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A general theory is presented that allows for the computation of excitation energies in semicon-
ductors with proper inclusion of electron correlations. It is a natural extension to excited states of a
local approach to the electron-correlation problem that has been formulated and tested before for
ground-state calculations. The electronic correlations can be treated thereby with the same accuracy
as is customary in quantum-chemistry calculations for small molecules. The formulation does not
have the shortcomings that prevent conventional quantum-chemistry methods to be carried over to
a treatment of delocalized excited states in solids. The theory is formulated in terms of a set of
basis functions. Computation of the correlation energy is reduced to the computation of a number
of expectation values. They are explicitly evaluated by applying a set of rules which are described in

detail. By means of a simple model, special aspects of the correlation problem are discussed, such
as electronic polarizations, local-field effects, the dependence of the correlation energy on the energy
of the excited electron, and changes in the ground-state correlations due to the presence of the excit-
ed electron. It is pointed out that the general theory also contains dynamic relaxation effects.

I. INTRODUCTION

A proper treatment of electron correlations in semicon-
ductors is a challenging problem. This holds true for
ground-state as well as excited-state calculations. For the
ground state it was demonstrated recently that
correlation-energy calculations can be done with an accu-
racy as is customary in quantum chemistry calculations of
small molecules. ' This was shown by treating diamond as
an example. Thereby a local approach to the correlation
problem was applied. It had been successfully tested be-
fore for small molecules and avoids certain shortcomings
of configuration-interaction (CI) methods, which prevent
the latter from being applied to, e.g., electrons in excited,
delocalized states. It is therefore tempting to also apply
the same local approach to excited-state calculations of
semiconductors. It is worth recalling briefly some of the
earlier developments with respect to that problem. For
example, it has been known for a long time that electron
correlations have a pronounced effect on the energy gap of
a semiconductor. This is easily seen by considering a sys-
tem in which an extra electron has been added to the
ground state. This extra electron will polarize its sur-
roundings. The change in field energy due to the induced
dipoles is beyond a self-consistent-field treatment of the
energy of the extra electron and therefore a correlation ef-
fect. The same holds true when a hole is added to the
ground state. Mott and Littleton were among the first to
treat this effect assuming that the extra electron (or hole)
remains fixed to a bond or site (see also Ref. 5). The addi-
tional motion of the extra electron (or hole) was taken into
account in the electronic polaron model of Toyozawa and
further developed by, e.g., Fowler, Inone et al. , and
Kunz. An alternate description of electron correlations
was given by Hermanson' in terms of a plasmon model.
The screened exchange plus Coulomb-hole approximation
by Hedin" has been applied to insulators by Brener' us-

ing a momentum-dependent but static dielectric function.
These treatments also strongly suggest that a proper

treatment of short range cor-relations is of importance for
an accurate determination of the excitation energy. To
these belong local-field effects' ' but also orbital relaxa-
tion effects, which occur when an electron is added to a
bond. The former have been treated most extensively by
Hanke and co-workers using Green's-function tech-
niques' but only within a minimal basis set. Relaxation
effects require a larger basis set and have been discussed,
e.g., by Pantelides et aI. ,

' by means of perturbational
methods in the spirit of CI. In particular, the short-range
part of the electron correlation hole suggests a treatment
by means of a method that can be applied not only to
solids but to small molecules as well. This should allow
for reliable checks concerning the accuracy of any approx-
imations made, since in small molecules short-range corre-
lations are well understood.

In applying the above-mentioned local approach we
shall consider the case of an extra electron (or hole) added
to the ground state. This implies that we do not consider
excitonic effects that result from an interaction of the ex-
cited electron with its hole. This is planned to be the sub-
ject of a separate investigation. Instead we assume here
that the exciton is in its "ionized" state with the electron
and hole well separated. The present paper contains the
general formalism for calculating the energy and wave
function of semiconductors with an extra electron in the
conduction band. The paper is organized as follows. In
the next section a formulation of the Hamiltonian and
various quantities such as the ground-state wave function
and energy is given in terms of a basis set that usually
consists of Gaussian-type orbitals. Section III describes
the wave function and energy when an extra electron is
added to the conduction band. The correlation energy is
expressed in terms of certain expectation values. The
rules for their evaluation are given in Sec. IV. Section V
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contains the application of the formalism to a simple
model. It allows for a physical interpretation of the vari-
ous contributions to the correlation energy, which is use-
ful when the theory is applied to diamond. In particular,
it is seen that the polarization effects mentioned above are
contained in the formalism, as well as effects resulting
from the motion of the extra electron and changes in the
types of correlations that are present in the ground state.
Relaxation effects are contained in the general formalism
but not in the simple model. Finally, Sec. VI contains the
discussions and conclusions.

II. GROUND-STATE WAVE FUNCTION
AND ENERGY

Here cr denotes the spin of the electron. Similarly, an ex-
pansion of 0' (r) defines operators a;t. The a;,a;t fulfill
the following anticommutation relations:

[a;,aj ]+=ST b (2)

where S,J- is the overlap matrix

(3)

The Hamiltonian is then written within the Hilbert space
spanned by the f;( r ) and takes the form

1X eij icT jcT+ 2

ij,k, l, cr, o'
Vijklai (7 klan'aicr'aj tr (4)

Here the 6j'and V'jkl are defined through

ej ——f d r f;*(r)[—,'b, + V(r)]fj(r), —

Vijki= f d rd r'f,*(r)fj(r)

Atomic units have been used for convenience, i.e.,
m =e =8=1. V(r) is the single-electron potential due to
the nuclei. Since we are considering crystals, we assume
that the index i involves both a cell index i and an index
a for different functions within the unit cell, i.e.,
i =( i,a). The same applies for the indices j,k, l.

A prerequisite for the correlation-energy calculations is
a knowledge of the self-consistent-field (SCF) ground-state
wave function

~
@scF) and energy. For that reason we

divide H into a SCF part Ho and a residual interaction
part Hres~ i.e.,

H =Ho+H„s,

We start out by defining a basis set f;(r) in terms of
which all calculations will be done. We assume that the
f;(r) represent N groups of Craussian-type orbitals cen-
tered at different atoms. When the single-electron field
operators qj (r) are expanded in terms of this basis set
new operators a; defined by

qj (r)= ga; f;(r) .

Ho= g fijai&aj&

where fj denotes the Fock matrix

and

H res 2 X
i,j,k, l, cr, a'

~ijklai&ko' l ' ja

g (r)= g y jfj(r) .
j=l

Again, m stands for (m, j2) where rn denotes different unit
cells and p labels different functions within a given cell.

