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We develop a theory for experiments on triplet-exciton transport involving the measurement of the

evolution of spatially periodic inhomogeneities in the exciton population with the help of observa-

tions of delayed fluorescence. The theory is based on generalized master equations and therefore al-

lows the study of explicit effects of transport coherence for arbitrary degree of coherence. A specific

application to one-dimensional crystals is also given with detailed prescriptions to extract relevant

transport parameters from experiments.

I. INTROI3UCTIGN

This paper combines an established, direct, experimental
technique for transport measurements of triplet Frenkel
excitons in molecular crystals with a relatively recent
theoretical approach for the analysis of exciton transport.
The experimental method is that of Ronchi rulings. '

The theoretical formalism is that of generalized master
equations. ' The primary goal of the present analysis is
the elucidation of the observable effects of transport
coherence on Ronchi ruling signals.

A variety of experimental procedures' ' have
been employed to study triplet-exciton motion in molecu-
lar crystals. The method of Ronchi rulings possesses the
advantages of directness and the relative facility it pro-
vides one to subtract contributions from spurious effects.
A number of experiments based on this method have been
carried out and the anisotropy of the triplet-exciton dif-
fusion tensor has been determined in several crystals. '

However, the theoretical analysis used in conjunction with
these experiments has been based, up to now, on the sim-
ple diffusion equation. Clearly, transport subtleties such
as coherence, which have long been suspected' to exist
in exciton motion, are not amenable to analysis in terms of
the diffusion equation since the latter implies, from the
very start, completely incoherent motion. In recent years
two transport techniques have been developed precisely
with the intention of describing such transport subleties:
that of generalized master equations ' and that of sto-
chastic Liouville equations. The relationships be-
tween the two techniques have been investigated in consid-
erable detail. The method of generalized master equa-
tions is particularly appropriate to the investigation of
direct migration experiments such as those involving Ron-
chi rulings. We have therefore begun a thorough analysis
of the latter based on generalized master equations.

The basic idea behind Ronchi ruling experiments can be
described as follows. If one shines light on a crystal and
thereby creates triplet excitons in a region small enough so
that a substantial fraction of the excitons can move out of
that region within their lifetime, the delayed fluorescence
signal arising from the mutual annihilation of the excitons
decays in time as a result not only of the finiteness of the
lifetime but also of the motion. This is so because the fas-
ter the motion, the more is the depletion of the population

from the initially illuminated region and the signal is, in
essence, proportional to the square of the population. To
make the signal strong enough to become observable, light
is made to shine not on a single small region but through a
periodic linear array of alternating opaque and transparent
strips (the Ronchi ruling) placed under the crystal, and the
delayed fluorescence signal is collected from the entire
crystal.

The emission is observed in a time-dependent fashion
both during the buildup part when the light source is on at
a constant nonzero intensity, and during the decay part
when the source is shut off. For experimental details the
reader is referred to Ref. 1. While it is possible, in princi-
ple, to study the steady-state (rather than time-dependent)
signal in such a setup, there are a number of experimental
pitfalls in the interpretation of such observations which
can easily lead to an overestimation of the diffusion con-
stant. This problem is avoided in time-dependent mea-
surements because it is possible to subtract the signal one
would have if exciton motion were absent. ' This is an
essential feature of this kind of experiment which helps in
the practical elimination of spurious effects. While it is
evidently impossible to cause the excitons to refrain from
moving, it is possible to make observations in the absence
of rulings. One still has a delayed fluorescence signal
which contains several of the same spurious contributions
that are present in the signal with rulings but does not
contain the contribution from exciton motion. The differ-
ence of the two normalized signals, which we call b,4(t) in
what follows, is thus directly sensitive to exciton motion.

The special feature of the theoretical technique of gen-
eralized master equations (GME) is that it is capable of
providing a unified analysis of coherent and incoherent
motion. It is not necessary to borrow band concepts in
one limit, diffusion or hopping concepts in the other limit
and move from one transport equation to another as the
system conditions change. The memory functions in the
GME, and particularly the essential time dependence of
those memory functions, allow such a unification. It is
thus possible to provide a single expression for the experi-
mental signal valid for arbitrary degrees of coherence and
to use it to interpret the observations. Furthermore, it is
possible on the one hand to obtain the GME memory
functions from spectral observations or detailed model cal-
culations and thus have that information reflected in the
interpretation of the particular experiment. On the other
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hand, it is also possible to use GME's corresponding to
simple intuitive pictures such as that involving the mean
free path of the exciton. The signal predicted by the
GME can thus be studied not only in the extreme dif-
fusive limit when the mean free path is smaller than a lat-
tice constant (the intersite distance) and in the extreme
coherent limit when the mean free path is infinite (total
absence of scattering) but as we shall show below, it can be
analyzed explicitly for the entire intermediate range.

The combination of the GME approach and the Ronchi
ruling technique will be seen to have several interesting
consequences. It is clear that the effect of coherence will
depend on the magnitude of the ratio of the mean free
path to the lattice constant, or, what is essentially the
same, the ratio of the exciton bandwidth to the scattering
rate. Systematic experimental variation of the bandwidth
is not feasible in general. It will be seen, however, that, in
the experimental approach under discussion, one deals in-
stead with a quantity which is the bandwidth reduced by
the ratio of the lattice constant to the ruling period. Sys-
tematic variation of the ruling period is certainly possible.

