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The problem of a single magnetic, Wolff-model impurity in an otherwise ideal metallic host is investigat-

ed using the nonperturbative Lanczos method. Convergence is very rapid. The many-body ground-state

energy is investigated and comparisons are made with Tomonaga operator theory and other weak-coupling

schemes. We believe that this is the first application of tridiagonalization to the many-body problem.

I. INTRODUCTION

In this paper we approach the solution of a problem first
posed over twenty years ago by Wolff. ' A single impurity
atom in a nonmagnetic host metal is considered, with no re-
striction placed on the number of electrons in the host con-
duction band. Wolff's original formulation was to treat the
problem using the Hartree-Fock approximation and scatter-
ing theory while drawing upon the results of Koster and
Slater and also those of Friedel. ' The present study is a
continuation of work initiated by one of us. 4 The aim is to
apply the nonperturbative Lanczos method proposed by
Haydock, Heine, and Kelly' to the Wolff model. To the
best of our knowledge this work is the first application of
tridiagonalization to the many-body problem, although a
number of interesting many-body problems could be studied
in this way. 4 In the case of the Wolff model the impurity
state interacts with some appropriate linear combination of
conduction-band orbitals. This linear combination is then
represented as the nearest-neighbor point to the impurity
(chosen to be at the origin) on a semi-infinite linear lattice,
which, in turn, interacts with some different linear combina-
tion, and so forth. Tridiagonalization is the mechanism by
which this isomorphic mapping is accomplished; it is, in
principle, an exact method.

II. VfOLFF MODEL

The impurity is chosen to lie at the origin of the lattice.
The only interaction of interest is the two-body Coulomb
repulsion which is taken to be nonzero on the impurity, ig-
noring the Coulomb interaction between electrons in the
conduction band of the host. All one-body interactions are
absorbed by Hp, which is diagona1,

H = Hp+H
with

with

0=0 =(2npt l)(2npi 1)

1

k, k

(4)

We shall focus our attention on the half-filled symmetric
band for which

(F[np [F) = — 0 =1, (F~Q ~+'~F) =0, (6)

p=0, 1, 2, . . .

These identities play a crucial role in the simplifying of vari-
ous matrix elements generated by the tridiagonalization re-
cursion method which we brief1y outline in Sec. III.

III. METHOD

Prior to this study the use of the tridiagonalization had
been primarily restricted to density-of-states calculations in
regions where Bloch's theorem is no longer valid, i.e., sur-
faces, dislocations, amorphous materials, and so forth. The
main thrust of this paper is an evaluation of the many-body
ground state Ep(U). The crucial first step in the method
lies in the choice of an initial state ~Pp), chosen either for
its symmetry classification or for its computational simplici-
ty. Once the initial state is chosen an orthogonal set of
states ($„l is generated according to the following schema:

0~4;) =m;; ~[4; ~) ™;;~4;)+m;;+~[4;+q)

where 8'p is chosen such that Hp acting on the Fermi sea
vanishes, Hp~F) =0, and

H'=
4 UQ

where U is the Coulomb repulsion at the impurity site and

Hp ——ge„n, + Wp,
k

(2)
Also being generated is the tridiagonal Hermitian matrix M,
the elements of which m~ are nonzero only for i =j or
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i =j + l. As previously noted a variational upper bound
on the ground-state energy Eo may be obtained by the direct
diagonalization of any subrnatrix of M In this work we
have calculated explicitly the matrix elements of M up to
dimensions 4x4. As a consequence, we also obtain expres-
sions for En( ' (U), En( ' ( U), and EII ' ( U), where the su-
perscript refers to the size of the submatrix of M Then by
plotting these points as a function of I/n, where
n = 1, 2, 3, 4 is the size of the submatrix, we extrapolate to
n ~ (I/n ~ 0) which is just the y intercept. Hence, by
reading off the values of the y intercept for each value of U,
we are able to obtain accurate estimates for the ground-state
energy, denoted by Eo '. We then compare our results for
Eo ' with those of second-order perturbation theory and
strong-coupling theory, both of which are known exactly.

IV. RESULTS AND CONCLUSIONS

In this work we have chosen a flat density-of-states sym-
metric about the Fermi level:

1, ——~e~—1 1

p(~) —.' 2 2

,0, otherwise

We also choose our initial state i@n) to be the Fermi sea
iF) (thus i@t) = —fliF) ), since it is well known7 that the
ground state must be a singlet which reduces to iF) when
U=0. Repeated application of 0 upon ~gn) according to
E&I. (7) gives the desired results. Table I lists the type of
matrix elements one encounters in the explicit calculation of
the rn;, . With the matrix identity

it follows that matrix elements of the form &Fi fIHU II iF),
I = 1, 2, 3, . . . , may be evaluated as a sequence of commu-
tators. Once this is accomplished one may evaluate the in-
tegrals over the energies using (8). Table II gives the alge-
braic expressions for the matrix elements m„" and their nu-
merical vlaues.

Once the m;, have been calculated, one obtains ground-
state energies En(" ( U), En ' ( U), and En ' ( U), shown in
Fig. 1(a). In order to obtain an expression for Eo ' one
plots En"' for a fixed value of U, as a function of 1/n In.
Fig. 1(b) we have chosen the values U= 1, 2, and 3 for il-
lustration. The y intercept of these curves, n = ~ (I/n =0)
corresponding to EII '(U), is extrapolated to fit a curve,
comprised of the four points En' (U) =0, En ' (U),
En ' ( U), and En ( U), by standard methods. The error in
the point EII ' (U=0.25) is 1% and for En( ' (U=5) is
0.238%. The coefficient of U in second-order perturbation
theory is —0.0697. In the weak-coupling regime our result
for En ' ( U) follows a parabola with coefficient —0.0698.
For large coupling, En( ' (U) approaches the straight line
E,'"' ( U) = —0.25 U+0.214.

