
high-frequency processes (pair decay) are essential. Quantum tunneling is connected with a change
of a large amount of electron states.

I. INTRODUCTION

A current state of a Josephson junction corresponds to a
minimum of the free energy U(y) as a function of the
phase difference between the two superconductors. Such
minima are divided by a potential barrier. The lifetime of
such a state is finite. At not too low temperatures such a
current state decays due to thermal fluctuations. In this
case the lifetime is proportional to exp(b, U/T) [where hU
is the height of the potential barrier U(y)].' At low
temperature the quantum tunneling through the barrier
becomes important. For a sufficiently large capacitance
of the junction the time of tunneling through the barrier is
large. In this case it is possible to use the adiabatic ap-
proximation for the potential U(y) and the tunneling
probability can be found by usual quantum-mechanical
formulas. In several experiments ' a junction with a
small capacitance was used. Quantum-mechanical tunnel-
ing in such a case is defined not only by one coordinate
(phase difference y), but by a large number of electron
states. In this case both real and virtual processes are im-
portant.

In this work it is found that, after averaging over the
electron states, the effective potential is a retarded poten-
tial. This potential is found and the problem of
quantum-mechanical tunneling through such a retarded
potential is solved. If the junction is shunted by a normal
resistance or the superconductors have a large concentra-
tion of paramagnetic impurities then electron excited
states with small energies are important and they lead to
friction in classically allowed regions. The problem of
quantum-mechanical tunneling in a system with friction
was solved phenomenologically by Caldeira and Leggett.
Microscopic extension of the effective action was made in
a work by Ambegaokar et al. , but in this work the statist-
ical sum or a transitional amplitude was averaged over the
electron states. The probability is not equal to the
modulus square of such averaged amplitude. In this paper
we have found the transition probability averaged over the
electron states.

For superconductors with large concentrations of
paramagnetic impurities or in the case in which the junc-
tion is shunted by a normal resistor, the result obtained
here coincides with the phenomenolgical result of Ref. 6
when a current is near its critical value.

For superconductors with a gap in the excitation spec-
trum, the resistance for a quasiparticle current at low tem-
perature is exponentially large; therefore, the nonadiabat-
ic tunnel processes in this case are connected to the virtual
decay of pairs. The reader is also referred to the previous
results obtained by Widom et aI.

II. AVERAGE OF THE TRANSITION PROBABILITY
ON THE ELECTRON STATES

A Josephson junction can be described by the Hamil-
tonian

H=HL+Htt+HT+Q l2C,

where HI, Hz are the Hamiltonians of the left and right
superconductors, C is the junction capacitance

1
H, = fd'ryLt, (r) —,—p &L, (r)

2m Br2

2 fd'r PI. (r)PL, ~(r)gt. ~(r)QI.

p~ (r) is the annihilation operator for electrons with spin
0,

H, =fd'r, d'r, [T(r~, r~)QLn(rL)WRcr(rR)+c c1''
(3)

g =g, g~, gt =e fd'r y, ~(r)q, (r),

C is the capacitance of the tunnel junction. If at a time
—T the system is in a state i then the probability to find
the system in a state f at t =0 is equal to

28 6281 1983 The American Physical Society



6282 A. I. LARKIN AND YU. N. OVCHINNIKOV

wf= I (@ I
~

I
@'&

I

'

S=exp —i f H(t)dt

has the form

Wf =fN(p(t) W[(p]exp i fdt
C By

2e

2

where b,L R are complex functions,

Heff HT V (t)+QV(t)+(HL )eff+(HR )eff h

(Hc).ff= «4c3 1 a'
2m Qr

+fd r[KL(r, t)([()L,(r)QL, (r)+c c ]. .

fd'r
I
bL (r, t)

I

' .