It is thus that a systematic study of exciton coherence is
possible, at least in principle, via the GME analysis of
Ronchi ruling experiments. Of the four characteristic
lengths that are present in the system, the lattice constant,
the mean free path, the diffusion length, and the period of
the Ronchi rulings, only the last two have appeared in pre-
vious analyses of the experiment. The present analysis
will show that if the ruling period, the experimentally con-
trollable quantity, is manipulated as to be of the order of
the mean free path, new observable features visible in the
time dependence of the signal appear. A practical discus-
sion of how the degree of coherence may be determined
from those features will be found in Sec. IV below. The
rest of the paper is laid out as follows. The theoretical
analysis leading to general expressions for the experimen-
tal signals is displayed in Secs. II and III. Particular cases
and plots are given in Sec. IV. They include the case of
motion with arbitrary degree of coherence as well as the
limits of pure coherence and of complete incoherence. A
discussion of the assumptions underlying the theory forms
Sec. V, and concluding remarks appear in Sec. VI.

II. EXACT EXPRESSIONS FOR EXCITON PROBABILITIES
IN THE RONCHI GEOMETRY

The starting point of our analysis is the augmented generalized inaster equation (GME) obeyed by the probabilities
P (t) of occupation by the exciton of the site m in the crystal at time t:

QP (t) P (t)= f dt'g[W „(t t')P„(t') W—„(t—t')—P (t')] — +W (t) y'P (t) . —

We use the term "augmented" here to refer to the presence
of the last three terms in (2.1). These additional three
terms represent, respectively, exciton decay with lifetime
w, exciton creation through the illumination source Wm(t),
and mutual annihilation of excitons with an annihilation
constant which equals y except for a proportionality fac-
tor of a unit cell volume. The 8~„(t)'s in the standard
GME are memory functions capable of describing exciton
motion with arbitrary degree of coherence. In the limit of
complete incoherence they are delta functions in time and
are proportional to the transition rates for the exciton to
move from site n to site m.

Various details about the validity of the GME, its capa-
bility to unify coherent and incoherent motion, and ex-
pressions, microscopic and otherwise, that can be obtained
for its W „(t)'s have been given elsewhere. 9 Suffice it to
state that essentially all limiting cases of interest can be
obtained from (2.1) by varying the W's appropriately.

Concerning the three additional terms in (2.1) the fol-
lowing statements are appropriate: (a) r is the total life-
time including both the radiative and radiationless contri-
butions. {b) Although some questions exist '" about the
validity of the traditional form for the bilinear annihila-
tion term y'P (t) it can be shown (see Sec. V) that, for the
present analysis of Ronchi grating signals, its use is indeed
valid. (c) The specific form for the source term W (t)
used below is representative of the particular (spatially
periodic) geometry and of the tiine dependence of the exci-
tation.

It is well known that the solution of (2.1) without the
three additional terms can be written in terms of initial

I

conditions as

P (t) = g P „(t)P„(0), (2.2)

(2.3)

Here, and henceforth in the paper, tildes denote Laplace
transforms and e is the Laplace variable. The e' appearing
in P in (2.3) equals e+ I /r.

As mentioned in Sec. I, the Ronchi grating experiments

where the it 's are the propagators. Specifically, g „(t) is
the solution of (2.1) (without the three additional terms),
i.e., the probability of occupation of site m at time t, for
the special initial condition that site n was occupied at
time 0. Translational invariance (periodicity) of the crys-
tal allows one to write P „as the single-indexed quantity

One now considers experimental conditions involving
small enough illumination intensities so that the last term
in (2.1) can be neglected, ' and then uses the solutions thus
obtained to get from that term the experimentally observ-
able signal, viz. , the delayed fluorescence. This procedure
is being followed to be faithful to the experiment' and not
out of an inability to solve (2.1). The transport equation
in the presence of the annihilation terms can indeed be
solved exactly at least for medium intensities of illumina-
tion. '"

The solution of (2.1) without the last term is given gen-
erally in the Laplace domain as

P (e) = g 17 „{e')P„(0)+g g „(e')J „(e) .
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consist of two parts, one in which the delayed fluorescence
builds up to its saturation value under the action of a con-
stant (in time) illumination source, and the other in which
the source is shut off and the delayed fluorescence decays
from the saturation value. For the buildup part there are
no excitons initially in the system, P„(0)=0 and (2.3) gives

ing it one obtains the time domain solution

qpP (t)= —,'(1—e 'i')

+ g icos(rlim) —f dt'e ' i'p '(t'}
1=1

eP (e)= gli „(e')g„ip,

where one takes the illumination source to be

(2.4)

(2.5)

(2.12)

whereas by taking the limit of (2.11) as e~ oo [or the limit
of (2.12) as t~ oo] one obtains the steady-state saturation
value

pk yp ikm (2.6)

where the summation is over all the N sites of the crystal
(assumed, as usual, to obey periodic boundary conditions
or to be infinite in extent), one rewrites (2.4} as

with io as the intensity of illumination multiplied by the
appropriate So~Ti absorption coefficient, g as the
function characteristic of the ruling geometry and e(t) as
the Heaviside unit step function. Introducing discrete
Fourier transforms such as P", ll", g through relations
such as

qpp ( oo ) = —, + g SIcos(ri~m)
1=1 'T

(2.13}

For the decay part of the experiment one returns to
(2.3), substitutes the saturation values P„(oo } given by
(2.13) as the initial values P„(0) in (2.3), and, since no
source term W exists, obtains

1 1
qpp (e)=—

2 1e+—
7

p k( ) yk(et)gk ~

The ruling geometry imposes the relation

00

g"=—5k p+ g SI(5k „,+5k „,)
1=1

(2.7) + g Slcos(ritm) f' ——
Q

' 8+-
1=1 7 7

(2.14)
for the decay probabilities. A Laplace inversion gives

2
m.(2l —1)

m.(2l —1}
2

(2.9)

rli =2~ (21 —1),
Xo

(2.10)

where a is the lattice constant. The substitution of (2.8) in
(2.7) yields, with qp N(i pr)——

1 1
(qpr)eP (e)=—

2 16+

+ g Stcos(ritm) f ' e+-
1=1 7

(2.11)

as the solution, in the Laplace domain, of the exciton oc-
cupation probabilities I' for the buildup part of the sig-

nal. Equation (2.11) may be used in two ways. By invert-

where the opaque and transparent strips alternate with the
grating period xp. Needless to say, (2.8) is simply the
Fourier transform of a square wave. We have used here
the definition of a dimensionless wavevector gi through

qpp (t) = -,' e

+ g Stcos(ritm) —ll
"' — e ' 'g"'(t) .