We want to define creation and annihilation operators
for electrons in state gm(r) and denote them by bm andb, respectively. For that purpose we introduce creation
and annihilation operators a;,a; for electrons in states
f; ( r ). The a; are the adjoint operators of the a; and
obey the following anticommutation relations ':

(12)

The b are related to the aj according to Eq. (11)
through

(13)

With b and b one can construct density operators
n~~ and spin operators s ~,

n~~=bm~bm~
(14)

( sm)nn =bm~ s~nbm~

which will be used later. The matrices s ~ equal —, times
the Pauli matrices. In a series of papers ' it has been
shown how the ground-state wave function ~%'o) of a

( Vijki ~ercr Vilk'j ) & akim'aicr' &a .a,.
ErJ,k, l, CT, CJ

The matrix &ak ai~ ) is the one-particle density matrix.
Hereby the notation & ) is an abbreviation for
&C'scF

~
( )

~
@scF& which will be used frequently. The

second term on the right-hand side (rhs) of Eq. (9) has the
effect that it excludes contractions within H„,when ex-
pectation values are calculated that involve H„,.

The SCF ground-state energy per unit cell, Escz, is
given by

1EscF=T g (eij+fj)&a ~j &+Ex+ .
[i ],J,a

The notation [i] indicates that the summation is over a
only, i.e., i is kept fixed. The interaction energy Ejj& per
unit cell between nuclei has been added in order to obtain
finite results for the energy when the system becomes in-
finitely large.

For treatment of electron correlations we introduce
another set of local functions g (r) that are defined
through
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correlated electron system can be constructed in terms of
these density and spin-density operators. We set

The gmn' parameters are determined by minimizing the
energy

I
+o& =exp —g r)mnomn I @scF&

m, n

=exp(So)
I @SCF& ~

The operators 0 „arewritten as

o „=o'„—(o'„),
where the 0' „areof the following three forms:

(15)

(16) E'=(H) —2gq"„'(0„H),
m, n

(O) (O)+ggq„q„„(o„ao„),. (19)

E'=(e, III
I qo)(e,

I
e,)-' .

According to a linked-cluster theorem (see Ref. 18) one
can also write E = (e 'He )„where the subscript c im-
plies taking into account only connected contractions (see
Appendix A). This expression is evaluated by approxi-
mating exp(So) =1+So and expanding E to second order
1Il '?7mn. Th1S reSultS 1n

&m )+m g&mn

0 = +m~n g +mn g +no'

(17a)

(17b)

Sm'Sn (17c)

The operator om„[Eq. (16)] when applied on
I @sc„)

creates one- and two-particle excitations on top of the
SCF ground state. For simplicity we neglect single-
particle excitations in the following by excluding contrac-
tions within 0 „when expectation values of matrix ele-
ments are formed. The justification is that single-particle
excitations do not couple to the SCF ground state directly
according to Brillouin's theorem but only indirectly via
the two-particle excitations, i.e., correlation effects. The
readjustment of the single-particle eigenstates due to
correlations is expected to be reasonably small in covalent
semiconductors, however. The inclusion of the one-
particle excitations is straightforward and would lead only
to minor modifications.

When applied on
I
4&scF) the operator 0 „selectsthose

states in which electrons are simultaneously present in the
local states gm (r) and g„(r),respectively. By means of
the prefactor

(0)exp g Imn omn
m, n

}=/(1—7J' „'0„)Ie „).
m, n

(18)

VA'thin the approximations described later when calculat-
ing the energy E from

I
%o), both forms, i.e., (15) and

(18), lead to the same results. We shall use the form (15)
in the following since it has a number of advantages, as
we will see.

these states obtain a different weight than they have in
I
C&sc„). In this way a correlation hole is generated

around each electron. The proper choice of the functions
gm (r) is essential for the present method. It has been
described in detail, e.g., in Ref. 2, with particular refer-
ence to diamond.

We point out that in Refs. 2 and 3 instead of Eq. (15)
the following ansatz for

I
0'o) has been used:

III. EXCITED-STATE WAVE FUNCTION
AND ENERGY

We start out from a semiconductor in its SCF ground
state

I @scF) . When an electron is moved from a
valence-band to a conduction-band state the SCF excited
state is

I
C&,„(k&b&k'&b'))=c- c

I
@scF) . (20)

Here c-, , annihilates an electron in the valence-band
k 'b'o

Bloch state P-, , (r) of momentum k', band index b', and
k 'b'a

spin o., while c~- creates an electron in a conduction-kbo
band Bloch state. For a zinc-blende-type lattice with two
atoms per unit cell we shall label the four conduction
bands by b=1, . . . , 4 and the four valence bands by
b=5, . . . , 8.

When one neglects the interaction of the electron in the
conduction band with its hole in the valence band, i.e., ex-
citonic effects, then one can consider separately the case
of an added electron and an ad.ded hole, respectively. One
writes then

I&."(k,b))= '-„, Ie„„),b=l, . . . , 4

I
C'o (k,b)) =c

I @scF)& b=5, . . . , 8 . (2 lb)

We shall leave a discussion of excitonic effects to a future
investigation and consider in the following the case of an
added electron or hole only. By starting from the SCF
state [Eq. (21a) or (21b)], we want to construct the corre-
lated or many-body wave function and calculate the corre-
sponding energy. This will enable us to determine the ex-
citation energy and in particular the energy gap of a semi-
conductor. In the following it will turn out to be advanta-
geous to work with localized %Pannier functions instead of

m, n m', n'

Owing to this expansion, one no longer obtains an upper
bound for the energy when minimizing Eq. (19). The ex-
pansion corresponds in quantum chemistry to a perturba-
tion calculation within a coupled-cluster ansatz and is
called CEPA-0 (see Ref. 19). The approximation (19) lim-
its us to electronic systems that are not too strongly corre-
lated.
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delocalized Bloch functions. Therefore we express the
latter in terms of the former. For that purpose we divide
the lattice into X, unit cells where each cell t is charac-
terized by a lattice vector R-. For each unit cell one cant '

construct a number of localized Wannier functions

P (r —R-, ). For example, for a zinc-blende or a diamond

structure there are eight Wannier functions (r= 1, . . . , 8)
corresponding to the eight conduction and valence bands.
There are different ways in which one can choose the
Wannier functions. One way is to have them centered in a
bond. In that case the eight functions are bonding and an-
tibonding wave functions belonging to the four bonds of a
unit cell. The bonding functions can be ascribed to the
four valence bands, while the antibonding functions can be
ascribed to the four conduction bands. Another possibili-
ty is to choose the Wannier functions so that they reflect
the point symmetry of the lattice sites. Then they cannot
be separated into two groups belonging to the conduction
and the valence bands, respectively. In the following we
will assume that we are dealing with Wannier functions
that are centered in a bond. Let m, denote the creation
operator for an electron in the Wannier state P,(r —R-)
where t=(t, r) includes the cell index t as well as the in-
dex z within a cell. Then the following relation holds:

c „=N,' pe, (k, b)wg exp(ik R-, ) .
t

The matrix e, ( k, b ) provides the connection between
Bloch and Wannier states and depends on the particular
choice of the Wannier functions. It is unitary and fulfills
the relations

g e', (k, b)e, (k,b') =5bb,

g e (k,b)e~(k, b) =5
b

(23)

The function

G«(k, b)=e,*(k,b)e, (k, b)exp[ik (R-, , —R-, )]

(25)

Within the SCF approximation the energy of the extra
electron in conduction-band state P- (r) (b= 1, . . . , 4)

k bo.
is given by

escF(k, b) =N, ' g G«(k, b)P« .