We are interested in the probability ]r]f which is aver-
aged over the initial and summed over the final electron
states. In the zero approximation on barrier transparency,
the functional integral over modulus

I
b

I
can be obtained

by WKB method. In this case the modulus
I

b,
I

is re-
placed by its equilibrium value which is independent of
time and coordinates. In the same approximation

eV(t) = a (t)
at

where (I[) is the phase difference between the two supercon-
ductors. As a result, we have a functional integral over
the phase (I[)(t), which, in the interaction representation,

We shall use the Habbard-Stratonowich procedure to el-
iminate the term f in the Hamiltonian. In analogy with
the work for the statistical sum, we obtain, for S' matrix,

h'

S=f&'b,LM'b, RWVTexp —i f H,ff(t)dt

lp[p]= ((f;exp —i JIf(h)C( )) .

Here the double angular brackets indicate the averaging
over the states of the Hamiltonian (Hf )eff+(HR)eff. The
integral stands or integration over the Keldish con-
tour, that is, going from ( —T to 0) and back from (0
to —T). T, is the ordering operator on this contour. ' In
Refs. 11 and 12 the transition probability was written as a
function integral. In the problem of the Josephson junc-
tion in an external electrical field, ' the phase y(t) on the
two sides of the Keldish contour coincide. By taking into
account the small difference of these two values in the
classically permitted regions it is possible to obtain the
Langevin equation together with the correlation function
of random forces. ' A completely different picture arises
for the motion in the classical forbidden regions. Let us
call the phase value on the upper contour y](t) and on the
lower contour (p2(t). For small barrier transparency the
value W[y] is given by

lp[p] =exp ——
((T,f f ch c(,H (h)If (h, )))2

The averaging in formula (8) leads to the appearance of
the Green functions of the left and right superconductors
for zero barrier transparency. Therefore, the potential
eV(t)=BplBt leads just to a trivial phase factor. Separat-
ing this phase factor we obtain

ln(W[(Io])= f fg I T„„I I cos[(p(t) —(][)(t])](T,a„(t)a„(t]))(T,a„(t])a„(t))

—cos[q(t)+q(t])](T, a,(t)a„(t]))(T,a„(t])a„(t))Idt dt],

where the index v,p labels states in left and right superconductors, respectively. The average in formula (9) is made
without the potential V(t) using real values of the order parameters b,L R.

The Green functions in formula (9) depend only on the energy of v, ]M states and have a sharp maximum near the Fer-
mi surface. The matrix element

I T„ I
averaged over these states can be expressed in terms of the junction resistance in

the normal state. The sum over the indexes p, v in formula (9) leads to the Green function integrated with respect to the
energy g.

We divide the integration contour in two parts. For all the quantities laying on the upper (lower) contour we shall
write the subscript 1 (2). Then it follows

0»(W[q])=, ««y ( —1)'+ IIC;„(t—t, )cos[q, (t) —
qo (t, )]—L,,(t —t, )cos[q,.(t)+q (t, )]I .2R~e i,K =1,2

(10)
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In formula (10)

«k(t)=gk (t)gx ( —t»
L;k(t) =Fk '(t)F~; '( t),—

where

gk= fdgGik

G»(t, t, ) = i (T—p(t)g (t, ) ),
G»(t, t, )=i(g (t, )p(t)),
G»(t, t, ) = i (p(—t)g (t, )),
G»(t, t, )= i ( T—'g(t)p (t, ) ) .

(12)

Similar formulas determine the Gor'kov Green function
I'. The Green functions g;k are connected with the retard-
ed g, advanced g, and Keldish g functions by

g»=g =-,'[g +(g'+g')],
g» =g = —,

'
[g —(g'+g")1,

glz=g =
2 [g —(g' —g")]

g21 =g ' = l [g +(g '—g")] .