1=1 T

(2.15)

Equations (2.13) for the saturation value, and (2.12) and
(2.15) for the buildup and decay cases, respectively, con-
tain the explicit expressions we have obtained for exciton
probabilities. It is to be stressed that they are valid wheth-
er or not a diffusion equation or a master equation or a
pure Schrodinger equation is valid. Whatever the nature

of the motion is, the appropriate f ' (Fourier transform of
the propagator) may be used in the expressions. It will be
seen in Sec. IV how the nature of the motion decides the
form of P"' and thence the time dependence of the signal.
It is worth noticing the similarities and differences in the
buildup and decay cases. The second terms of both are
identical except that e 'i'P '(t) appears in the decay case
while its integral up to time t (normalized by r} appears in
the buildup case. Similarly, the first terms are related in
that e 'i' appears in the decay case but its integral (nor-
malized by r), i.e., 1 —e 'i appears in the buildup case.

III. EXPLICIT SIGNALS FOR THE DELAYED FLUORESCENCE

Since the delayed fluorescence signal is proportional to g P (t), one squares and sums (2.13), (2.12), and (2.15) over
the entire crystal to obtain

QP~(oo)=c 1+ g AI
1=1

(3 1)
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gP (t)=c (1—e 'l
) + +At

m 1=1

f dtl —t IT/ l(tt)

—t'/tq tl

2

(3.2)

g P2 (t) = —2tlr+ g A [ tl—rq tl(t)]2 (3.3}

where the constant c is proportional to (ior) . Equation (3.2) refers to the buildup part, (3.3) to the decay part, and (3.1)
to the saturation value. The coefficients A1 are defined by

2

At= (3.4)
n (2l —1}

The symbol C&(t) will be used to denote g P (t)/g P ( ao ), i.e., the signal normalized to the saturation value. The
superscripts b and d will be used to represent buildup and decay, respectively. The normalized signals are then

2

trt (t)= 1+ g At
1=1

8—tlt')2+ g J dt's
—t'lty tl(t~}

i m (2l —1)
(3.5)

0 "(t)= 1+ +At
1=1

OO

y A [q tl(t)]2 2tlt— (3.6)

We have explained in Sec. I how careful experimentation requires that attention be focused on the difference between
these signals and their values in the absence of motion, or equivalently in the absence of rulings (x0~0o). These are
given merely by subtracting e 'l' and (1—e 'l') from the right-hand sides of (3.6} and (3.5), respectively. One gets

Pb( t) ( 1 e
—t/T)2Eb( t)

Q (pd( t )
—2f /T+ d( t )

(3.7)

(3.8)

The functions (1—e 'l
) and e 'l' appearing in the right-hand sides of (3.7) and (3.8) are the respective values of the

buildup signal tlat and the decay signal tlat in the absence of rulings The fu. nctions E (t) and E (t) which multiply them
in the presence of rulings contain information about exciton motion and are given by

E"(t)= 1+ gA,
1=1

t, 2

dt'e ' 'P '(t')
0

(1 e' ')f '(I/—~)
(3.9)

Ed(t) =
1=1

g A, [[P"'(t)] —I }
1=1

(3.10)

We have written (3.9) in a slightly complex fashion to em-
phasize its formal relation to (3.10). Needless to say it can
be written more simply for computational purposes.

motion is completely coherent, i.e., if an initially popu-
lated band state is never scattered, the appropriate trans-
port equation in real space is the Schrodinger equation

IV. PARTICULAR CASES AND APPLICATION
TO POSSIBLE EXPERIMENTS

dC

dt
i V(C +)+—C )) (4.3)

dp (t) =F(P +1+P 1
—2P )

dt
(4.1)

wherein F is the nearest-neighbor transfer rate related sim-
ply to the diffusion constant D through

D =Fa

with a as the lattice constant. If, on the other hand, the

We now study particular cases of the general expres-
sions (3.7)—(3.10) for the Ronchi ruling signals by simply
substituting the appropriate propagators g ' in them.
Consider for simplicity only one-dimensional crystals and
basic nearest-neighbor interactions. If the motion is com-
pletely incoherent, the appropriate transport equation is

obeyed by the amplitude C (t), where V is the nearest-
neighbor transfer matrix element which is proportional to
the exciton bandwidth. The corresponding equation
obeyed by the probability P (t) is the GME with the
memory '

IV „(t)=F(5 „+,+6,„,)5(t) (4.5)

are both extremes of a general situation represented by the
GME with the memories

IV „(t)=——J' „(2Vt):—IV"„(t) .
t dt

The coherent case represented by (4.3) or (4.4) and the
incoherent case represented by (4.1) or by
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8' „(t)= 8'"„"(t)e (4.6) (4.3), (4.4) is

P (t)=e ' 'I„(2Ft), (4.7)

where I is the mth modified Bessel function. This leads
to

The W"„"(t) is the coherent memory of (4.4) and a is the
rate of scattering. %'e refer the reader to Refs. 9 and 12
for further elaboration of these memories and Sec. V
below for a further discussion of the physical meaning of
(4.6).

