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Paley-Wiener criterion for relaxation functions
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It is shown how the Paley-Wiener theorem in Fourier-transform theory can provide the bound for physi-

cally acceptable relaxation functions for long times. In principle the linear exponential decay function, and

hence also a superposition of linear exponential decay functions, does not provide an acceptable description

of relaxation phenomenon although the Paley-Wiener bound can be made to approach arbitrarily close to

linear exponential. A class of relaxation functions proposed recently obeys the Paley-Wiener bound. The

general necessity for time-dependent relaxation rates is emphasized and discussed.

exp[ —a(r/r, )'], a & 0, 0 & b & I (2a)

and

(r/r, ), n &0, (2b)

have proved to be widely applicable in the description of a
large variety of relaxation phenomena in condensed matter
physics. ' ' ' Here 7, is a characteristic time in the system.
There have been many attempts" ' to understand the latter
dependences in terms of a distribution of relaxation times.
Alternatively, the functional forms [(2a) and (2b)] have
been viewed as fundamental in themselves and based on
mechanistic origins. 2' The purpose of the present paper is
to employ the Paley-Wiener theorem on Fourier
transforms together with physical requirements that have to
be satisfied by any relaxation process to discriminate
between the two viewpoints.

In Eq. (I) r is traditionally the result of calculating the
linear time-proportional transitional probability given by the
golden rule. The physical picture of relaxation here is that
the system which is relaxing is in contact with a heat bath.
The heat bath in turn is described by a Hamiltonian which is
not affected by interaction with the relaxing system. It is
the interaction between the system and the heat bath which
leads to the relaxation process. An alternative scheme
to this is the master equation approach. Here again, the
linear time-proportional transitional probabilities play a cru-
cial role in setting up the master equation. The physical
model for relaxation is, however, still the same —relaxing
system, heat bath, and mutual interaction. After eliminat-
ing the heat-bath variables, the relaxing system is treated by
means of a model Hamiltonian such as Glauber's kinetic Is-

It is traditional' to discuss the residual part of relaxing
quantities in terms of linear exponential decay, viz. ,

exp( —r/r)

where v is the "relaxation time", or a superposition ' of
exponential decay terms with a distribution of v. In fact,
deviations from this exponential behavior are usually ob-
served in experimental measurements. " Other functional
forms, namely,

ing model where the linear time-proportional transitional
probability is an essential input.

In view of the experimental observation that the relaxa-
tion is described by a fractional exponential in condensed
matter systems, it appears that the linear time-proportional
transition probability may have to be changed suitably. This
points to the fact that there is a failure of the application of
the golden rule to the relaxing system plus heat bath. Since
the heat bath is assumed to be very large compared to the
relaxing system, the energy spectrum of the heat bath may
be considered to be a continuum. The relaxing system has
a spectrum which is embedded in this and the breakdown of
the golden rule seems possible here, as in bremsstrahlung in
quantum electrodynamics and the x-ray —edge problem in
solid-state physics. The new time dependence of the transi-
tion rate indicates that the heat bath plays an active role in
relaxation phenomena unlike in the traditional picture
where it serves only to define the temperature of the sys-
tem. '4

In a separate context, the idea of decay of unstable states
in quantum mechanics has been discussed in a manner quite
analogous to our discussion of the relaxation of a system in
contact with the heat bath. 0 32 Here the decay of a state is
caused by a perturbation. In the discussion to follow, we
focus on the time dependence of the relaxing system using
the formalism developed by Chiu, Sudarshan, and Misra.
We find a bound for the effective transition rate for relaxa-
tion which replaces the constant transition rate used hitherto
in the master equation or any other theory of relaxation.
We believe that the scheme outlined here is an "effective"
description of relaxation processes in condensed matter sys-
tems.

Let H be the Hilbert space formed by the totality of the
relaxing states and those which are stable. The time evolu-
tion of this total system is then described by the evolution
operator U(t) =exp( —iHt), where H is the self-adjoint
Hamiltonian operator of the system. (Units with t= 1 are
used in this paper. ) For the sake of simplicity, it is assumed
that there is only one relaxing state represented by the vec-
tor

~
R ) of H. The state

~
R ) is associated with the continu-

ous spectrum of H and is orthogonal to all bound stationary
states of the Hamiltonian. It is assumed that the Hamiltoni-
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an H has no singular continuous spectrum. If F, denotes
the spectral projections of H,

H= J edF, = J ale&(olde, (3)

then the function (R I F, l R & is absolutely continuous, and
its derivative

viable description of relaxation phenomena.
Also, in general, the case b =0 in Eq. (2a) is excluded.

