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Energy bands and forbidden gaps in the Kronig-Penney model
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The conventional form of the energy-crystal-momentum relations for the Kronig-Penney model is

rewritten in a form amenable to qualitative analysis. The results of a complete analysis are summarized.

I. INTRODUCTION

The Kronig-Penney model' is an exactly soluble system
which serves to illustrate many of the concepts basic to the
quantum theory of periodic systems. It continues to be
used by researchers, often as a starting point in studies of
the effects of impurities, electric fields, or other complicat-
ing features on otherwise periodic systems' or to evaluate
approximate calculation methods3 with a system for which
exact results are readily found.

Its mathematical tractability makes it an attractive instru-
ment for learning about quantum particles in periodic sys-
tems and serves this purpose in numerous textbooks.
However, the energy —crystal-momentum relationship given
in the textbooks may be characterized as qualitatively in-
tractable. One may easily compute the dispersion curves,
but only the most rudimentary features of the band struc-
ture may be discerned by qualitatively examining the
energy —crystal-momentum relationship. This detracts from
the effectiveness of the Kronig-Penney model as a teaching
and research tool.

This paper shows that the energy —crystal-momentum rela-
tionship for the Kronig-Penney model can be expressed in a
form which is amenable to a detailed qualitative analysis.
The Kronig-Penney model is reviewed in Sec II. The result-
ing energy —crystal-momentum relationships are intimately
tied to the symmetry of the wave function. The analysis is
sketched in Sec. III and a summary of a complete analysis is
provided in Sec. IV.

lize these symmetries in solving the problem.
Solutions in the "wells" are plane waves, exp(iKx) with

+ G( —x)e( —a —x) e( ,
' L +x)— (5a)

with

G(x) = cos(Ka) cos[k(x —a)]
—K sin(Ka ) sin [k(x —a ) ]/k (5b)

and

with

(x) = [sin(Kx)/K] e(a —
~
x

~ )

+ U(x) e(x —a) e( ,
' L —x)—

—U( —x) e( —a x) e( 'L +x—)—
2 (6a)

U(x) = cos[k(x —a)] sin(Ka)/K

(itK) /2m =E + Vp

In the complementary regions the plane-wave solutions,
exp(ikx), have

(A'k)'/2m = E

Symmetric solutions in the symmetric zone, —L/2 ~ x
~L/2, are

P+(x) = cos(Ex) e(a —~x ~) + G(x) 0(x —a) q( ,
' L —x)—

+cos(Ka) sin[k(x —a)]/k (6b)
II. REVIEW OF THE KRONIG-PENNEY MODEL

V(x) = —X V 8(a —~x —nL ~), + n =0, 1, 2, . . . (2)

The depth of the well is measured by the positive, real
number Vp. The 8 functions [8(x) = 1 if x )0 and
8(x) =0 otherwise] assure that each potential well has a
width 2a and that V(x) =0 outside the wells. The repeat
distance or lattice constant is L =2(a + b).

The Kronig-Penney Hamiltonian 0 is invariant to transla-
tions by a lattice vector, nL [H(x —nL) =H(x)] to inver-
sion [H(x) = H( —x) ], and to time-reversal K
[KH(x) =H(x)'K =H(x)K]. It is advantageous to uti-

The Kronig-Penney model is the nonrelativistic Schro-
dinger equation

Hy= [p'/2m+ V(x)]y=Ey
where the potential consists of periodically repeated square
wells,

The solutions have been written to make their inversion
symmetry

P+( —x) =@ (x), @ ( —x) = —@ (x)
manifestly evident. These functions are real for negative
energies when k is and K may be imaginary. Also, they are
well-defined solutions in a limiting sense when k or E ap-
proaches zero.

A general solution in a symmetric zone is

@(x)=W @ (x)+is y (x) .

For real constants A+, A @(x) is invariant to time-reversal
coupled with inversion, $( —x)'=&]&(x). A solution of the
Kronig-Penney model is expressed as a Bloch function,

p, (x) = /exp( —inqL)@(x —nL)

with the translational symmetry, @~(x—L ) = exp(iqL )
xp~(x). The parameter q is called the crystal momentum.