The Fourier transforms P '(t) of the propagators g (t)
corresponding to these three cases are of interest to the
present analysis. They have all been calculated elsewhere.
Thus the perfectly incoherent propagator corresponding to
(4.1), (4.5) is

f (t)=J'(2Vt}, (4.10)

where J is the mth ordinary Bessel function. This leads
to

P"'(t) =Jo(4Vtsin(gt/2)), (4.1 1)

(I/&)tlj (I/&)=[1+16(vr) sill (7)t/2)] 'r . (412)

The intermediate coherence case has also been worked
out completely. A new, simple, and particularly con-
venient form for the intermediate propagator has been
given recently. It is

—4' sin2(gI /2)Q"'(t) =e

( I/r)f ( I/r) =[I+4Fr sin (rtt/2)]

(4.8)

(4.9)

g (t)=J (2Vt)e

du ae " "'J [2V(t —u )' ] .
0 m

The perfectly coherent propagator corresponding to It leads to
(4.13)

&I(t) =Jo(4Vt sin(7}t /2))e '+ f du ae ~" "'Jo((t2—u ~) ~ 24V sin(7)t/2) ),
(I/r)tP"'(I/r)= [[(I+ax) +16(Vr) sin (qt/2)]' —ar]

(4.14)

(4.15)

It is clear that Eqs. (4.13)—(4.15) reduce to the above given
extreme cases in the respective limits. These limits are
a~0 (coherent) and a~ ce, V~ oo, 2V /a =F (in-
coherent).

From (2.10) it is obvious that gt is a very small quantity
(relative to 1) since the lattice constant a is of the order of
5 or 10 A whereas the ruling period xo is typically of the
order of several microns (or larger) for all practical rul-
ings. It follows then that the replacement

sin(g, /2}=g, /2 (4.16)

4F sin (alt/2)=4' F(a /xo) (21 —1)

8 V sin (rlr/2) =8m ( Va /xo) (2I —1)

(4.17}

(4.18)

This replacement, which is nothing other than the contin-
uum approximation, yields

= [[(I+ar)'+(4vrVra/xo)'(2l —1}']' '
7

—ar] —1 (4.19)

for the general case, the coherent and incoherent extremes
being, respectively,

is amply valid. While there is no need to make such a re-
placement in the above expressions (they may be used as
given) we shall make it in the light of the applicable values
and write

=[1+(4m Vra/xo) (21 —1)2] 'r~, (4.20)
T 7

I

=[1+(2vr~Fra/xo) (21 —1)2] ' . (4.21)
'T

lT ——2a ( V/a)(ar —1 ~e ')'~2 . (4.22)

Equation (4.22) is obtained by calculating for this model,
the mean-square displacement at t =~ and equating it to
the square of /T. Crucial to the physics of the experiments
under discussion is the ratio lT/xo. While the underlying
picture in the incoherent limit is that of an exciton moving
across the ruling period as a random walker
(lT/xo=v 2~F~alxo), in the coherent limit the exciton
is envisaged as moving without scattering and with a velo-
city ~2Va (lT/xo &2Vra/xo). Eq—u—ations (4.20) and
{4.21) may now be rewritten in terms of this ratio of the
transport length to the ruling period. In the purely
coherent limit, the delayed fluorescence signals (3.7) and
(3.8) are given by

For the subsequent discussion it is convenient to intro-
duce a "transport length" lz, defined as the average dis-
tance traveled by the exciton during its lifetime, whatever
its degree of coherence. It is a generalization of the well-
known diffusion length lD to which it reduces under com-
pletely incoherent conditions. For the model of the
present section lT is given by

Q@h(t) ( 1
—flT)2(2gcoh) —1

/=1

2
dt' Jo(zl t') —1 (4.23)
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b @ (t) =e '~'(2S"") ' g A/[Jo(z/t) —1]
1=1

(4.24)

(4.25)

where S""= 1 —(2V 2lr /xp )tanh(xo /4v 2lT ), where z/ = (2l —1)(2irW2lT /xo)(1/~), and A/ are given by (3 4) and (4 20).
In the completely incoherent limit, one recovers the results of Ref. 1:

r

b,@"(t)=(1— ' ')'(2S'"') ' g A f dt'
1=1

Z@d(t) e 2tlr(2Sinc) —i

I=1
(4.26)

where

S'"'= 1 ——,[(6~2lT /xp )tanh(xp/2W2lr ) + sech (xo/2~21T )],

(4.28)

where y/ =(2l —1)(m~2lT /xp)(1/r), and A/ are given by (3.4) and (4.21).

In Eqs. (4.23)—(4.26) use has been made of an exact evaluation of the summation g/, A/ which is possible in the
two extreme limits. The signal in the intermediate coherence domain is given by the conjunction of (3.4), (3.7)—(3.10),
and (4.14) and (4.15). There is little advantage to rewriting the complete expressions, but the forms

t
1( '(t)=Jo((2/ —l)g„h(t/v))e '+ I du ae " "'Jo((21 —lg'„h(t —u )'~ (1/r)), (4.27)

T

= [[(1+ar) +g„h(21 —1) ]'~ —ar I
7

that (4.14) and (4.15) take in the light of the continuum
approximation (4.16) and of the definition (4.22) of the
transport length may be helpful. The quantity g„h intro-
duced in (4.27), (4.28) and an analogous quantity g;„, to be
used below are defined as

0 oh=4~««xo =2~&~(IT) oh/xo

=27T~FTa /xp = ~2%(17)' /xp

(4.29)

(4.30)