SCF approximation. For example, in the case of diamond
the inclusion of bonds up to the third-nearest neighbor
turns out to be sufficient. We are now in the position to
state the ansatz for the correlated wave function

~

4 (kb, )& when an electron (b=1, . . . , 4) or hole
(b = 5, . . . , 8) is added to the ground state. For simplicity
we consider the first case only. We write

%«(k b)&:e c
~
@scF& (27)

P „(k,b)+Q „(k,b)=1. (29)

The operators 0 „arethe same as those used for the
ground state in Eq. (15). The projection operators

P~„(k, b ) and Q~„(k, b ) are defined according to

[0 „P„(k,b),c- ]=0,
O~nQms(k») I @scF&=o

(30)

Here the operator O~„P„(k,b) denotes the part of the
operator Om„ that generates the correlated ground state.
This operator commutes with c~

k bcr

O .P .(») '-„,.I
~'scF&= '-„„O. i @scF&,

which follows from Eqs. (29) and (30). The parameters
q' „'associated with 0 „P„(k,b) agree with those deter-
mined for the correlated ground state according to Eq.
(19). The second operator O~„Q~„(k,b), which does not
commute with c-, describes the scattering of the added

k b~'
particle. Physically its role is to create a polarization and
relaxation cloud around the extra electron characterized
by the second set of variational parameters g'„'. In the
following we need not write down explicit expressions for
the operators P~„(k, b ) and Q „(k, b ). Instead, when
evaluating matrix elements containing 0 „P~„(k,b) we
apply the rule that there is no contraction formed between
the operators O~„and c-, whereas in the case of7tl1f

0 „Q„(k,b) there is always such a contraction formed.
This rule is equivalent to the conditions (29) and (30).

The total energy of the (N+ 1)-particle system is given

The operator S is of the form

S=—g [~"„'O.„P„(k,b)+~'„'O „Q„(k,b)],
m, n

(28)

results from the transformation (22), while

F« (0~m, How, ~0——& (26)

is the Fock matrix in the Wannier representation.
~

0&
denotes the vacuum state. Owing to the exponential fall-
off of the Wannier functions, only functions in the close
neighborhood of each other contribute to the Fock matrix.
For that reason a relatively small number of independent
Fock matrix elements is usually sufficient in order to
describe the energy bands of a semiconductor within the

(4 (k, b)
~

H
~

ql (k, b)&
Ex+1

(q.(k,b)
~
q.(k,b) &

(32)

E~+)——e(k, b)+E~, (33)

This expression can be split into two terms by making use
of the linked-cluster expansion derived in Appendix A,
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e(k, b) = (34)

The contributions of the correlations to the quasiparti-
cle energy are given by

Eg =&es Hes&, . (35)
e«( k, b ) =e( k b) —escp( k, b), (37)

The form of Eq. (33) shows that e(k, b) plays the role
of a quasiparticle energy. When we set exp(S) =1+S, Eq.
(35) becomes identical to Eq. (19). This follows from the
fact that 0 „Q~„LNscp) =0. The e(k, b) in Eq. (33) re-
sults from processes that involve the extra electron c

„

and depends on both parameter sets g' „'and q"„'.The
parameters qmn with re=0, e must be chosen in such a way
that BE~+~/Bg" „=0.This implies

Be( k, b ) BE
(36)vp gp)

~

Bgmn Bgmn

From this equation it is seen that it is well justified to
choose in Eq. (28) the same g~„',as they follow from Eq.
(19). The energy E& is proportional to the total electron
number N, while e(k, b) corresponds to a single electron.
Therefore the g' „'are determined from BE~/Bg' „'=0 as
in a ground-state calculation.

escp( k~b ) = (c Hc ) —(H )

X(I+(c-„,S'Sc'-„, },)-'. (3&)

In the next step we express the Bloch operators c
„

in

terms of Wannier operators w«[see Eqs. (22) and (25)].
This enables us to express all quantities in terms of matrix
elements of local operators. For convenience we introduce

Furthermore, we show in the following explicitly the k
and b dependence of the parameters g"„.Thus

Replacing e by 1+S in Eq. (34) we can write for the
correlation energy

e«(k, b)=[(c„(SH+HS+StHS)c-„),
—escp( k~b ){c S Sc ) ]

e„(k,b)= N, 'QG„(k,b) —2 g g~„(k,b)(w, HO'"„'w, },
L

t, t' m, n, z

g" „(k,b)g" „(k,b)[(w, 0 "„'HO "„w, },
m, n, ~ m', n', a'

X N, 'QG«(k, b) 1+ g g vP~„(k,b)vP „(k,b)(w, 0~"„'0'"„'w,),
tt' m, n, x m', n', z'

(39)

It is worth pointing out that this expression can be written as

e„(k,b)=N, 'g G«(k, b)5F«(k, b), (40)

indicating that the correlations can be considered as giving rise to a supplement to the Pock matrix [see Eq. (24)].
The evaluation of the matrix elements appearing in Eq. (39) is discussed in detail in Sec. IV. They depend neither on

k nor on b and need to be evaluated only once.
In order to compute e„„(k,b) for a given k point we transform the local matrix elements of Eq. (39) into a Bloch

basis, i.e.,

(HO~"„')-„=N,' g G«( k, b ) ( w, HO~"„'w, }, ,
t, t'

(0'"„'[H —scpe(k, b))0 )~& b
N, ' g G«(k, b )——(w~ ~Om'n' [H escp(k, b)]O~"—„'w,

t, t'

(41a)

(41b)

(41c)

Equation (39) is then rewritten as

e„(k,b)=D ' —2 Q g" (k~, b)(HO )~- + g g g" (k~, b)g" (~k, b)(0'"„'[H — esc(pk, b)] 0~)-„
m, n, ~ m, n, ~ m', n', ~'

(42)
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where

D= 1+ g g r)mn(k, b)qm „(k,b)(0'"„'Om"„)-„
m, n, a m', n', e'

By making use of the condition (36), one can rewrite e„„(k, b ) in a more condensed form as

e„(k,b) =e,', ' (k,b)+E,", (k,b),

(43)

(0) — (0) (o) D «~ »" (o)
ecorr( k» b ) g gmn (Homn ) pb + g (0) 9mn

Nl, n 2 mn ~'9mn

~,".„(k,b) = —g ~"„'(HO'„')„,.