1983 The American Physical Society



28 BRIEF REPORTS

Equation (9) is a solution everywhere except for the points,
(n+ —,)L, at the end points of the symmetric zones. Re-
quiring continuity of function and derivative at the end
points gives the Kronig-Penney energy-crystal-momentum
relationship,

—G'(L, /2) U(L, /2)
G(L/2) U'(L/2)

(10)

III. QUALITATIVE ANALYSIS OF THE
KRONIG-PENNEY BAND STRUCTURE

Equation (10) may be shown to be identical to the conven-
tional dispersion relations for the Kronig-Penney model. 4

The factored form of Eq. (10) proves to be invaluable for
qualitative analysis. One may easily verify the relation (the
Wronskian),

GU' —G'U = 1

Hence, alternatives to Eq. (10) are

sin'(qL/2) = —G'U, cos'(qL/2) = GU' .

Analysis shows that only when sin(qL/2) or cos(qL/2) is
zero will the wave functions be of definite inversion sym-
metry. This symmetry can be discerned directly from the
energy-crystal-momentum relationship by observing which
factor is zero. When a factor G or G' is zero, the wave
function is invariant with respect to inversion. If Uor U' is
zero the wave function is of odd parity. The nomenclature
for the factors is intended to be a mnemonic aid in that fac-
tors G refer to the German word gerade (or even) and U
refers to ungerade (or odd). It is also possible for
O'= U =0 or G = U'=0. In such cases both even and odd
parity wave functions exist simultaneously and an "acciden-
tal degeneracy" occurs. '

are symmetric about the BZ center, q =0, since tan'(qL/2)
is an even function of q. Regions of unphysical energies or
forbidden energy gaps can begin only at the BZ center
(q=0) or at the BZ edge, q=vr/L, because the right
member of Eq. (10) is a continuous function of energy, E.
Also, no physical solutions of Eq. (10) exist when the ener-
gy E & —Vo, since the right member of Eq. (10) is negative
definite. It should be noted that the same observations can
also be inferred from the conventional energy-crystal-
momentum relationship. 4 However, much more qualtiative
information is obtained from an analysis of Eq. (10) than
from the conventional form.

For a more stringent analysis of Eq. (10) it is convenient
to rewrite it as

tan'(qL/2) = ( G,'/G, ) U, /U, ') (13)

where the negative sign in Eq. (10) has been incorporated
into G,

'

G, = 1 —K tan(Ka ) tan( kb ) /k

G,'= k tan(kb) +K tan(Ka)

U, = tan(Ka)/K +tan(kb)/k

(15)

U,'= 1 —k tan(kb) tan(Ka)/K (17)

tan2(qL/2) =cot (Ka) (18)

Each factor in Eq. (10) has simply been divided by
cos(Ka) cos(kb). The advantage of this form is that there
are half as many functions to consider. The disadvantage is
that tangent functions diverge. This is not a serious disad-
vantage because such divergences have little to do with the
allowed energy-band structure. For example. when
cos(kb) =0 (this can only occur for positive energies) Eq.
(10) is evaluated to be

Several observations follow immediately from Eq. (10).
Distinct real-valued crystal momenta may be chosen in a
Brillouin zone,

Such a positive energy is allowed. Except for the unusual
case of an accidental degeneracy it will not correspond to a
BZ center or edge. Similarly, when cos(Ka) =0,

—7r/L & q ~n'/L tan'(qL/2) = cot2(kb ) (19)

With this choice of Brillouin zone (BZ) the allowed energies For negative energies the right member of Eq. (19) is nega-

TABLE I. Classification of Kronig-Penney energy bands for positive definite energies. The first column
names the band type and the second column lists the conditions satisfied by an energy with this band type.
The last two columns list the crystal momentum and parity of the lowest- and highest-band energies, respec-
tively.

Band type Conditions q;„(parity) qm (parity)

D+
D—

sin(Ka) =0,
sin(Ka }=0,

tan(kb) &0
tan(kb) &0

cos(kb) =0, tan(Ka) & 0
cos(kb} =0, tan(Ka) & 0

cos(Ka} =0, tan(kb) & 0
cos(Ka) =0, tan(kb) & 0

sin(kb) =0, tan(Ka) & 0
sin(kb) =0, tan(Ka) & 0

~/I. ( —)
0(+)

m/L ( —)
0(-)
0(-)

~/I. (+)
0(+)

~/L, (+)

0(+)
m/L ( —)

0(-)
w/L ( —)

~/L, (+)
0( —)

~/L{+)
0(+)
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tive and negative energies satisfying cos(Ka) =0 are forbid-
den. Positive energies are allowed and will correspond to
the BZ center or edge only in the case of an accidental de-
generacy. Thus, the divergences of the tangent functions in
Eq. (13) are benign and in general are not indicative of
transitions between allowed and forbidden energy regions.

