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Influence of structural relaxation on the low-temperature properties of glassy metals
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The thermal conductivity K of glassy metals is shown to change reversibly with heat treatment at tem-
peratures Tz near the glass transition. If the change in K is interpreted as resulting from a change in the
density n(E) of the two-level states found in amorphous solids, the observed dependence of n (E) on Tz
is in qualitative agreement with a prediction of a free-volume model for the glass transition.

The structure of a glass can be manipulated by subjecting
the glass to heat treatment near the glass transition tem-
perature Tg. The resulting changes in atomic configuration
modify the spectrum of low-energy excitations' which are
responsible for the anomalous and universal properties of
amorphous solids at temperatures T & 1 K. The purpose of
our work has been to observe the effect of "reversible"
heat treatment on the low-temperature properties of a glass
so as to obtain information concerning the structural origin
of the unknown excitations.

A successful phenomenological model for glasses consid-
ers the localized, low-energy excitation to be a two-level
state (TLS) having an energy splitting of E. A density n (E)
of such states, with n (E) nearly independent of E, explains
the observed specific heat, which is roughly linear in T, the
phonon thermal conductivity ~, which is roughly propor-
tional to T, and other properties. ' It is speculated that the
TLS arise because of the tunneling of some entity between
neighboring potential-energy wells associated with the disor-
der in the solid.

For our study of the TLS we have selected glassy metals
since changes in atomic configuration can be produced in re-
latively short times at furnace temperatures ( 600 K, since
the thermal relaxation of glassy metals has been studied ex-
tensively, ' and since theories of atomic relaxation have been
suggested for glassy metals, including computer model-
ing. ' The response of a glassy metal to a series of iso-
chronal "anneals" is exemplified by the data for Pd-Si-Cu
shown in Fig. 1. The sample was quenched from an anneal-
ing temperature of T~, then the electrical resistance R was
measured at 4.2 K. As T~ increases, R decreases irreversi-
bly along the sequence AB. The line CB may then be traced
essentially reversibly as long as the temperature at B is not
exceeded. " If the temperature at B is exceeded, the ir-
reversible curve AB continues to D. Then line ED may be
traced reversibly as long as the temperature at D is not ex-
ceeded. Other properties of glassy metals also respond re-
versibly to heat treatment 5, i2-is Oxide glassesi2, i6, i7 a
amorphous polymers' exhibit analogous behavior.

The effect of irreversible annealing (line ABD of Fig. 1)
on the TLS density of states, n (E), has been studied previ-
ously. ' ' Irreversible changes in atomic configuration ap-
peared to reduce the magnitude of n (E). Our purpose was
to observe the effect on n(E) of reversible changes as
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FIG. 1. Fractional change in electrical resistance R, measured at
4.2 K, of glassy Pd-Si-Cu following a series of 15-min isochronal an-
neals at temperature Tq. This sample is not that used for Fig. 2(a).

represented by curve CB of Fig. 1. A change in n(E) is
monitored most directly by measuring the specific heat C,
since C~ n (E). However, we chose to measure the phonon
thermal conductivity K~ 1/n(E) since ~ can be measured
with greater precision and since sample mounting arrange-
ments are more compatible with high-temperature heat
treatment.

We used two different types of metallic glasses and ob-
served similar results in each. One was the well-studied
transition-metal-metaloid —based glass, Pdp 775Sip i65Cup p6 in
the form of a wire of 2.9 & 10 cm diameter. The phonon
thermal conductivity K was extracted from the total conduc-
tivity by using the Wiedemann-Franz law and measured
resistances. The other sample was a 3.7x10 -cm-thick,
0.17-cm-wide ribbon of the simple-metal- transition-metal
alloy Zr3Rh. This alloy contains no "glass formers" and
also is superconducting below =4.1 K, thereby avoiding
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t I I I I TABLE I. Phonon thermal conductivity at 0.5 K, Kp 5, multiplied
by heat-treatment temperature Tz for two glassy metals. For Pd-
Si-Cu, Kp 5 could be = 30% larger if electron-phonon scattering
were subtracted. The corrected Kp 5T&, however, remains constant.
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FIG. 2. Phonon thermal conductivity K for two glassy metals, di-
vided by T" to allow expansion of the vertical scale. (a) Pd-Si-Cu
(Tg=636 K): x, as received; 0, Tz =570 K for 50 min (irreversi-
ble change in K); 6, T& = 520 K for 20 min (reversible change);
T„=570K for 15 min (reversible change). (b) Superconducting
Zr-Rh (Tg = 700 K), reversible changes in K: &, T& = 548 K for 40
h to establish a quasiequilibrium state (Ref. 15); 0, Tz =615 K for
0.33 h; U, Tz = 545 K for 43 h.
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the complication of conduction electrons. To heat treat a
sample similarly supported at both ends, the thermometers
were removed and the sample and holder placed in a fur-
nace above a He cryostat. The anneals were carried out in a
He atmosphere, the samples were then quenched to 300 K
in He vapor at rates up to 10' K/sec. They could be
lowered into the liquid He to observe the new resistance
(Fig. 1) or, for ZrRh, the new superconducting transition
temperature. ' " Thus we could be certain that the desired
change in atomic configuration had occurred. Thermome-
ters were then remounted at precisely the same positions,
and the samples placed in the dilution refrigerator. The
relative accuracy of the measurements was = 1'/o.