(45a)

(45b)

The term ec', ' (k,b) describes the contributions to the correlation energy from changes in the ground-state correlations
when the additional quasiparticle is present. The second term e,", (k, b) contains the energy changes due to polarization,
relaxation, etc., caused by that quasiparticle. As pointed out before, the parameter set g~n' must be calculated from Eq.
(36) while the ri'mn' are known from the ground-state calculations. With the form (42) for e„„(k,b) one obtains from Eq.
(36)

—(HO'„')-„,+ g q"'
„

I(O("')![H—~„„(k,b)]0('„))„,—~,.„(k,b)(O'"'„'tO(') )„,]=O.
m', n', ~'

(46)

Here the expression containing e«rr( k, b) is due to the presence of the denominator D in (42). Hence the above equation
depends on

~(k»b) =escF(k»b)+@co~(k»b)» (47)

that is, the self-consistently determined quasiparticle energy, and not merely on the SCF energy. Thus Eq. (46) can be
rewritten as

(Ho'„')-—+ g q" „(0'"„'[H e(k, b)]0"—„')-„=0.
Since the ground-state parameters g' '„areknown, one obtains by inversion

r

g'„'(k,b)= g (Ho"' ~ ) —g g' ' -(0'' -[H e(k b)]0"'—~ ) I(0"'' [H E(k b)]0"')- I—

(49)

The first term on the rhs is due to the polarization cloud
as well as the relaxation around the electron in the con-
duction band, while the second term takes into account
the influence of the ground-state correlations on the form-
er.

In E»I. (49) the Pairs of variables m, n and m', n' charac-
terize the spatial regions in the operators 0 n and 0
In order to perform the inversion one must take into ac-
count translational invariance, which implies that

gmn(k, b) with m =(m, p) and n =(n, v) does depend on
m —n, p, and v only. The number of independent g'„' is
further reduced by point-symmetry considerations.

After having formally developed the theory we want to
draw attention to the following point. Since one is dealing
here with a variational method [see Eq. (36)] it must be
ensured that each state is properly orthogonal to all
lower-lying states of the same symmetry. As far as the
lowest-lying conduction band is concerned, this does not
pose any problem for any value of k since it is the ground
state of the (%+1)-electron system with a given momen-
tum. The same holds true for higher conduction bands
having different symmetries. %'hen that is not the case,

IV. COMPUTATION GP EXPECTATION VALUES

In the last section we have shown that the computation
of the correlation energy e„(k,b) can be reduced to the
computation of particluar expectation values. They are of
the forms

(sc')f
(~c'cromn Hrcs~ccr )c

(x')t' (x)~~c crOm n Hom'n~cc'r')c»

(~')f (~)(~c'mom n Omn~rn )'c '.

(50a)

(50c)

the states of higher bands must be kept orthogonal to
those of lower bands. An analysis reveals, however, that
the energy corrections due to the orthogonalization pro-
cedure are of 'order gmn and therefore are neglected within
the present theory.

This completes the description of the calculations of the
correlated wave function

i
qc (k,b)) and the correlation

energy e«(k, b). They require the computation of expec-
tation values of local operators, which are the subject of
the next section.
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bno

bno

bma blIP

bmo bnp

(b)

bmn

I0

bmn

Wto

FIG. 3. Symbols for w, and w,

FICx. 1. Diagrammatic element associated with the operator
0 „(a)when 0

„
is of the form n n„or(b) when 0

„

is of the
form s s„.

Note that (wt ~0'"n Howt ),=0 since contractions within
the 0 „operators are excluded. Here we want to discuss
the evaluation of the expectation values (50), which in-
volve an additional electron in the Wannier state

P,(r —R-, ). They are calculated by contracting pairwise
the fermion operators. There are many different ways of
contracting the Fermi operators, and each way yields a
contribution to (50). This holds true despite the fact that
only connected diagrams are considered. In order to keep
track of them we associate with each type of a contraction
a particular diagram. In the following we list the rules for
finding all relevant different diagrams that are associated
with an expectation value of the form of Eq. (50) and ob-
tain their contribution to the latter.

We start out by discussing the elements that form a dia-
gram. We associate with each operator 0'"„'(or 0'"„') a
wavy line with vertices as shown in Fig. 1. Thereby a dis-
tinction is made between the forms n nn and s m. s

„

for
0'"„'[see Eqs. (17b) and (17c)], but it is not necessary to
treat separately the form n, nm, With H.o we associate a
cross with incoming and outgoing lines as indicated in
Fig. 2(a). The residual interaction H„,is represented by a
dashed line with vertices as shown in Fig. 2(b). Finally,
w, ~ is the starting point and w, ~ is the point of termina-
tion of a solid line (see Fig. 3). In order to obtain all pos-
sible connected contractions for a given expectation value
of the form of Eq. (50), draw the diagrammatic symbols
for each of the operators as given by Figs. 1—3. Maintain
the correct sequence of operators by starting with the
symbol for w, ~ at the bottom and continuing with the
symbols for the following operators on top of the preced-
ing operator. As an example we show in Fig. 4(a) the se-
quence for

(~')f (~)
&wt trOm n H'tesOm'n'wttt &c

(b'.b„.) =(b„'.b„.) =P „,
(b b„)=(b„b ) =D „, (51)

(b wt )=(w, bt )=C, .

In order to find the appropriate expectation value for a
section of a solid line one must use the operator to the
right that comes first from below when considering that
particular section. For an upward (downward) running
line this will be a creation (annihilation) operator).

The distinction between the operators O~„' and O~„' is
made by contraction. When in the matrix elements (50)
Om"„' is connected with wt, the operator is identified with
O'„',and the corresponding variational parameter is g'„'.

'
Mf ~

+
bno

solid lines that do not take part in the continuous path are
connected to form closed loops. The sum of all possible
connected diagrams is obtained by doing the path connec-
tions in all possible topologically different ways that are in
agreement with the above descriptions. We consider two
diagrams to be topologically different when they cannot
be transformed into each other by twisting while keeping
the ends fixed. As an example we show in Fig. 4(b) a par-
ticular diagram that appears in the evaluation of (50b).

After having described the construction of the diagrams
we want to find their contributions to the expectation
values (SOa)—(50c). The contribution of a given diagram
is found as follows. Each solid line consists of different
sections, each having a creation and annihilation operator
associated with it. Associate with each section an expec-
tation value. The following expectation values can appear:

Connect the directed solid lines so that they form a con-
tinuous path starting from w, and ending at w, . Make
sure that the spin indices match. All wavy and dashed
lines must be linked in this connected path in order to en-
sure that all contractions are "connected. " The remaining

bn'o

+
Qio

Qio

+
bm'o'

+„Qio

Q]o

]~

): fi]

i(
Qia

+
IQ

Q]o

+
Qko

lo'

bno

bf1g )i +
„VSto

(b)

fYlP

(a) (b)

FICx. 2. Diagrammatic elements associated with (a) Mo and
(b) H,

FIG. 4. (a) Sequence of diagrammatic elements that corre-
sponds to the expectation value (w; O'"„'H, 0'"„'w, ),. (b) A
particular diagram that appears in the evaluation of the expecta-
tion value.
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VtjklCnlDjnain'Cn I DIm''km'+mm'
i,j,k, l

(52)

This concludes the procedure for computing the expecta-
tion values (50a)—(50c). More details about the different
types of diagrams are found in Appendix 8. It also con-
tains explicit expressions for the different expectation
values (50a)—(50c).

