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An equilibrium thermodynamic model for the quantized Hall effect is studied. It is shown that plateaus
in the Hall conductivity oy are expected to occur even in the absence of impurities or electron interac-
tions. An independent-electron system is discussed and generalized to a Hartree system of interacting elec-

trons.

The quantized Hall effect is observable by virtue of the
finite range of magnetic field over which the Hall conduc-
tivity oy remains constant."? In the typical geometry a
small current [, flows in a two- dimensional layer of elec-
trons held perpendlcular to a magnetic field B=B: The ra-
tio of the current J, to the observed voltage across the width
of the sample V, is found to be given by

I, ‘LZ .
oy V. e ji=12,..., 1)
to the order of one part in 107.

It is relatively easy to derive theoretical expressions for
these quantized values of oy at magnetic fields such that
the Fermi energy lies exactly between Landau-level ener-
gies. At magnetic fields slightly removed from these values,
however, one expects to have partially filled Landau levels,
and the prediction of a quantized value for oy is not so
easy to obtain. Laughlin,> for example, assumes that im-
purities will give rise to bands of localized states, so that the
Fermi energy can be pinned between the Landau levels for
a finite range of the magnetic field. Luryi and Kazarinov,*
on the other hand, use continuum percolation theory to ar-
gue that fluctuations in the self-consistent potential will
cause the sample to break up into regions of localized states
with occupation numbers 0 or 1. For a Hall voltage larger
than a critical voltage V. a small fraction of states will be-
come extended. The Fermi energy is then pinned to the ex-
tended states over a region of the magnetic field proportion-
al to the fractional area occupied by the extended states.

The purpose of the present paper is to demonstrate that
plateaus should be expected to occur even in the absence of
impurities or electron interactions. We show this first by
discussion of an independent-electron model, which is then
generalized to a Hartree model of interacting electrons. Be-
cause the quantized Hall effect describes a dissipationless
system it is possible to obtain useful results by treating the
device using equilibrium thermodynamics with a constant
electric current as a constraint.

We examine first an independent-electron model, and
consider a slab of dimensions L, and L,, with an applied
magnetic field B=B5and a confining potential V(x). A
small current I/, is forced through the slab in the y direction.
In the Landau gauge, in which A =(0,Bx,0), and with the
imposition of periodic boundary conditions in the y direction
we can write the wave functions as iy =e™®d,, where
k=2wl/L,, for [=0, %1, With the definitions
w.=eB/mc and xy=Fkk/mw,, the Schrédinger equation be-
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comes
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The current density Tk carried by the state kis given by

- ielt
J

— 2
=5, (D= wi T ud —=&lul> . @)
We assume ®,(x) to be real, making ji, zero, and the y
component of the current density of state k to be indepen-
dent of y and hence given by ji=ji,= —ew.(x —x) DL
With @, real, we also have

2
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so that
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since, by the variational principle, we need not differentiate
@, in (4) with respect to x;.

In two dimensions the current density is in units of
current per unit length, so the total current i, carried by
state k, is thus iy = | jrdx. Using (5) we can write

9 m m
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since i is a constant.
The total current [, carried by the nth Landau level is
given by

I, _zl(n)_z (2 aE,E")
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Since xx =%k/mw. we can sum over x; instead of k, and by
letting L, become arbitrarily large we can make |x; — xx—1!
arbitrarily small, allowing replacement of the sum over x;
by an integral, so that

ae(n)
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with the integral extending over all occupied states. Then,
as noted by Halperin,’

Li=2Ae, =21 ®)

h
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with Ae, denoting the Fermi energy difference between the
right side and the left side of the nth Landau level.

Let us see how relation (8) will give us plateaus in oy.
For simplicity, we consider the two lowest Landau levels of
a system. On the right side 9¢(”/8x >0, so the states at
that edge carry positive current, while on the left side
9¢”/9x < 0, which gives rise to a negative current. We
start with the flat part of the lower band filled up, and we
study the behavior of the Hall conductivity as we add elec-
trons to the system while maintaining the total current I,.
Initially, there must then be a Fermi energy difference
A€ = e (right side) — ef (left side) =eg — €, = hl,/e to sup-
port the current, according to Eq. (8). Since the Hall vol-
tage measured across the sample is exactly e !Ae, we im-
mediately conclude that oy =e%/h. As more electrons are
added to the system, they will distribute themselves in the
empty states at the edges in such a way that the Fermi ener-
gy difference Ae; = (h/e)Iy is maintained, in order to keep
the current constant; the Hall conductivity thus remains
constant at oy =e?/h. In a large sample this occupies only a
vanishingly small range of magnetic field. The more impor-
tant effects occur as the Fermi energy at the right end of
the lower Landau level, e}!’, reaches %ﬁmc. The states of