In thermal equilibrium the Keldish Green function g is

g (e) =tanh(e/2T)[g (e)—g"(e)] . (14)

Usually the Josephson junction is inserted in an electrical
circuit which fixes the total current through the junction.
For instance, large inductance at the external electrical
circuit can fix the current. In this case it is necessary to
add the magnetic energy WW /2 to the Hamiltonian (1).
The phase difference on the contact is connected with the
full magnetic flux. As a result, in the effective Hamiltoni-
an will appear an additional term —q&W/e. Then the
transition probability 8'f is

2
08'f= f&qvlWpzexp ln(W[p]) i f —dt g ( —1) l +—T K=1 2 2e . Bt e

III. TRANSITION TO IMAGINARY TIME

For a current value W lower than the critical one, the
Josephson junction can remain a long time in a metastable
state. Vfe shall suppose that in this time the system can
reach thermal equilibrium. In the following we confine
ourselves within the limit of very low temperatures: The
initial state i is a metastable state with minimum energy
e;„. For the sake of simplicity we put this energy equal
to zero.

In the classically permitted regions, each state corre-
sponds to a function y(t) which provides an extremum for
the integral in the exponent of formula (15). If for the
transition from i to f there is no extremal trajectory in
real time, then the probability of such a transition is ex-
ponentially small and determined by the trajectory in the
imaginary time. To find such a trajectory we shall contin-
ue the kernels K;k and I;~ in the complex plane in time.

For temperature equal to zero the Green functions g
and F have the following property: The function g & (t) is
an analytical function in the upper half-plane, while the
function g & (t) is analytical in the lower half-plane. The
Green function g (t) for t &0 coincides with the function

I

I

g & (t) and, for t &0, coincides with the function g & (t).
The Green function g(t) for t &0 coincides with g &(t)
and for t & 0 with g & (t). Therefore, the Green functions
g (t),g(t) must be continued separately from the value t & 0
and t &0. As a result of such continuation for the func-
tions g(r) and g(r) on the imaginary axis we obtain

g(r) =g(r)

= —sgnv g 6 —g 6 exp —6
2m

g ((r), r&0
g )(r), r &0.

The functions g and g coincide with the Matsubara Careen
functions in the limiting case of zero temperature. Analo-
gously for the Green function F on the imaginary axis we
obtain

F(7 ) = f " [F (e)—F (e)]exp( —e
~

r
i

)
2m

After such continuation the first term in formula (10) can
be written in the form

VT (pl(r) —(p;(rl)
dr dr lgL, (7 —7 l)gg (7 —7 l)sillZ~e' 2

0 pp(r) —ql(r )+ dr drlgL (7 7 l )gg (7 —rl )Sl—ll
oo 2

oo 0 y;(r) —q ~(rl)dr dr, gL (r r, )gz (r, —r)sin—
0 oo 2

0 oo q~(r) —y;(rl)dr drlgL, (r—rl)g~ (rl —r)sin—oo 0 2
(18)



6284 A. I. LARKIN AND YU. N. OVCHINNIKOV 28

The two functions q&~ q can be replaced by one function q&(r) coinciding with y& in the half-space (0, oo ) and with yz in
half-space ( —oo, 0). From formulas (10) and (16)—(18) for the probability W~ we obtain

Wf = f&-y(r)exp[ —A [p(r)] I,
Oo

A [q)(r)]= f dr p(r) ep——— dry[F1. (~—r))F~(r —r))cos[y(r)+y(r))]
O'7 e 2R~e

(19)

y(7) —y(r~)—
2gL (7 —7 i )gg ('7 1i )s—111

2

At zero temperature the system is in a state with the fixed
phase y for a long time. The nonlocality of interaction in
time is not essential in this case, and the energy of the ini-
tial state can be determined.

The energy ep in formula (19) can be found from the
condition that the energy in the initial state is zero. The
exact exponential transition probability S;. can be found
from the extremum of the functional A [y(r)],

its value in a normal metal. We believe that in a shunt no

gap exists in the excitation spectrum.
For currents near the critical one the phase changes in a

small region near the value m/4. For sufficiently large
capacitance the phase y changes slowly in comparison
with 6 . Therefore, in a first adiabatic approximation it
is possible to change y(r, ) in formula (19) by y(r). Then
the action A [y] is equal,

Wj=expI —A [y,„,(v)]I . (20)

Formula (20) is valid, provided A && I, i.e., if the current
W is not too close to the critical current W, .