Otherwise, that is, when 0'"„' is not connected with
mt~, one is dealing with 0' „'and q' „',respectively. The
same holds true for the operators on the left-hand side of
the expressions (50), i.e., for 0'" ' and tttt . A factor of 2
must be associated with each 0 "„'in order to account for
equivalent diagrams.

Furthermore, a dashed line gives a factor V~jkt and a
cross gives a factor f~; both require a sum over i,j,k, l and
i,j, respectively. A sum must be taken over all spin vari-
ables in closed loops, resulting in a factor of 2 for each
loop. In addition, a factor of —I must be associated with
each closed loop and also with each electron line which is
directed downwards.

When we apply these rules to the evaluation of the dia-
gram shown in Fig. 4 we find the following corresponding
contribution to the expectation value:

(Oint HB; iO)=0,

which implies that the Wannier states labeled before by
with t=( t,r) can be identified with At ~ (r=1)

and 8t ~ (r=2).
The SCF Hamiltonian Ho is then of the form

Ho= g [ To—&t&t +Ttt(&t &t+i +H c )

+ To~ter ttr Ta(~ttr~t+itr+H c. )l

(54)

The centers of the valence and conduction bands are at
+To, respectively, while the respective bandwidths are
determined by 4T~ and 4T~.

The interaction Hamiltonian for the model is most con-
veniently expressed in the a (i) operators and is chosen
to be of the form

H;„,= —,
' g g V tt(i j)atk, (—j)a (i)a ~ (i)ap (j) .

ij a,p, cr, a'

V. PHYSICAL INTERPRETATIONS:
DISCUSSIGN GF A SIMPLE MODEL

In order to explain and visualize the physical context of
the formalism presented in the last section, we consider
here a simple model that reveals the most important elec-
tron correlations that contribute to the reduction of the
energy gap in a semiconductor. The simplifications are
the following. First of all, the adopted model is one-
dimensional. Furthermore, a minimal basis set is em-
ployed that consists of two basis functions ai (i) and
a2 (i) for each bond i Finally, th. e bond orbital approxi-
mation (BOA) is made, which is explained below. The as-
sumption of a minimal basis set excludes electron relaxa-
tion effects, while the BOA implies that there are no elec-
tron transitions between different bonds. Although these
assumptions are restrictive they allow nevertheless for a
study of most of the processes that influence the reduction
of the energy gap in a semiconductor. The simple model
greatly facilitates the understanding of the physics con-
tained in the general formulation given before.

We start out by considering a chain of atoms. We form
sp hybrids for each atom and assume that they have been
orthogonalized with respect to each other. Let a i (i) and
a2 (i) denote the creation operators for electrons with
spin o. in the two orthogonalized hybrids forming the
bond i. Then we can form the bonding and antibonding
combinations

The matrix elements V p(i —j) are defined according to
Eq. (5) where the a~ (i) are the creation operators for the
f functions.

By inspection of Fig. 5 one notices that for a given i —j
the V tt(i —j) depend on a —P only. Hence there are
three different V ti(i —j) for each value of i —j.

Next we consider the operator exp(So) [see Eq. (15)],
which transforms the SCF ground state into the correlated
ground state. We shall assume that So contains only den-
sity correlations, and therefore we will neglect spin corre-
lations. They result in a Hund's-rule coupling and are
comparatively small in semiconductors (see Ref. 2).
Furthermore, we identify the regions g (r) with dif-
ferent hybrids, which implies that the b operators
[see Eq. (13)] are the same as the operators at . Therefore
S, is wntten as

Bt =2 '~'[a, ~(i)+a2n(i)],
=2 ' [ai (i) —a2 (i)] .

The BOA assumes that

FIG. 5. Sketch of the sp-hybrid functions of the one-
dimensional model. There exist three different Coulomb matrix
elements connecting the hybrids in cell i with those in cell j,
namely, V &(i —j), Vo(i —j), and V+&(i —j).
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So= —g g' '
p(i j—)n«(i)npj() (56)

with

n (i ) = g a«(i)a««(i) .

As with V«p(i —j) the g«p{i —j) only depend on the
difference a —P. Before we evaluated the correlation en-

ergy according to the rules described in Secs. III and IV, it
is instructive to consider the effect of S when applied on
the SCF ground state with an extra electron (or hole) add-
ed [see Eqs. (21a) and (28)]. We set

of the bond i when the extra electron with spin V is sitting
in bond j. This is easily checked by decomposing the oc-
cupation number operators n~ (i) and n2 (i) of the two
hybrids 1 and 2 of bond i in terms of the A;,B; opera-
tors. The function n(i —j) is then a measure of the in-
duced dipole strength.

We proceed by computing e„„(k)as given by Eq. (39)
or (42). Before considering the expectation values which
appear in that equation we state the particular forms of
the matrices (51) within the present model. By identifying
the b operators with the a operators, one finds within
the BOA that the matrices are diagonal with respect to
the bond coordinates, i.e.,

R«p(i —j)= (a «(i)a p (j) ) = —,5;1,

(k) ) = g e' A —
~
4'scF) (57) D p(i j)=—(a (i)ap(j))

Here the atomic distance has been set equal to 1. %'hen S
is applied on

~

N"(k)) and when the n (i) are expressed
in terms of the A; and B; operators [see Eq. (53)], one
finds

S
~

C~'~(k)) = —g g[~(i j)A,t.B,~—,t B, .
»J CT, CT

= ——,
'

5tj (1—25«p),

C«(i t) = (a«(—i)A, )

=2 '~5;, (5 )
—5 ~) .

Furthermore,

P«p(i j)=R«—p(i j), D«p—(i j)=D«—p(i j)—
and

(60)

+2m(i j)A; B; n~—~ ] C (i l)=C—(i —l) .

First we evaluate the term

(58)

Here nJ ~
——AJ AJ ~ and the following notation has been

introduced:

~(i —j)=g' '~(i j) 2go '—(i j—)+gI '(i —j—),
2n.(i j)=g'I (i j—) g)'(i —j—) . — (59)

The g' '(i —j) and therefore the ~(i —j) are determined by
a ground-state calculation while the m.(i —j) are not. The
role of the operator 2; B; g. is to generate a polarization

JVl, n, K

From what has been discussed below Eqs. (50) it follows
that H can be replaced by H„,. The diagrams that corre-
spond to the different contractions within the expression
(50a) are shown in Fig. 6. They are labeled
&(6.1a)—W(6.1d). By using Eq. (B2) we can compute
I).