The allowed energy bands in the region of negative ener-
gies exhibit a qualitatively different structure than those
with positive energies. All the structure in the energy bands
derives from the oscillations of tan(Ka).

It is possible for a band to begin in the negative-energy
region and extend into the region of positive energies. If a
half oscillation of tan(Ka), —~ & tan(Ka) & 0 or
0 & tan(Ka) & +~, includes some negative energies, then
a nondegenerate band of a negative-energy character will

begin in the negative-energy region.
The positive-energy region appears to be more complicat-

ed to analyze than the negative-energy region because both
tan(Ka) and tan(kb) are oscillatory. However, the band
structure in the positive region is remarkably simple.

Previously, it was noted that the positive energies for
which cos(kb) =0 or cos(Ka) =0 are in allowed energy re-
gions and have very simple energy —crystal-momentum rela-
tions, Eqs. (18) and (19). From Eq. (10) it is seen that
when sin(kb) =0 with E & 0:

may occur. In such a case the two-band types involved sim-
ply coalesce into one double band.

IV. SUMMARY

The Kronig-Penney band structure is remarkably simple.
In the negative-energy region the bands are all nondegen-
erate and occur within the intervals,

n 7r/2 & Ka & ( n + 1)tr/2, n = 0, 1, 2, . . .

The highest band may extend into the positive-energy re-
gion. The wave functions corresponding to the BZ center
and edge have the same parity. In this respect negative-
energy bands may be said to have a definite parity. Even
parity bands have their lowest energy at the BZ center and
odd parity bands have their lowest energy at the BZ edge.
The lowest-energy band has even parity. The negative-
energy bands alternate parities.

Distinct bands in the positive-energy region include ener-
gies where

kb =me/2, E &0

tan~(qL/2) = tan2(Ka)
Ka = m m/2, E & 0 (24)

and when sin(Ka) =0,

tan'(qL/2) = tan'(kb) (21)

The somewhat surprising result is that each of the bands
corresponding to Eqs. (18)—(21) are distinct bands and
there are no other bands. Therefore, the positive-energy
bands may be classified according to which condition is sat-
isfied. The results of an analysis of the positive-energy
bands are summarized in Table I. Accidental degeneracies

where m is a positive integer. Accidental degeneracies occur
only for energies where Eqs. (23) and (24) are simultane-
ously satisfied. No accidental degeneracy can occur between
positive- and negative-energy bands.

No other allowed energies occur besides those in the
bands described above. It is evident that the information
included in this summary is a sufficient basis for writing an
efficient computer program and obtaining a clear picture of
the content of the Kronig-Penney model for use in simulat-
ing physical systems and classroom presentation.

'R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Sect. A
130, 499 (1931).

Some examples include, S. Nagai and J. Kondo, J. Phys. Soc. Jpn.
49, 1255 (1980); H. -J. Unger, J. Phys. C 14, 3727 (1981); E. A.
Babakharyan and Yu. V. Kononents, Phys. Status Solidi (b) 98,
59 (1980); C. Colvard, R. Merlin, and M. V. Klein, Phys. Rev.
Lett. 45, (1980); M. Ya Azbel, ibid. 43, 1954 (1979); 8. Sera-
phin, Z. Naturforsch. 94, 450 (1954).

For example, see A. A. Bahurmuz and P. D. Lolt, Am. J. Phys.
49, 675 (1981);Grover C. Wetsel, Jr. , ibid. 46, 714 (1978).

4R. B. Leighton, Principles of Modern Physics, 2nd ed. (Wiley, New
York, 1970), p. 397; E. Merzbacher, Quantum Mechanics, 2nd ed.
(Wiley, New York), p. 102.

5Shi-Tron Lin and Jan Smit tAm. J. Phys. 48, 193 (1980)] discuss
conditions for obtaining zero gaps at the Brillouin-zone boundary
[cos(qL/2) =Oj and give numerical examples in which zero gaps
occur for the Kronig-Penney model and other simple-dimensional
systems. Apparently, they have not considered the possibility of a
zero gap at the Brillouin-zone center [sin(qL/2) =Oj.