Note that g;„, is identical to the parameter a of Ref. 1.
Several experimentally relevant reasons, which make it

desirable that observations of the buildup of the delayed
fluorescence be made as well as those of its decay, have
been discussed elsewhere. ' When actual observations of
the buildup are carried out, expressions (3.7) and (3.9) and
the various particular cases including (4.23) and (4.25)
may be used directly. However, in the plots below only
the decay signals have been shown because they are nu-

merically easier to obtain and contain all the physics of in-

terest.
How could the experiments under discussion ascertain

whether exciton motion is coherent, and, if so, measure
the degree of coherence'7 We now address this practical
question with the help of the above results. In Fig. 1 is
plotted the time-dependent observable b4 (t), which, as-
explained in Sec. III, is the difference of the (normalized)
delayed fluorescence signals with and without rulings.
The family of dashed lines represents completely in-
coherent motion and corresponds to (4.26). The family of
solid lines represents purely coherent motion and corre-
sponds to (4.24). There are corresponding pairs in the two
families, a, b,c,d referring, respectively, to four different
values of lr/xo, as shown. Although no dramatic effects
such as oscillations are seen in the coherent curves of Fig.
1, their shapes are considerably different from those of the
incoherent curves.

To show how clearly discernible the differences are, we
present Fig. 2. Equation (4.24) shows that the coherent
theory, if used to fit observations, would yield a value of
g„h, which, from a knowledge of the ruling period and the
lifetime, would give a value of the exciton velocity. On
the other hand, use of the incoherent theory through (4.26)
would yield a value of g;„, and thence the exciton diffusion
constant. Given an experimental curve and two compet-
ing theories it is thus necessary on one hand to decide be-
tween the applicability of the two theories and on the oth-
er to determine the value of the appropriate parameter

Q/
/

I
/

/
/

/

/

~C
/t

b
I

O 0,2 OA 0.6 0.8 1.0 1.2 1A &.6 &.8 2.0
~/r

FIG. 1. Delayed fluorescence decay signal —AC? (t) plotted
as a function of the dimensionless time t/r for the extreme cases
of pure coherence and complete incoherence. Curves a, b, c,d,
refer, respectively, to the values 0.05,0.15,0.35,0.45 of IT/xo, the
ratio of the transport length to the ruling period. Solid lines
represent the purely coherent case, and the dashed lines the com-
pletely incoherent case. Curves of the latter kind have been al-
ready observed experimentally (e.g., Fig. 5 of Ref. 1).
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(velocity or V versus diffusion constant or F). One way to
achieve both these goals is to attempt best fits and decide
which theory (and parameter value) describes the observa-
tions more closely. An experimentally preferable way,
however, is as follows. One inverts the two theoretical ex-
pressions to give the two basic parameters g„h and g;„, in
terms of the observable. From the measured values of the
observable, g„h and g;„, are determined. These two sets of
experimental values of g are then plotted versus the exper-
imentally measured quantity 1/xo. A straight line passing
through the origin, if obtained, indicates that the correct
theory has been applied and the slope yields the value of
velocity or diffusion constant. This procedure, which we
have also explained in the context of steady-state observ-
ables, possesses the advantage of using linearity, and
departures from it, for deciding between the theories.

As an example we consider a system in which exciton
motion is coherent. A measurement is made with a certain
ruling period xo By varying (IT/xo), curves such as the
dashed lines of Fig. 1 are used to produce a best fit to the
observed plot. A value of g;„, is obtained from it. A new
measurem. ent with a different value of the ruling period is
now made and a new value of g;„, is obtained similarly.
The procedure is repeated for several values of xo and a
plot of the "experimental" quantities g;„, and xo is made.
This is curve b of Fig. 2. By using curves such as the
solid lines of Fig. 1, an identical procedure yields curve a.
Figure 2 clearly shows that, if exciton motion is purely
coherent, the incoherent motion theory will be experimen-
tally shown to be completely inadequate if the above pro-
cedure is followed. Needless to say, if the actual motion is
incoherent, the coherent theory would show clear depar-

FIG. 2. Plot vs (1/xo), the spatial frequency of the rulings, of
the dimensionless quantities g„h=2vrV 2(lz )„hlxo for the purely
coherent case (curve a) and g;„,=~V 2(1z );„ /xp for the com-
pletely incoherent case (curve b), as obtained by graphically in-

verting expressions (4.24) and (4.26) in the text for the same "ob-
served" signal —h4 (t). The latter is obtained by fitting curves
such as those in Fig. 1. The straight-line behavior a indicates
that the correct theory has been used to interpret the measure-
ments. The clear departure of curve b from straight-line
behavior shows that the theory used for b is incorrect. The
straight line a corresponds to a transport length lT ——50 pm.
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FIG. 3. Plot of the dimensionless quantities g ht/r for the
purely coherent case (curve a) and g;„,t/r for the completely in-
coherent case (such as curve b) as obtained by graphically invert-
ing expressions such as (3.10) in the text for the same "observed"
E (t) of Fig. 4. As in Fig. 2, the straight-line behavior a indi-
cates that the (coherent) theory is correct and the clear departure
of curve b from linearity that the (incoherent) theory is inapplic-
able. See text for further discussion. The line a corresponds to

tore from linearity.
The results of the above procedure as reported in Fig. 2

do not make clear how bad the fits of the "incorrect"
theory are to the individual time-dependent curves for
each value of xo. Since the more inadequate these fits are
the clearer is the experimental procedure of distinguishing
between the two, it is important to appreciate the extent of
the inadequacy. To this end we present Fig. 3. A single
xo is considered in the "measurement. " The "experimen-
tal" values of h@d(t—) are multiplied by e '/' to produce
the function Ed(t) of (3.10). A graphical inversion of the
purely coherent and completely incoherent expressions
which fit the "observed" curve best is carried out to pro-
duce "experimental" values of g„„t/r and g;„,t/r, respec-
tively. Figure 4 shows the E (t) curves. The single
coherent curve which fits the "observed" curve completely
(by assumption) is a. Curves b, c, d, and e are several pos-
sible fits in four different time regions, based on the in-
coherent Ed(t) corresponding to (4.26). Visual inspection
already shows the inadequacy of the incoherent curves.
Figure 3, where the values of g„ht /r and g;„,t /r as deter-
mined from Fig. 4 are plotted as functions of t/~, makes
the inapplicability of the incoherent theory transparent.