For the purpose of demonstration we calculate first
only the contributions from &(6.1a) and D'(6. 1c) to I~.
Gne finds

&(6.la) ~ 45«' g 'tip ~(t n) g V«p—(t n)C«(0)Rp~(0)—Dp~(0)D«p(0)Cp(0),
n, v, p

&(6.1c) ~ 45«g g„' ' (t n) g V—p(t n)C„(0)Rp„(0)D—p (0)R „(0)C(0) .
(61)

n, Ijt, , v a, P

After performing the sums this goes over into

W(6. 1a) ~ ——,5«g [V )(j)—V)(j)]2m(j),
J (62)

W(6. 1c) —,5«g [V,(j ) 2VO(j )+ V&(j)]~(j—) .
J

The exchange diagrams M(6. 1b) and &(6.1d) contribute
only for j =0 in which case they lead to a reduction of the
same terms in D'(6. 1a) and W(6.1c) by a factor of —,. In
order to shorten the notation we introduce

V'(j) = V )(j)—V)(j),

V'(j)= V ~(j)—2VO(j)+ V~(j) .

(63)

V'(j) and V"(j) can be considered as the first- and
second-order difference quotients of the interaction poten-
tial. When the contributions of all four diagrams are tak-
en into account one finds
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(1a) (1b} {1c} (1d)

ence of the extra electron. These changes are easily visual-
ized within the BOA. The extra electron blocks the two-
particle excitations in the bond in which it is sitting, and
therefore the ground-state correlations are lost within that
bond. This is clearly a strong overemphasis of what will
happen in a realistic system, and it is due to the fact that
we are working within the BOA with a minimal basis set.

%'e proceed by discussing the term
I

2 g g lmn Qm' 'n(~t aO'm n H'p'omn~ttr ~c

(2a)
I

{2b) (2c) (2d)
m, n, a m', n', ~

in Eq. (39). The corresponding diagrams &(6.2) are
shown in parts in Fig. 6. We evaluate their contributions
to I2 by making use of Eq. (B4) and the relations (60).
The result is

(3a} {3b} (3c} (3d)

I2 5„6—T—o g n (j )

+(5t I'+]+5t I [)2' g w(J)7T(J' + 1 )

J

5, , ', To g—It. (j)—(1——,
'

51p) .
J

(65)

{4a} (4b) (4c) (4d}

—g V'(j)tr(j)+ —,
' g V"(j)~(j)——,

' V"(0)~(0)
j+p J

(64)

FIG. 6. Typical diagrams &(v) contributing to the quasipar-
ticle energy (42). One can distinguish four classes of matrix ele-

ments, i.e., first-order matrix elements containing (1) the interac-
tion H, , (2) second-order matrix elements arising from the ki-
netic energy Ho, (3) the interaction energy H, , and (4) the
denominator.

The first term on the rhs is related to the excitation energy
across the gap, which is required in order to generate in-
duced dipoles of strength m.(j) in bonds j. It results from
&(6.2a—6.2c). The second term comes from W(6.2a) and
is due to electron hopping between bonds. It leads to a
momentum dependence of the correlation energy, i.e., a
narrowing of the valence and conduction bands. The
third term results from diagrams such as W(6.2d) and de-
scribes again a correction to the ground-state correlations.

According to Eq. (41b) I2 must be considered together
with escF(k)I4,—where I4 is due to the denominator

I

4 X g 9mn Qm'n ~ ~t'oom'n'Omn tttttr )c
I I Im, n, K m, n, g

Here use has been made of m(0) =0, which follows from
symmetry arguments. The first term on the rhs comes
from &(6.la), and can be interpreted as the electrostatic
energy that an induced dipole m(j) experiences in the elec-
tric field V'(j) caused by the additional electron in the
conduction band. The second and third terms result from
changes in the ground-state correlations due to the pres-

I

2 g +(j}+—, g ~'(j)(1——,
'
5,.p) 5„.

J J
(66)

In Fig. 6 diagrams W(6.4a) and &(6.4b) contribute to
H(j) while &(6.4c) and M(6.4d) lead to the It (j) and
It. (0) terms, respectively.

Making use of EscF(k) =To+2' cosk, one obtains

I2 ~scF{k}I4 5tt 4To g H(j}+(5t——I +i+5t, t)2T„Q[~(j)~(j+I)—tr (j)]—5„2Tog It'(j)(1 —
2 5jo) . (67)

Next we evaluate
I

X X 9mn Qm' ( ~nt' r+ tnm'~res+mn tpttr )c
m, n, x m', n', x'

A selection of diagrams &(6.3a—6.3d) is shown in Fig. 6. By applying Eqs. (B7)—(B9) together with the relations (60)
one finds

L,J
(68)
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The first term on the rhs represents the dipole-dipole interaction energy between dipoles in bonds t+i and t +j. It is ob-
tained from diagrams &(6.3a) and &(6.3b). Thereby the latter compensates the self-interaction of the dipoles when
i =j. This is a local-field correction. The second term is due to diagrams &(6.3c) amd &(6.3d). It describes the inter-
play between the ground-state correlations a(i) and the polarizations m(j). The last term describes a loss in ground-state
correlation energy and vanishes when only a.(0) is taken into account

The correlation energy e„(k)[see Eq. (42)] can now be written. The functions G«(k, b) in Eqs. (41a)—(41c) are of
the simple form exp[ik(t' —t)] for the present model. We write

e„(k,e) =D —g V'(j )m(j )+4To g H(j)+4T~cosk g [n(j )vr(j + 1) m—(j)].

—g V"(j t )~(j—)~(t)(1 ,' 5; —) ———' g V'(j)~(j)~(0)+ —,
' V"(0)K(0)—TOK (0) (69)

with

D=l+ —,'a-'(0)+2+rr'(j) . (70)

All contributions containing ~(j) with j&0 have been
omitted for simplicity. Note that the ground-state corre-
lations fall off much faster than the polarization terms,
the a(i) decay like the second derivative of the interactions
V"(t), while m(j) is proportional to V'(g). The last two
terms on the rhs almost compensate for the ground-state
correlation energy for one bond, which is
Eo ——,

' V"(0——)~(0)+Toe (0). That the compensation is
not complete is due to the denominator in Eq. (69). From
our definition (63) V"(0) is negative since the interaction
potential is convex for short distances. Hence a(0) is also
negative. With the same argument one finds a positive
contribution from the dipole-dipole interaction if i =j.
This is the interaction between two dipoles within the
same bond formed by the spin-up and spin-down elec-
trons, respectively. On the other hand, when the distance
i —j is larger, V"(i —j) becomes positive for a Coulomb

e,", (k)= ——, g V'(j)~(j) . (71)

This energy can be understood as the discretized version
of the field energy

IV= ——, I d r E(r)P(r) (72)

of a dielectric in an electric field E( r ). From the minimal
condition Be„(k)/Bm(l)=0 one obtains the equation

I

interaction. Therefore when i and j are on the same side
with respect to the added electron, the dipole-dipole in-
teraction energy is negative resulting in an enhancement
of the polarization. This is a special feature of the one-
dimensional model and does not persist in three dimen-
sions. There the dipolar interactions reduce the polariza-
tion, i.e., they lead to a screening of the added electron.