This follows from the fact that the corresponding c ( t)
would violate the condition of square integrability, which is
also physically untenable since then Q(t) cannot then be
proportional to lc(t)l'. However, when b 0 in such a
way that ab o. where n is nonzero, it may be shown that

p(.) = " « IF, l R &
= « I.& (.IR &66

(4)
I c(t) I' ~ (tlr, ) (10)

can be interpreted as the energy distribution of the state
E+hE

IR &. In other words, the integral p(e)de is the pro-
bability that the energy of the state IR & lies in the interval
(E,E+AE). The function p(e) has the following proper-
ties:

The residual relaxing amplitude

c(t) = (R lexp( —itH) IR & (6)

may be seen to be the Fourier transform of the energy dis-
tribution function p(e),

c(t) =„exp( —iet)p(e)de (7)

The Paley-Wiener theorem22 turns out to be the touch-
stone for the determination of the bounds on the long-time
behavior of relaxation processes. This theorem stated in the
present context is as follows: The necessary and sufficient
condition that there exists a function p(e), which is the
Fourier transform of a square integrable function c(t) and
which vanishes below some value of e, say zero [i.e., p(e)
is semibounded in the e variable], is

Ilnl c ( t) I] dt(~1+g'

This condition is guaranteed if, for (t/r, ) +~, 3o

Ic(t)l'~exp[ —a(t/r, )'], a &0, 0 & b &1 . (9)

Here v, is a characteristic time so that a is dimensionless. It
should be noted that both the forms (2a) and (2b) satisfy
this inequality whereas the linear exponential form (1) does
not. Thus the two cases, Eqs. (1) and (2), are mutually ex-
clusive. Although b may approach arbitrarily close to 1, the
case b = 1 corresponds to a physically unrealistic, unbound-
ed p(e)~ ar, '[(a/r, ) +e ] ', and therefore violates the
conditions of the Paley-Wiener theorem. Since a single
linear exponential form is unphysical, a superposition of
them is also unphysical. Hence the idea of superposition of
exponentially decaying functions must also be ruled out as a

(i) p(~) ~0;
(ii) )p(e)de=1

corresponding to the normalization condition, (R IR &
=1;

and

(iii) p(e) =0

for e outside the spectrum of H. In order that the system
have a stable ground state, the spectrum of H must have a
finite lower bound. Therefore p(e) is semibounded.

The residual part of a relaxing quantity, Q(t), at an in-
stant t for the relaxing state IR &

is33

Q(t) ~
I (R lexp( —itH) IR &I'

with o. ) 1 for t/r, ~. Therefore, the requirements of
the Paley-Wiener theorem are again met. It is remarkable
that both the Paley-Wiener limiting form, Eq. (2a), and the
simple inverse power decay, Eq. (2b), have been repeatedly
found to govern many different relaxation processes in con-
densed matter physics. Both of these have also been
predicted from microscopic models. '

Since lc(t)l is monotonic for large t/r„ it follows from
Eqs. (5) and (9) that

d t ~ a (b/r, ) (t/r, )' 'I c(t) I'-,
dt dt

t/r, — (0 & b &1) (11)
The effective transition rate 8'(t) has a bound

W'(t) ~a(b/r, )(t/~, )' ' (0 & b &1) (12)

Thus W(t) has an essential dependence on t. The impact
of time-dependent transition rates in relaxation processes
has recently been discussed elsewhere. Again the limit of
b =1 would lead to a constant transition rate, as is the fami-
liar result for a linear exponential decay. As noted above,
this case was ruled out so that the transition rate must be a
function of time and must have the bound given by Eq.
(12).

As mentioned above, Eq. (12) may be extended to in-

clude the case b 0 such that ab o., where o. is nonzero.
Then

II'(t) ~nt ' (13)

This corresponds to the case described by Eq. (10). It is in-

teresting to note that Eqs. (9), (12), and (13) provide a
hierarchy of bounds for a relaxing quantity and their corre-
sponding transition rates.

The fact that the effective transition rate has an essential
dependence on time shows that it is not compatible with the
traditional derivation of constant transition rates by means
of the Fermi golden rule. 5 In fact the breakdown of the
Fermi golden rule has been noted very often in the litera-
ture. ~ The familiar expression for the transition rate is
a good approximation for long times t &) (hE) ', where
4E is the energy difference between the two states between
which the transition is taking place. The explicit examples
of the breakdown of this are in bremsstrahlung in quantum
electrodynamics and the x-ray —edge problem in solid-state
physics. In the relaxation regime, such characteristic energy
differences may also approach zero. This indicates the
breakdown of the approximation in the derivation of the
constant transition rate. In this situation, one must carry
out a more careful calculation which leads to a time-
dependent transition rate as discussed above.

The occurrence of apparent constant transition rates for
the "elementary excitations" ' commonly observed spec-
troscopically in condensed matter, viz. , neutron, Raman,
microwave, far infrared, infrared, visible, ultraviolet, x ray,
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etc. , may be understood to be consistent with the Paley-
Wiener theorem if b is taken to approach unity but never
quite attain it. Such cases probe either the discrete states or
continuum states of the many-particle Hamiltonian H with
typical energies in the range &10' Hz such as electrons,
phonons, magnons, etc. , and the approximation t AE » 1
is good. For relaxation phenomena, b rarely approaches un-
ity. What are involved in the low-frequency relaxation
processes are low-frequency excitations of the system below,
say 10' Hz. It is clear that an experimental effort should
be made to observe these excitations directly. In fact, they
may already have been observed in recent experiments. '

In general, the effect of these excitations should occur in
any of a number of long-tail transient spectroscopic observa-
tions made possible by modern electronic advances.
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