The function y,„,(r) can be found from the following
equation:

Ap[y]= f dv. c a~

cos[2y(r)] —ep
2e

(25)

5A [q&(r)]
5y(r)

(21)
Near the critical current the minimum of the functional
(25) is obtained by the function y(r),

For superconductors without paramagnetic impurities
from Eqs. (16) and (17) we get

—ECg(b, /r/ ),

q(r) —y;=—
2

and is equal to

c' - a
87

2

cosh (copr/2)

F(r) =—f, exp( —e
i
~

i
)

de

=—Kp(6 ~r ) .

It follows from formula (22) that in the presence of a gap
in the excitation spectrum, the Green functions g (r) and
I' (r) decrease exponentially at ~b, ~~ l. As is shown
below, in the vicinity of W, this results in the capacity re-
normalization. At low temperatures the residual contact
resistance is exponentially high in this case.

In some cases a Josephson junction is shunted by a nor-
mal resistance Ro. In this case the ~ormal resistance Az
should be replaced by R&,

R ~ ——R~ —Ro
—1 —1 —1

which defines the critical-current value. Moreover in this
case to the action A should be added the quantity

0O y(~) —y(~~)
'

, f f drdr, ,sin'— (24)
m.Rpe — (r —r)) 2

Formula (24) has been obtained from the general expres-
sion (19), in which the Green function g is substituted by

where

x =W/W„y; = —,sin 'x,
1/2

2 1/4
o)p ——(1—x )

C

To first order on the adiabatic parameter the value of the
functional A [p] can be found by inserting the zero solu-
tion (26) into (19)

3X2' n(bl bR)
c4 [p7 =c4p 1 + +

2m-'Rp Ccop 16R~C(&1.+&g )

2 2 2
5 7 ~I. ~RXE —,—,2, » . (28)g2 +g2

The second term in formula (28) is connected with low-
frequency dissipation during the tunneling process. This
term coincides with the value obtained in Ref. 6. If the
shunt resistance is of the order of the normal resistance
R~ and the adiabatic parameter 6/cop is much larger than
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unity, then this term gives the main correction. Shunt
resistance can be larger than R~. In this case high-
frequency processes with frequency co-2h are important.
The last term in (28) is determined by such a process.
High-frequency processes can give essential contribution
to the transition probability, but their contribution to the
viscosity in classically permitted regions is exponentially
small. If the adiabatic parameter is not small, then the
tninimum of the action can be found from the solution of
the integral equation (21).

In Ref. 14 the action was found by a variational
method. The viscosity was taken into account only by the
low-frequency contribution in the action [formula (24)].
Therefore, the result of Ref. 14 is valid only if the shunt
resistor is small with respect to R~.

In Ref. 5 shunting resistance was in some cases larger
than R~, and the capacitance was small. In this case the
term with capacitance in Eq. (19) may be omitted and the
high-frequency processes become essential. An order of
magnitude of the action in this case is given by

(29)

For W near the critical value W, the integral equation (21)
becomes a differential one, and for arbitrary value of the
capacitance C, we have

Thus we see that in a large temperature region, T-T„
the quantum-tunneling probability is of the same order of
probability to overcome the barrier with the help of
thermal fluctuations. This corresponds to the experiment
of Ref. 5. Exponentially small probability of tunneling in
this case is connected with the fact that changes of the
collective variable y imply a change of a very large
amount of quasiparticle states. Qverlap of many such
electron states is exponentially small.

By each phase slippage, the magnetic flux changes by
one quantum. This means that in the electrical circuit an
average voltage will appear,

(eV) -cooexp( —A) .

Formula (31) is only valid provided that after tunneling
the system stops at the neighboring potential minimum,
which is possible at a sufficiently small value of the shunt
resistance only. At high voltages quantum and thermal
fluctuations are less important. They determine only the
width of radiation line. '
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