The above discussion has centered on the clear differ-
ences in the experimental manifestation of the extreme
limits of exciton motion. The intermediate behavior is
shown in Figs. 5 and 6. The quantity plotted is —bA&d(t)

as given by (3.10), (3.4), (4.27), and (4.28). In Fig. 5, the
ratio lT/xo of the transport length to the ruling period is
held constant whereas in Fig. 6, the quantity held constant
is the bandwidth for a given ruling period, or more gen-
erally, the ratio V 2V~a /xo of the coherent transport
length to the ruling period. If the transport length Iz- is
known from an independent measurement, a family of
plots such as Fig. 5 may be used to determine the degree
of coherence. For a given measured xo such a family of
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FIG. 4. Function E (t) from (3.10) in the text, which is the
deca si nal —6@ (t) multiphed by e ' 'plotted as a function of
t!r. Curve a corresponds to the "observed, " i.e., the purely
coherent case, and curves b, e,d, to several possible fits to a on
the basis of the incoherent theory in the t & v. region. It is clear-
ly seen that the incoherent theory is inapplicable. The dashed
line curve e is close to a in the region of large times (t & ~).

plots is constructed (or xo is varied to give IT/xo ——/x =0.2 as
in Fig. 5) and the value of ar is read off from the best fit-
ting curve. Knowledge of IT [see (4.22)] and ar then gives
V~ and therefore the mean free path, or V/a or any
desired combination thereof. Figure 6 is useful to the ex-
perimental determination of coherence in situations when
the exciton velocity or bandwidth is known. The pro-
cedure is entirely similar to that for Fig. 5. Note that in
Fig. 6 the ordering of the curves is not monotonic with a~,
in spite of the fact that IT decreases montonically as the
degree of incoherence (or ar) is increased. This is due to
the fact that, for the values chosen, lT starts out at the
coherent end being larger than the critical value (for a

g 3.0

~20
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FIG. 5. Intermediate coherence behavior as reflected in the
delayed fluorescence decay signal —AN~(t) plotted as a function
of the dimensionless time t/~. The value of lT/xo is 0.2 for all
curves. The practical usefulness of the plot is in ascertaining the
degree of coherence experimentally if lT (e.g. , the diffusion
length) is known from an independent measurement. The lower-
most curve a~=0 is the coherent case, while the uppermost one
ar=10 is already indistinguishable from the completely in-
coherent case.

l
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FIG. 6. Intermediate coherence behavior as reflected in—AN~(t) plotted as a function of t/~ with the exciton band-
width held constant for a given ruling period, or more generally,
with the ratio Vv.a/xo held constant (at the value 0.25). The
usefulness of the plots is in deducing the degree of coherence ex-
penmenerimentally if the bandwidth is known from an independent
measurement.

iven value of x ) for which the size of the motion effect
is largest. As a~ is varied, IT passes through this critica
value but then moves away from it resulting once again in
a smaller effect. It is hoped that the above analysis will be
helpful to future experiments along these lines.

V. VALIDITY OF THE ASSUMPTIONS
UNDERLYING THE THEORY

The primary assumptions underlying the discussion, ex-
press&on,ressions, and plots of Sec. IV above are (a) the one-
dimensional nature of the crystal, (b) the nearest-neighbor
nature of the transfer interactions V, (c) the applicability
of the bilinear annihilation term in (2.1), (d) the applicabi-
ity of generalized master equations for describing exciton
transport in Ronchi ruling experiments, and (e) the appli-
cability of the particular intermediate memory functions
W „(t) of (4.6). The validity of these assumptions will
now be discussed in turn.

Assumptions (a) and (b) are not present in the analysis
of Secs. II and III. They have been made only in Sec. IV
and only for simplicity. That the rulings provide a one-
dimensional spatial inhomogeneity is one of the physical
reasons for assumption (a). In a crystal which is not one-
dimensional, the quantities V, a, a, F, etc. , are to be taken
as eeffectively one dimensional. In any case assumption (a)

31may be relaxed quite easily. The same is true of (b).
There is also a sound physical reason for the latter as-
sumpmption: Triplet excitons are known to have very s ort-

~ ~ ~ranged transfer matrix elements since the responsib e
mechanism is that of exchange interactions.

Some recent theoretical work" on exciton annihilation
has cast doubt on the validity of the bilinear annihilation
term —y 'P~ (t) in (2.1). It has been found that generally
that term should be replaced by one which is nonlocal
both in time and in space. It has been argued that, under
certain conditions, for exciton motion which is sufficiently
fast, the term may be taken to be local in time, and that it
is quite likely that these conditions are satisfied in most
sys emsstems of interest. " However, the nonlocal nature in

fspace persists. The traditional usage of the local term o
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(2.1) has been reconciled with the fact that its conse-
quences are identical to those of the nonlocal term provid-
ed the exciton distribution is initially homogeneous in
space. %'hile most traditional usage has indeed been in the
context of homogeneous initial distributions, conflict
would be expected for inhomogeneous initial distributions
such as those in Ronchi ruling experiments. However, the
conflict disappears in the deductions used in this paper for
the following reasons. The nonlocal term is

g„A „P„(t), the relation to the local term y'P —(t)
being

(5.1)

There is little doubt that the two terms would generally
predict different behavior for I' . However, the delayed
fluorescence signal is collected from the entire crystal and
thus involves a summation of the term over all m. And
one has

QA„p'=g) p'
m [ n

as a result of the translational periodicity of the crystal.
Thus, although in the light of the theory of Ref. 11,
(de/dt)annihi1ation is given incorrectly by the local annihi-
lation term in (2.1), the summed quantity

(dI m /dt)n~g„1nl, ~n ls alWayS glVell COrleetly by ltS 11Se.

