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Trapping and reaction rates on fractals: A random-walk study
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In this Rapid Communication we study random walks on Sierpinski gaskets, which are fractal structures
of simple geometry. We determine the probability of the walker to be captured by traps randomly distri-
buted on the gaskets. The general reaction process is modeled through a kinetic approach. The decay laws

which we find are smooth extensions to dimensionalities between one and two.

I. INTRODUCTION

Many aspects of solid-state physics and chemistry are re-
lated to random walks on periodic structures. ' ' In the last
few years processes of energy transfer and of carrier recom-
bination in disordered materials have attracted considerable
attention. One way to introduce the disorder aspect has
been the continuous-time random-walk approach, as dis-
cussed in previous works. ' ' Another way of dealing with
disorder is by realizing its self-similar nature, which then in-
troduces the fractal concept. " A simple class of fractal
structures are the Sierpinski gaskets. The gaskets are fairly
regular: Their basic unit is the d-dimensional simplex from
which the gasket is created by repeated dilatations. " In this
Rapid Communication we deal with two- and three-
dimensional gaskets (d =2 and 3) on which we perform
random walks. We concentrate here on the decay laws and
show, by comparison with former results, " that trapping on
these fractals interpolates nicely between the decay laws
found for one- and two-dimensional regular lattices.

II. THEORY

In this section we focus on the decay functions due to
trapping and on the corresponding decay rates. For the
evaluation of the decay laws we follow the procedure of Ref.
12: We take the traps to be randomly distributed on the
gasket, occupying its sites with probability p. The micro-
scopic transfer rates from a site to its neighboring sites are
assumed to be equal, and the walker gets trapped at the first
trap encounter.

For a particular realization of the random walk on the
trap-free gasket, let R„denote the number of distinct sites
visited in n steps. Note, as is usual in disordered systems,
the difference from the regular lattice: Here the stochastic
variable R„depends both on the starting point on the gasket
and on the sequence of directions of the steps; for a regular
lattice the starting point is irrelevant. For the same realiza-
tion of the walk let F„denote the probability that trapping
has not occurred up to the nth step in the ensemble of lat-
tices doped with traps. Thus F„ is also a stochastic variable,
so that

F„=(I-p) "

assuming the origin of the walk not to be a trap, and, in
standard fashion, having Ra=1. The measurable survival
probability is 4„, the average of F„over all realizations of
the random walk'

d „=e "(e ") =—e "d „, (3)

with

where the Kj„are the cumulants of the distribution of R„.
As an example, the first two curnulants are

K&,„=(R„)—= S„

and

(6)

where S„and o-„' are the mean and the variance of R„.
The knowledge of all cumulants allows the exact deter-

mination of the decay function C„via Eqs. (3) and (4). In
general, however, one has to restrict oneself to the first cu-
mulants, since the distribution of R„ is not known in great
detail:

N

The expression for Ã =1,
C

&
„=exp( —XS„) (8)

has been advanced in many areas' '; in the random-walk
field it corresponds to the first-passage-time (FPT) approxi-
mation ", in the fractal field it was recently used by
de Gennes. '6 For N = 2 one obtains from Eq. (7) the

(2)

As mentioned, the average in Eq. (2) also includes the
average over starting points, and may be viewed as a double
average; we encountered a similar situation for the
continuous-time random-walk model. ' Introducing
)&. = —ln(l —p), Eq. (2) allows a straightforward cumulant
expansion
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k (/)
A +B AB (10)

whose solution for the initial condition 8 (0) = A (0) + C is

r [A (t)] —r[A (0)]= J k(t')Ch'

with r(x) =C 'ln(1+C/x) (see Ref. 5 for details). In
how far the k„vs p proportionality holds will become evi-
dent from the numerical results of the next Sec. III.

For an embedding Euclidean space of dimension d the
Hausdorff fractal dimension of the Sierpinski gasket is"
d = ln(d + 1)/ ln2 and its spectral dimension is d
=2ln(d+1)/ln(d+3), so that d ~ d ~d. '8 '0 Here, in
the trapping problem, the fundamental quantity (vide infra
and Refs. 18 to 20) is the spectral dimension d, which for
any Sierpinski gasket is always less than 2. Sierpinski
gaskets lie thus in the dimension range from one to two;
this allows us to analyze the performance of the cumulant
expansion in the region below d = 2.

form'

42 „=exp( —XS„+A. o-„/2)

which is akin to an approximate form advanced by Weiss. '

Let us point out that for three-dimensional regular systems
Eq. (8) was found to be a good approximation over the
main portion of the decay, and that Eq. (9), which includes
the variance, turned out to be very good both for three- and
two-dimensional regular lattices. On the other hand, in the
one-dimensional regular case the curnulant expansion, Eq.
(7), is very slowly convergent, so that at least N =4 is
needed in order to describe well the decay over the first two
orders of magnitude. '