After applying the condition (36) one finds for the
correlation energy due to the polarization of the medium
[see Eq. (45b)]

—V'(I)+8Ton (1)+4T~cosk[vr(l + 1) 2m (l) w+(/ ——1)]—4'(l)e„„(k)—2 g V"(l —i)vr(i)(1 —
~ 5 t) ——,

' V'(l)x'(0) =0,

which determines m.(l). Inspection of (73) shows that vr(l) decays as V'(I), i.e., as l for the Coulomb interaction.
Equation (73) can be solved by Fourier transformation. By setting m(l) =X '~ g n»exp(iql) one finds

1 V» (1+v(0)/2)
4 2TO —2T„cask[1—cos(q) ]—e„(k)——,[V»"——, V"(0)]

(73)

Here the term 2TO in the denominator is the average ener-
gy of a particle-hole excitation. The second term is relat-
ed to the the dispersion of the SCF energy

escF(k) = To+ 2T„cosk

of the quasiparticle. If 2T&cosk is positive (negative) the
polarization and the correlation correction becomes larger
(smaller). This results in a reduction of the conduction-
and valence-band widths. The last term in the denomina-
tor is due to dipolar interactions, while V"(0) represents

t

the local-field corrections, namely, it cancels the self-
interaction of the dipoles, which is included in V»'. Note
that the only k dependence, at least in this simple model,
enters via the quasiparticle energy.

Equation (74) for n»must be solve.d self-consistently to-
gether with Eq. (71) for e,'0~(k). The occurrence of the
correlation energy e„„(k)in the denominator of (74) leads
to a reduction of the polarization parameters n». A fur-
ther reduction is due to the term a(0)/2 in the numerator,
since v(0) is negative. This term has its origin in the cou-
pling of polarization and ground-state correlations.
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The simplicity of the results of the above-mentioned
model is due to the use of the BOA and the minimal basis
set. In particular, a large number of exchange diagrams
containing m(0) can be omitted since m(0) =0. However,
when dealing with a larger basis set, in principle, all dia-
grams as listed in Appendix B will give a contribution.

Not contained in the simple model considered above are
possible charge transfers between different bonds. Their
absence is due to the use of the BOA. They can be ob-
tained by using instead the extended bond orbital approxi-
mation (EBOA; see Ref. 20). In distinction to the BOA
the Wannier orbital P,(r —R, ) of a bond contains also ad-
mixtures of antibonding functions from neighboring
bonds. The conduction and valence bands are decoupled
in the EBOA. For the one-dimensional model considered
in the last section this implies that the %'annier operator
for the valence band is of the form

ivicr(v) =4«+ g ~«'+i'cr ~

t'~f

instead of w, (v)=8, as in the discussion following Eq.
(53). Assuming A, « ——A,5«+& one finds an additional con-
tribution to Eq. (58),

(76)

Here the notation

(77)

has been introduced. The spatial dependence of
ir(l) o(l+ 1) i—s the same as that of m(l); hence the charge
transfer provides an additional contribution to the polari-
zation. This effect is expected to be small in semiconduct-
ors with a large gap where the Wannier functions are well
localized and A, is small. But charge transfer will become
important in narrow-gap semiconductors where the locali-
zation of the %'annier functions is less pronounced. The
simple model calculations of this section have had the
purpose of illustrating the general formalism developed in
Sec. III. In particular, we have seen that the correlation
energy contains contributions that result from the polari-
zation of the surroundings of an electron in the conduc-
tion band. The induced dipole-dipole interactions (local-
field effects) are properly included. This is within the
spirit of the work by Mott and Littleton, but here we have
also included the dynamics of the extra electron in a sim-
ple and transparent way. As mentioned above there is
also the influence of the ground-state correlations taken
into account when the polarization is calculated.

VI. SUMMARY AND CONCI. USIONS

The aim of this investigation has been to set up a
theoretical framework for reliable and accurate calcula-
tions of the correlation energy in the excited states of

semiconductors. The motivation behind this effort has
been to obtain a simple and clear understanding of which
processes are responsible for the changes in the energy gap
and the conduction- and valence-band widths as compared
with the results from an independent electron calculation,
i.e., a SCF [or Hartree-Fock (HF)] type of treatment. The
theory has been developed by extending to excited states a
previously developed local approach to the correlation
problem of the ground state of a semiconductor. An im-
portant approximation that has been made thereby is the
neglect of excitonic effects, i.e., the electron and its hole
have been assumed to be separated. This enabled us to
consider a (N+1)- [or (N —1)-] electron problem. The
wave function of the correlated (N+1)-particle system is
described by Eq. (27). We want to point out that this
form of wave function excludes any possible lifetime ef-
fects that are not taken into consideration. The new
feature as compared with ground-state calculations is the
appearance of a second set of operators O~„Q „con-
structed out of the local operators O~„.This set leads to
vanishing contributions in the ground-state energy expan-
sion (19) but contributes when there is an extra electron in
a conduction band. The correlation energy of the extra
electron can be calculated from Eqs. (44), (45), and (49).
There are a number of different physical processes con-
tributing to it that we want to summarize. Thereby it is
advantageous to distinguish between processes that can be
described within the basis set of the bonding and anti-
bonding orbitals (minimal basis set) and those processes
for a description of which we need larger basis sets. Let
us start out with those of the first kind and list them as
follows.

(a) Bond polarizations. The electron in the conduction
band generates around itself a polarization cloud by polar-
izing the different bonds. The process is extracted out of
theory when the model in Sec. V is studied. It is the most
important process for the reduction of the energy gap.
The bond polarization has two contributions: one due to a
shift of charge within a bond, while the second results
from a transfer of charge between different bonds. The
BOA allows only for the first contribution while the
EBOA allows also for the second contribution.

(b) Momentum dependence ofpolarizations The polar. i-
zation cloud around the electron in the conduction band
depends not only on the particular band, but also on its
energy and its momentum. This represents itself in a k
dependence of the corresponding 71"„'(k,b) and results in a
narrowing of the bands.

(c) Local field effects. The -discussion of the model in
Sec. IV has shown that local-field effects are properly in-
cluded in the theory. The advantage of the present ap-
proach is that within the approximation (38) all diagrams
are taken into account. This enables us to study their rela-
tive importance with respect of contributing to e„.

(d) Changes in the ground state correlatio-ns. When the
extra electron is in an antibonding Wannier orbital, the
correlation energy of the electrons in the bonding %"annier
orbitals of its neighborhood is reduced. In particular in
the BOA there is no possibility for correlations in the
bond in which the extra electron is sitting. Hence the use
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of a minimal basis set together with the BOA necessarily
leads to an overestimation of the reduction of the ground-
state correlation energy.

Next we summarize the processes that require a larger
basis set for their description.