And it is the summed quantity that appears in the delayed
fluorescence signal obtained in the Ronchi ruling experi-
ments. The use of the local term for the present analysis
is therefore quite valid.

Assumption (d) concerns the applicability of the GME
itself. In the specific context of Ronchi ruling experi-
ments there are three classes of initial conditions under
which the GME applies without approximation. The first
is when each exciton is initially completely site localized,
the initial probability distribution being due to the exciton
number varying in space. For each exciton, the GME is
then valid exactly because the density matrix p(0) is ini-
tially diagonal. The effect due to the various excitons is
additive. This situation is that encountered in the dif-
fusion equation analyses. ' More general initial condi-
tions are, however, possible in these experiments. A single
exciton may be spread throughout the crystal. The second
class of initial conditions under which the GME is exact
for Ronchi ruling experiments is one in which an indivi-
dual exciton is in a single Bloch state ' ' or in a thermal-
ized equilibrium state. In the third class the excitons
may be spread out to an intermediate degree (neither fully
localized nor fully delocalized) but in such a way that the
ensemble average of the off-diagonal elements of p(0) in
the site representation vanishes. This last class has the
first two as special cases, generally involves a mixed initial
density matrix, and provides the practical justification
for the use of (2.1). It is clearly possible to construct spe-
cial initial conditions for which (2.1) is not valid. How-
ever, in such cases, one can always redo the analysis by
augmenting the GME (2.1) through a driving term arising
from the initial off-diagonal p(0). This procedure has
been explained in detail in Refs. 8 and 9.

Finally we discuss the applicability of the particular in-
termediate memory functions (4.6) used in Sec. IV. The
physics underlying them is that of the equation

~pmn
1 V(Pm + 1n +Pm —1n Pmn + 1 Pmn —1)Bt

—e(1 —6 „)p „, (5.3)

—a(1 —5 „)p „

+~mn3 1(pm+1m+1+pm —1m —1 pmm )—2

(5.4)

The SLE (5.4) reduces to (5.3) when y1
——0, but describes

"phonon-assisted" motion through the rates y1 in addi-
tion to the "phonon-hindered" motion described by (5.3)
through V and a. The propagator g ' corresponding to
(5.4) is obtained in the Laplace domain as

1( '(e)= I[(e.+a) +16V sin (1),/2)]'~' —a

+4y1sin (1)&/2) I (5.5)

Substitution in (3.7)—(3.10) and calculation of the result-
ing delayed fluorescence signals are straightforward, al-
though tedious numerical integrations are required. These
integrations have been carried out in other contexts and
the steady-state Ronchi ruling signals have also been ob-
tained explicitly. The general expressions for the de-
layed fluorescence given in Sec. III above, in particular
(3.7)—(3.10), can be used easily in conjunction with trans-
port instruments which are even more detailed than (5.3)
or (5.4) if such detail is warranted by the particular experi-
mental situation. Multiple scattering times, several
channels of motion, specific inclusion of temperature
effects, and memory functions corresponding to ob-
served optical spectra are some of the features that could
thus be included, if required, in the general analysis of
Secs. II and III.

where p is the exciton density matrix. Equation (5.3) is
the simplest transport equation containing the essential
features of motion with arbitrary degree of coherence.
For o.~0, i.e., in the absence of scattering, it clearly
reduces to the von Neum ann equation in complete
equivalence to the Schrodinger equation (4.3). It can be
shown that in the opposite limit (a~ oo, V~ ao,
V /a=const), it becomes the simple master (hopping)
equation (4.1) with hopping rates I' =2V /a. We have
used (5.3) in the illustrative calculations of Sec. IV precise-
ly because of its simplicity. The bandwidth associated
with it is 4V, the average group velocity is ~2Va, the
mean free path is ~2Va/a, and the diffusion constant for
small V/o; is 2 V a /cx. Much physics can thus be
described in terms of the small number of parameters in it.
For these reasons it has been used in several recent investi-
gations of the effect of transport coherence on sensitized
luminescence, ' annihilation, " and singlet gratings. ' If
necessary, the equation may be replaced by more detailed
transport descriptions. An example might be that of the
stochastic Liouville equation (SLE), written in the simpli-
fied form9 37

~pmn
1 V(Pm ~ 1n +Pm —I n Pmn + 1 Pmn —1)Bt
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VI. DISCUSSION

A general theory of coherence effects in exciton trans-
port as might be seen via delayed fluorescence in Ronchi
ruling experiments and a practical prescription for the ex-
perimentalist to ascertain those effects from measurements
have been the two goals of the present investigation. The
point of departure is the GME (2.1), the exact solutions
for the exciton probabilities are (2.12), (2.13), and (2.15),
and general results for the delayed fluorescence signals are
(3.7)—(3.10). Signals for completely incoherent motion
have been recovered in (4.25) and (4.26), new results for
purely coherent motion are in (4.23) and (4.24), and inter-
Inediate results valid for arbitrary degree of coherence are
obtained from (4.27) and (4.28). These various signals
have been plotted in Figs. 1, 5, and 6: the extremes of
coherence and incoherence in Fig. 1, and the intermediate
cases in Figs. 5 and 6. The practical prescription for an
experimental determination of whether exciton motion is
coherent and incoherent and for the measurement of the
degree of coherence has been given in the discussion
relevant to the plots.