The data are displayed in Fig. 2. Figure 2(a) shows both
the irreversible increase in K observed previously' for Pd-
Si-Cu and, for the first time, a reversible change occurring
within the equivalent range CB of Fig. 1. Figure 2(b)
shows a similar 10% reversible change in K for Zr-Rh. An
inverse relationship between K and T~ is consistent with our
data as shown in Table I.

The phonon thermal conductivity depends on several
parameters, K~ (A/L)u[n(E)M'] ', where A/L is the
dimensional factor for the sample, v is an average phonon
velocity, and M is a deformation potential representing the
strength of TLS-phonon coupling. ' The observed changes
in K most likely arise from changes in n(E)M' The mass.
density, and hence 2/L, changes by less than 1%. The ul-
trasonic velocity v of Pd-Si-Cu changes' ' less than 2'/o

during the entire irreversible change in K shown in Fig.
2(a). A number of measurements' on Zr-Ni and Zr-Cu
have found the same fractional change in K as in the specif-
ic heat following (irreversible) anneals, which suggests that
changes in K are, in fact, dominated by changes in n (E).
However, recent measurements' on Zr-Cu detected irrever-
sible changes in K but not in specific heat. Thus at present
we can only conclude that the product n (E)M' changes by
= 10% as a consequence of our heat treatment, and there-
fore that the dependence n (E)M ~ Tq is consistent with

Sample T„(K) K„T,(Wlcm)

Pd-Si-Cu 570
520
570

0.217
0.211
0.216

Zr-Rh 548
615
545

0.0622
0.0630
0.0625

VF = G [(T —Tp) + [(T —Tp) +HT'l' '[

with G, H, and Tp constants. For the materials considered
in Ref. 7, Tp) T„.With T « Tp, VF~ T. Hence, in this
limit n(E)~ T The temperature .T refers to the tempera-
ture at which the free volume is established. Thus we
equate T of the model to our T~, the temperature from
which the sample was quenched. In this approximation
n (E)~ Tq, which is consistent with the experimental results
of Table I, provided that M' remains constant.

In summary, we have shown that the thermal conductivi-
ty K of glassy metals can be changed reversibly by appropri-
ate heat treatment at temperatures T~ near the glass transi-
tion. The change in K can be interpreted as resulting either
from a change in the density n (E) of TLS, or a change in
the coupling M between TLS and phonons. The observed
behavior should occur also in other amorphous solids, such
as polymers and oxide glasses, since a "reversible"
response to thermal treatment near Tg is common to these
materials.
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our results.
An explanation for a Tq dependence of n (E) is found in

a free-volume model of a glass. ' This free-volume model
was originally developed to explain relaxation phenomena
near T~. It is suggested that the TLS should be assigned to
tunneling of atoms adjacent to voids, the voids arising na-
turally within the model. The free volume VF establishes
the total number of voids or TLS [i.e., f n (E)dE] present
in a sample, thus n(E) ~ VF, while Tg determines the ener-
gy scale or breadth of n (E) and hence n (E)~ 1/Tg. Experi-
mental evidence for the dependence of n (E) on 1/Tg was
noted in literature data for specific heat and thermal con-
ductivity, and has found further support in recent measure-
ments of specific heat ' and ultrasonic properties. ' Our
present interest is in the dependence of n (E) on free
volume. The authors estimate
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