lowest energy in the second Landau level are those at the
center of the sample, and these will be the first to be filled
as the electron density is increased. Because these states
carry no current, d¢?’/dx being zero here, the Fermi energy
difference between the edges is kept constant at Aep
=Ae;=(h/e)l,, and so oy is kept constant at oy =e?/h.
As we have filled the flat part of the upper level and ap-
proach the edges where 8¢?/dx =0, both levels will now
be filled at both edges until the Fermi energies of the two
levels have been equalized at each edge; then
i) —efV =€) — €f? and both Landau levels thus carry an
equal amount of current. Since we are keeping the total
current [, constant, each Landau level must carry a current
of —;I,; then the Fermi energy difference between the edges
has dropped to —;(h/e)l , and so the Hall conductivity is
now oy =2e?h. When we continue to add electrons to the
system they will be distributed so that at each edge the Fer-
mi energies of both levels are the same, thus maintaining
the difference between the two edges, and holding oy con-
stant at 2e?%/h.

The claim that the Fermi energy is the same at each edge
for all Landau levels might need some justification. The lo-
cal Fermi energy of a certain Landau level is given by the
energy at the point where the chemical potential u(x)
equals the energy of that level. We assume that u(x) does
not vary over the distance Ax between the two points at a
single edge where the Landau levels assume the same ener-
gy € (when e?f%fiwc), since Ax << L,. It then follows®
that e§" = ef? and e{") = €f?’. (This is true for the self-con-
sistent calculations.)

We can easily generalize our thought experiment to a
multilevel system. When the flat part of the nth level has
been filled, each level carries a current /,/n; then the Fermi
-energy difference between the two edges has dropped to
(h/e)(I,/n), and the Hall conductivity increases to oy
=e?/hn. If we define the Landau length /g as (%c/eB)'2,
and then let the quantity IBZ/LxLy become very small, so that
the fraction of states that are edge states becomes negligible,
the transition regions where the Hall conductivity increases
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an amount e?/h will become negligible compared to the re-
gions of constant oy: a plot of oy as a function of the fil-
ling factor v will have the form of the dashed line in Fig. 1.

It might be argued that the independent-electron model is
not a realistic representation of a Hall measurement in that
it does not reflect the macroscopic Maxwell equations that
the electron gas must obey. In order to verify that our con-
clusions remain valid in the presence of interactions, the
calculation was extended to a Hartree gas of interacting elec-
trons. For the sake of simplicity a model was constructed in
which the electrostatic potential was independent of the z
coordinate. This was achieved by considering an infinitely
high stack of jellium slabs separated by insulating sheets.
Each slab has dimensions L, and L, and a thickness L, and
carries a current /, in the y direction. A magnetic field
B=Bsis applied. We assume that L, is much less than the
scale of variation of the charge density in the x direction, so
that the charge density can be taken as uniform in the z
direction.

In two dimensions, the conductivity o, =j,/E, is the
same as the conductance Y,,=1,/V,. For the jellium slabs,
however, the conductivity of each slab depends on the
thickness L,, whereas the conductance does not. Hence the
comparable quantity to the two-dimensional conductivity for
our system is the (Hall) conductance per slab.

Again, using the Landau gauge and periodic boundary
conditions in the y direction and letting ff denote the aver-
age occupancy of state k in the nth Landau level, one easily
derives the following set of Hartree equations:

fl’z dz 1 2 2 n — gy n
— ==t -meilx —x)°+¢(x) |pf(x) =efPpp(x) ,
2m dx 2
(C))
o) =2me [ lx—xlln () —nGHldx' . (10)
where n 4+(x) is the jellium charge density, given by
0, Ix|>L./2
ne ) =\n,, Ixl<Ls2 an
and
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FIG. 1. Hall conductance Yy in units of e2/h vs filling factor.
The dashed line represents the independent-electron model, and the
filled triangles are for the numerical calculations of the Hartree
model.
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To obtain an expression for the occupancy ff, we use the
fact that, since the current flow is dissipationless, the sys-
tem may be treated as in thermodynamic equilibrium. One
may thus minimize the free energy F, which is expressed as

F=U+kgT 3 [(1 =B In(1—sP) +FIn(fP] , 13)
k.n

where U is the total (Hartree) energy of the system and kg

is Boltzmann’s constant. In addition to the customary con-

straint

SA=N=n,LLL, 14)
k.n

we impose the additional condition

3 srie=1, (15)
k.n

That is, the total number of electrons N and the total
current I, are fixed. [Equation (14) also defines n4+(x) for
charge neutrality.] The minimization is a standard exercise
in Lagrange multipliers, and the result is

1
Sh= :
ef—L—Eif
kgT

(16)

exp +1

with the constants { and ¢ determined by Egs. (14) and
15).