There are two principal ways in which the differences
between coherent and incoherent motion could be mani-
fested in time-dependent delayed fluorescence decay sig-
nals: oscillations and the shape (concave versus convex)
near the origin. Oscillations can occur only for coherent
behavior, are an unambiguous consequence of wavelike
motion, and can be appreciated clearly in Fig. 7 which is a
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FIG. 7. Function E~(t) of (3.10) in the text, plotted as a func-
tion of t/~ to show the entire intermediate behavior with arbi-
trary degree of coherence. In (a) the ratio lT/xo is held constant
(at the value 0.2) and in (b) the ratio V~a/xo is held constant (at
the value 0.2S).

plot of the function Ed(t) of (3.10). However, the experi-
mental observable is —AC& (t) which is the result of multi-

plying E (t) by e '~'. Unless the signal-to-noise ratio is
improved considerably, clear observations of oscillations
are unlikely because oscillations appear further on on the
time scale where the value of —b4"(t) is small. On the
other hand, distinction on the basis of the difference in
shapes for t & ~, which is also clearly seen in Figs. 4 and 7,
is indeed possible practically. It is of interest to note that,
apart from the l summation arising from the square-wave
(rather than pure sinusoidal) nature of the initial inhomo-
geneity, the function E (t) is, in essence, the square of the
exciton propagator (Fourier transformed) subtracted from
1.

As mentioned in Sec. I, there are four characteristic
lengths in the system under consideration: (i) the lattice
constant a, i.e., the distance between two crystal sites,
which is of the order of 5—10 A, (ii) the mean free path,
i.e., the average distance the exciton travels between two
scattering events, which could be of the order of a lattice
constant (or formally even less) in the case of highly dif-
fusive or hopping motion, or many hundreds of lattice
constants in the case of highly wavelike or coherent
motion, (iii) the "transport length" /z- which is the average
distance covered by the exciton during its lifetime, which
reduces to the diffusion length ID in the case of motion
which is diffusive at times of the order of a lifetime, and
which could be of the order of microns, and (iv) the ruling
period xo which is the quantity that can be manipulated in
the experiments.

For the purposes of the experiment, the lattice constant
a hardly enters into the discussion. Furthermore, for com-
pletely diffusive motion, the mean free path is of little in-
terest. In such a case one varies xo to determine lT which
may be called lD since the motion is diffusive by assump-
tion. Independent knowledge of the lifetime ~ then allows
one to deduce the diffusion constant D from lD. However,
if the motion is completely coherent, the measured trans-
port length /T is not the distance covered by an exciton
random walker during the lifetime. Instead, it is the dis-
tance covered by a coherent exciton moving without
scattering during its lifetime. What would be deduced
from lT and the lifetime is then not the exciton diffusion
constant (which is proportional to the square of lD or /T)
but the exciton velocity (which is proportional to lT itself).
If the motion possesses an intermediate degree of coher-
ence, the mean free path becomes important since it then
neither equals, or is smaller than, a (extreme incoherence)
nor is it infinite or at least much larger than IT (extreme
coherence). To measure this mean free path is to measure
the degree of coherence in the system. The Ronchi ruling
experiment can carry out such a measurement, at least in
principle, by varying the ruling period. Coherence effects
would be particularly apparent when the ruling period xo
is of the order of the mean free path.

It is also possible to discuss the above in terms of the
four characteristic times that exist in the experiments: (i)
the time the exciton takes to traverse, in a wavelike
fashion, i.e., in the absence of scattering, the distance be-
tween two sites, which is proportional to the reciprocal of
the exciton bandwidth and thus to 1/V, (ii) the time be-
tween successive scattering events, which is 1/a, (iii) the
lifetime ~, and (iv} the time the exciton takes to traverse
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the ruling period xo, which will be called ~z. The ratio of
the first two, i.e., of 1/V and 1/o. , is generally used to
describe the degree of coherence. Thus, if scattering
occurs within a time of the order of 1/V, the motion is to-
tally incoherent. The measured quantity is ~z. If, by
varying the ruling period xo, ~z is changed as to be of the
order of 1/u, coherent effects will be manifested in the
measurements.

The analysis in the present paper is applicable to any
spatially periodic excitation and is not restricted to Ronchi
rulings. One merely changes the g in (2.8) to have the ap-
propriate form. For instance, an initial sinusoidal inho-
mogeneity obtained with the use of two interfering laser
beams in some delayed Auorescence observations as well

as in recent work on singlet motion ' ' and on energy
transfer in inorganic solids, ' can be represented by

The various comments made in the GME analysis ' of
such a situation, concerning the directness and conceptual
simplicity of the observations, apply equally well to the
experimental approach' discussed in the present paper.
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GME may not be used in the form of (2.1) is provided by the
amplitude distribution C (0)=const cos(gm /2). It corre-
sponds to populating two exciton k states with equal and op-
posite quasimomenta, q/2 and —g/2, respectively, and to an
initial probability distribution P {0)=const[1+cos(r)m)]. If
the latter form of P (0) is used with (2.1), one would conclude
that the exciton distribution evolves in time essentially as ex-
plained in Sec. IV. However, if the above C (0) is substituted
in the Schrodinger equation (4.3), one concludes that
P (t)=P (0) for all time. The reason for the contradiction is
that, in this particular example, the initial driving term which
is dropped in the form (2.1) of the GME, makes a contribution
to the evolution of P (t) which is exactly equal and opposite to
that made by (2.1). In a realistic situation the above ampli-
tudes C (0) are expected to have phase factors which vary
slightly but randomly from ensemble member to ensemble
member with the result that, while p „(0)has a zero ensemble
average, p „(0)=P (0) is still given by const[1+cos{r)m)].
The initial condition then belongs to what has been called the
third class in the text and the GME (2.1) is again valid.
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