As is usually the case in physics, the region of intermedi-
ate coupling is also the region of most interest and frequent-
ly the most difficult to solve. Figure 1(a) affords us the
luxury of looking graphically at this situation. We see that
for values of U less than 1, Eo ' follows rather closely the

TABLE I. Matrix elements in the explicit calculation of the mIJ.

&Fl &HnnlF) =-I
&FinH,'nlF) =I.08333
&FlnH,' & IF) =1.25
&FinHU4 niF) =I.SI875
&F I &HU5 & IF) =1.927083 3

&Fi QH flHnAiFU) =0
&Fi QHUQHn2 0iF) =0

&F~ QHUAHUQHUAiF) =3.7045477

m = 0
00

m =-U =m
01 4 10

m = (Fino niF& = 1
11 o

m )2 n~F&t2 =-
11 - 21

- 2H2m + H m2 )niF& = 1

m = -[&Fin(H

1 (F
~
g{H3

22 2 0
m12

m =-{ t [&F

m)2

2{m + m ) &F [ AH30( F&
o 11 22 o

[m2 + m2 i 4m m p U ]&FinH2niF&
2

ll 22 ll 22 16 o

2 2
2[m2m im m2 +m U }+m2 U +m2m2 ]11 22 11 22 11 16 11 16 11 22

+ 2&F[nH n[F& - 2m &F[nH niF& + m2 }2
o 11 o 21

2 1

[n. 2249WS + U ]2 = m

16

m = { t [&FinHSniF& - 2(m + m ) Fi &niH4nF&
33 o 11 22

Ill 23 m 2 t
+ {m2 + m2 + 4m m + U )&FinHSn}F&

2

11 22 ll 22 8 o

2 2
2[m2 m + m m2 m U m U )&F[nH2n[F&ll 22 ll 22 ll 8 22 16 o

2 2
+ (m2 m2 + m m U + m2 U )&FinH niF&1122 11224 118 o

+ U &FinH nH nH niF& - m2m " ]o o o 11 2216

+ 2/F(AH3Q)F& - 2{m + m )(F~ AH2niF&
o ll 22 o

2 2
+ 2(m m +m2 +U )&FlnHnlF& -m U }11 22 21 16 o 11

0.475 + 2.7784108U

0.2249976 + 0.0625 U2

TABLE. II. Algebraic expressions for the matrix elements m," and

their numerical values.
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FIG. 1. (a) Results from tridiagonalization (read from top to bot-
tom) for Eo ( U), Eo ( U), Eo ( U), and Eo~ ~ ( U), and for
second-order perturbation theory (on this scale, Eo
& Eo & Eo are indistinguishable). (b) (insert) Illustrating ra-

pid convergence: Eot
"t is plotted as a function of 1/n, where n is the

dimension of the matrix M. The values of U = 1, 2, and 3 are
chosen for illustration.

transition between the weak- and the strong-coupling re-
gimes is taking place.

An advantage of the tridiagonalization scheme is that it
permits us to examine Eo as a function of the complex vari-
able U. The simplest calculation for M of dimension 2&2
yields branch points at U= +2i, thus limiting small-U ex-
pansions to 1U1(2 (see Ref. 4). Further calculation on
the 3 &&3 matrix yields four branch points, those closest to
the origin being at U = + (1.718)i We .have not carried the
analysis out to 4 && 4, but note that m23 vanishes at
U = + (0.89) i and m33 at + (0.413)i

Now the weak-coupling schemes all break down at a criti-
cal U (see Ref. 8). For example, the magnetic susceptibility
in the Tomonaga-operator scheme diverges at U = 1. We
can now appreciate that this is due to the failure of po~er-
series expansions beyond their radius of convergence, which
the present analysis has served to locate. This may be one
of the principal applications of tridiagonalization in the
many-body problem —the location of critical parameters,
whether on the real axis where they signify real phase tran-
sitions, or in the complex plane, whence they might be ex-
orcised in the well-known manner of Pade approximations. '

parabola of second-order perturbation theory. It is for U
between 1 and 2 that Eo ' appears to be making its most
drastic change, and begins to resemble a straight line. We
interpret this to mean that in the range U=1 to U=2 a

ACKNOWLEDGMENT

This research has been supported by the National Science
Foundation under Grant No. DMR-81-06223.

'P. A. Wolff, Phys. Rev. 124, 1030 (1961).
2G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
3J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
4D. C. Mattis, in Physics in One Dimension, edited by J. Bernasconi

and T. Schneider, Springer Series in Solid-State Sciences, Vol. 23
(Springer, New York, 1981).

5R. Haydock, V. Heine and M. J. Kelly, J. Phys. C 5, 2854 (1972);
8, 2591 (1975).

R. Haydock, J. Phys. A 10, 461 (1977); in Solid State Physics. Ad-
vances in Research and Applications, Vol. 35, edited by F. Seitz and

D. Turnbull (Academic, New York, 1980), p. 215.
7D. C. Mattis, Phys. Rev. Lett. 19, 1478 (1967).
8H. C. Fogedby, J. Phys. C 10, 2869 (1977).
D. C. Mattis, Ann. Phys. (N.Y.) 89, 45 (1975). Note that, in com-

paring with the present work, one divides the U in the earlier by
two and sets the momentum cutoff qo=sr (so that the band

1
edges are at co = + —).

2
' The Pade Approximant in Theoretical Physics, edited by G. A. Baker,

Jr. and J. L. Gammel (Academic, New York, 1970).