The set of Egs. (9)-(16) was solved self-consistently with
the parameters (in units of e=m=#k=1) L,=17.0,
L,=407w, L,=1.0, w.=1.0, kgT=0.005, I,=0.05. Thus
the distance |xx —xx—1/ =0.05 and the typical spread in the
x direction of a wave function in the lowest Landau level is
1.0. For a filling factor of v=1, the system then holds 141
electrons. The chosen value of L, is low enough to ensure
that all motion in the z direction is frozen in the lowest
state.

In the numerical computations the criterion for self-
consistency was chosen such as to make the maximum
difference between the nth and the (n +1)th iterations of
the Coulomb potential energy less than 103 (which is some
tenths of a percent of the Fermi energy difference required
for o =1). The Hall conductance Yy was then calculated
as the quotient of the total current /, and the chemical po-
tential difference between the two edges (in the x direction)
for filling factors v ranging from 0.9 to 2.3 in steps of 0.1.

We have calculated the current carried by each Landau
level as a function of the Fermi energy difference of the
level as compiled from all calculations. These values follow
a linear relationship with a slope of I, vs Ae, equal to e/h
to within 1.2%, showing the validity of Eq. (8).

In Fig. 1 the Hall conductance in units of e/ is plotted
against v. There are two distinct plateaus, one at
1 <y =<1.3, and the other at 2.2 <y =2.3. The Hall con-
ductance assumes the value 1 to closer than 4% at the first
plateau, and the value 2 to closer than 6% at the second pla-
teau. These results must be considered satisfactory since
each wave function was expanded in only its four lowest
Fourier-Hermite components.

The maximum derivative of Yy as a function of v occurs
at v=2, indicating that the transition between Yy =1 and
Yy =2 indeed takes place at v=2. The smoothness of the
transition as obtained from the plot can be attributed to two
things. Firstly, a size effect appears to be present; when re-
calculating the point v=1.9 for a system with identical
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FIG. 2. Fermi energies ™ at each edge for the two lowest Lan-
dau levels (n=1,2) vs filling factor.

parameters, except for L., which was increased to 14 (534
electrons), the value of Yy decreased to 1.370 from its pre-
vious value of 1.470. Unfortunately, due to the immense
computing time required to make such a large system con-
verge, we could not recalculate any more points. Secondly,
in the experiments of Paalanen eral,? where extremely
wide plateaus were observed, the quotient of Aw, and kT
was about five times higher than in our calculations, so at
least part of the smoothing could be due to high thermal en-
ergy.

In Fig. 2, the Fermi energies at the edges of the Landau
levels for the two lowest Landau levels are plotted vs v. We
see that as the second level starts to be filled up the Fermi
energies at its edges rapidly approach those of the lowest
Landau level.

We have presented a theoretical model of the quantized
Hall effect based on a thermodynamical equilibrium ap-
proach in which a constant-current constraint is imposed.
This model produces a quantization of the Hall conductivity
in steps of e?/h in any confining potential that is only a
function of the transverse dimension. The model should
also be appropriate in the presence of bands of localized
states between the principal Landau levels, so long as the
fundamental relation (8) holds for these levels. Calcula-
tions for interacting electrons in a layered structure are in
accordance with this model. The exact quantization of the
Hall conductivity is attributed to the properties of the edge
states. A significant discrepancy between this model and
the experimental results lies in the fact that in the experi-
ments the transition between two adjacent plateaus appears
to be located halfway between integral filling factors.? This
might be explained by introducing localized states between
the Landau levels.>® It is also a possibility that the
electron-electron interaction in two dimensions may change
the transition points from where they are in our calculations
with an effective one-dimensional Coulomb interaction.
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SThis question is the subject of some recent work. For a Corbino

geometry with random impurities in a confining box potential or
harmonic-oscillator potential one would expect the Fermi energies
to be different for different Landau levels, and that would lead to
deviations from the perfect quantization of the Hall conductivity.
However, the predicted deviations are several orders of magni-
tude larger than the present experimentally determined accuracy
of the quantization of the Hall conductivity. [See G. Giuliani, J.
J. Quinn, and S. C. Yang (unpublished).]