From the expressions for 4„one obtains the decay rates
k„= (4„~—4&„)/4„, the discrete analog of k (t) = —rp(t)/
C&(i). From Eqs. (3) to (9) it is obvious that k„ is not ex-
actly proportional to p, but that the proportionality gets
better for lower p and higher dimensionalities. When this
proportionality holds, one may proceed as in Refs. 5 and 17
and use the trapping results to determine, say, exciton
fusion or electron-hole recombination in terms of the reac-
tion scheme:

n. One has (see Refs. 3, 7, and 21 for the correction terms)

S„=an+ (d=3)
S„=an/ In(n) + . (d = 2)

S„=an 'i + (d = 1)

(12a)

(12b)

(12c)

For Sierpinski gaskets the asymptotic expansion depends
on d (Ref. 19):

S„=an"', (13)

S„

400—

500

and thus Eq. (13) lies between Eqs. (12b) and (12c). We
note that in two dimensions the asymptotic behavior of Eq.
(12b) is reached very slowly; this contrasts with the situa-
tion in d = 1 or in d = 3, where the asymptotic regions of
Eqs. (12a) and (12c) are quickly reached. ~'

In Fig. 1 we present our results for S„ in the range
0» n» 1000 for the two gaskets considered. For ease of
reference, we have also included the S„ for the linear chain
(d=1) and for the square lattice (d=2). As is evident,
the gasket results are nicely bounded by the regular cases.
The numerical results for S„were fitted to Eq. (13),
S„=an . On the scale of the figure the fit is excellent, and
is indistinguishable from the numerical result, even for
small n. Thus, for the gaskets, as in the one-dimensional
regular case, the first term of the asymptotic expansion of
S„gives an adequate description for practically all n. The fit
gives for the gaskets a =1.282 and o. =0.686 for d =2 and
a =1.318 and o. =—0.753 for d =3; the result for o. for d = 2
agrees with the result of Ref. 20. The difference between
2o. and d is very small, being 0.5% for d =2 and 3% for
d =3.

For the second cumulant o-„ the results are presented in

III. SIMULATION RESULTS

We have simulated a series of different random walks on
the Sierpinski gaskets of Euclidean dimensions d =2 and
d = 3, which correspond to the spectral dimensions
d =1.365 and d =1.547, respectively. " The gaskets were
generated iteratively, and were chosen to contain some
10000 sites (being of eighth order of iteration for d = 2 and
of sixth order for d =3). Some 1000 to 5000 realizations of
the walks were performed and both starting points and dis-
placements were stochastically chosen using the random
number generator RN1 of the Eidgenossische Technische
Hochschule Computer Center. This routine has been ex-
tensively checked by us in the framework of random walks;
it works very well even for the one-dimensional case, where
the distributions in R„are broadest, as we could show by
comparison to the exact decay law. '

For regular lattices the first moment S„ is readily ex-
pressed as a (generally, nonanalytical) series in functions of

200
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FIG. 1. Mean number S„of distinct sites visited in n steps.
Given are the results for two Sierpinski gaskets (d =1.365 and
d =1.547) as well as for the linear chain (d =1) and the square lat-
tice (d =2). The points are the simulation results, whereas the
dashed lines are the fit to S„=an
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mulas Eqs. (13) and (14) for S„and o. 2 were used, obtain-
ing thus approximate expressions with a minimal number of
parameters. For all trap concentrations the decays are clear-
ly nonexponential. For both gaskets we find a behavior
much reminiscent of the decay laws for the square lattice:
The mean number of sites visited, S„, does not describe the
decay well, whereas inclusion of the variance o-„consider-
ably improves the agreement. ' We note that the agreement
is better for the higher dimensional gasket, a fact not
surprising when remembering the one-dimensional case,
where four cumulants are necessary for a good description
of the decay over two orders of magnitude. " Thus the de-
cay laws for the gaskets interpolate nicely between the linear
chain and the square lattice.

As in all cases considered, for fixed n the agreement
between exact and approximate decays gets better for lower
values of the trap concentration. Since in this region
i». = —ln(1 —p) =p, one can directly read off from Figs. 3
and 4 the region in which k„ is proportional to p. Compar-
ison of the exact form to 4~ „shows that this holds well for
an order of magnitude in the decay, and that the agreement
improves for larger d; in these regions the chemical analogs
of Sec. II are valid.

IV. CONCLUSIONS

In this Rapid Communication we have presented the de-
cay laws due to traps randomly distributed on Sierpinski

gaskets, and analyzed it in terms of the statistics of the
number of sites visited by a random walker. The dynamical
quantities, such as the moments of the distribution of sites
visited and also the decay, show a behavior which is situated
between that which obtains for one- and two-dimensional
regular lattices. The unifying aspect is the compact explora-
tion of the geometrical structures by the walker, a concept
stressed by de Gennes. ' As in the one-dimensional case,
this leads to relations between the moments of the distribu-
tions, relations which appear from our numerical simula-
tions. A fundamental quantity which enters both the mean
and the variance is the spectral dimension d, whose numeri-
cal evaluation agrees very well with the exact result. In the
range of decay which may be of experimental importance
the decay is well described by the first two cumulants. As
found numerically, the domain of validity of their asymptot-
ic forms is rapidly reached.
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