(i) Relaxation. In the close neighborhood of the extra
electron the orbitals of the other electrons will relax. The
inclusion of relaxation, which is known to be very signifi-
cant in atoms and molecules, requires an extended basis
set. Within the present theory the operator g'„'0„Q~„
locates again the electron in the conduction band and
gives particular weight to the occupation of those regions
g„(r)into which the wave functions of the bonding elec-
trons relax.

(ii) Modified changes in the ground-state correlations
As pointed out above, the reduction in the ground-state
correlations in the neighborhood of the extra electron is
expected to be considerably reduced when the basis set is
enlarged.

This completes the summary of the different processes
that contribute to the correlation energy of the quasiparti-
cle in the conduction band. A particular feature of the
method formulated above is that it allows the computa-
tion of short- and long-range effects within the same
framework.

As far as the evaluation of the various contributions to
the correlation energy is concerned, it was demonstrated
that the theory can be reduced to the computation of a
number of expectation values [see Eqs. (50a)—(50c)].
Practical rules for their evaluation were derived and expli-
cit expressions are presented in Appendix B. Here all con-
tributions up to second order in q are evaluated, i.e., no
uncontrolled restriction to a certain subset of diagrams is
required. The expectation values must be calculated only
once for a semiconductor and not for every k point. They
constitute the largest amount of work in an actual calcula-
tion. The k dependence enters into the calculations in a
simple and straightforward way [see Eqs. (4la)—(41c)]. It
was also pointed out that the correlation-energy contribu-
tion can be written in terms of a supplement to the Pock

matrix [see Eq. (40)].
Finally, we want to remark on possible improvements

of the theory. The present formulation of the theory has
been done with primarily covalent semiconductors in
mind. For that reason we have left out single-particle ex-
citations when describing the ground-state correlations.
In polar semiconductors they are of importance, though,
and must be included. Their inclusion is simple and
straightforward but lengthens the various expressions.
Furthermore, we do not foresee any problems in extending
the theory so that it includes excitonic effects. In particu-
lar, our approach seems to be interesting for cases where
one is dealing with excitons which are neither in the
Frenkel nor Wannier limit. The theory that has been
developed here is planned to be applied to diamond in or-
der to demonstrate that it can be applied to real systems.
It is hoped that it can provide a link between calculations
for small systems as done by quantum chemists and
band-structure calculations as performed by solid-state
physicists.
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APPENDIX A: LINKED-CLUSTER EXPANSION

We want to provide a derivation of Eqs. (33)—(35). For
that purpose we consider

(cr e He cr ) =g, , (cr (S ) HS"cr ) . (Al)
1 1

„m!n!
7

Here I stands for k, b, o. and as in the preceding sections
( ) implies an expectation value with respect to

~

@scF).
When calculating the expectation value (cr (S ) HS"cr )
one must contract the creation and annihilation operators
pairwise, thereby taking all combinatorial possibilities into
account. In doing this the expectation value wi11 generally
factorize into a product of expectation values. We consid-
er separately the expectation value that contains H and
cannot further be factorized. In this way we write

n m
[( (S1')IHSk —I 't

) ((St)n —ISm —k+I) + ((S't)IHSk —I) ( (St)n —ISm —k+Ici' ) ]
k, l

(A2)

Here the notation ( ), implies that the contractions are taken in such a way that the expectation value does not factor-
ize. This implies that all operators ci, ci, S, or H that appear in square brackets are connected (directly or indirectly)
with each other through the contractions. The contracted operator products can be expressed in terms of diagrams as
was done in Sec. IV.

The expectation values in Eq. (A2) without the index c contain connected as well as disconnected structures. The pre-
factors (I ) and (k I) in that equation give the number of possibilities to choose 1 operators out of n and k —I out of m.
Furthermore, there are two terms over which the sums are taken since the operators c~ and c ~ can belong to a connected
diagram which may include H or not.

When we substitute Eq. (A2) into (Al) we can rewrite the different terms. For example, it becomes
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( (g't)IHgk —I t ) ((gt)n —lgm —@+I)
I k —I

mn ' ' kl

( (gt)IHgk —I t ) y ((gt)n —lgm —k+I)
I I (k —l )! „(n—l)! (m —k+3)!

=(c e He c„),(e e ) (A3)

(cre e c„) = (cre te CI. ) (este ) (A5)

Combining Eqs. (A4) and (A5) results in

(cre He cr ) (ere He cr )q
St S St S '+ es Hes, .

(cre e cr) (c„ete c )

This proves that Eqs. (33)—(35) follow from Eq. (32).

APPENDIX 8: FURTHER EVALUATIQN QF THE
EXPECTATIQN VALUES {50a)—{50c)

In the following detailed information is provided with
respect to the evaluation of the expectation values
(50a)—(SOc). Thereby we limit ourselves to 0 „operators
that describe density-density correlations, i.e., we do not
consider spin correlations. A generalization that includes
the latter is straightforward.

We begin by considering (wt H„,Om"„'w,~ ),. The four
possible diagrams are shown in Figs. 6(la)—6(ld). From

The last equality follows by introducing new variables for
n —1 and m —k+/. In a similar way we can rewrite the
second term in Eq. (Al) so that we finally obtain

(cre tHe cr)=(cre He cr), (e e )

+(e He )~(cre te ci ) (A4)

The same procedure can be repeated for (ere e cr )
which appears in the denominator of Eq. (32). One ob-
tains

the computational point of view it is useful to introduce
the following abbreviations:

& t ..= g Vijkic t Dj Rk'Dl.
i,j,k, l

8, „„=g V; kIR; Cj.tRk„DI„.
i,j,k, l

By applying the rules of Sec. IV one finds

(81)

&wt Ht-o "nwt ).=2(C t(2& t.n &.t. )&—...
Cmt (2+tm'nn ~tnmn +tt, 0]

By applying the rules of Sec. IV it is found that

The first term corresponds to the diagrams W(6. la) and
~(6.1b) while the second term corresponds to ~(6.1c)
and W(6. 1d). The latter describes changes in the ground-
state correlations due to the extra electron.

Next we evaluate (wt Om"„'HOOm„'w, ),. There are
twelve possible diagrams associated with the different
contractions out of which we show four in Figs.
6(2a)—6(2d). Their structure is obvious from the rules set
up in Sec. IV. Let us introduce the notation

6„=g f;ID;„DI.
(83)

H. =QfjRjnRIm .

C,, C,(D, P,„G,+IT, P,„G„.„DD„„H—„)]5„,5, ,

c„,.c .,D(„p„—„H +8„pH„„pp..G. )]4—,o4,0. (84)

The evaluation of the expectation value (w, O'"„'H„,O'"„'w, ), is as straightforward but more complex. The number

of associated diagrams is 10. Only a small number of them are shown in Figs. 6(3a)—3(d). We introduce the abbrevia-

tions

Umm nn = g I'Ijkl Dim RjmRknDIn,
i,j,k, l

~mm'nn g+ij'klDim'DjmDknDIn' ~

ij,k, l

Furthermore, we introduce

..= g I'IkID CItRk. DI.
i,j,k, l

~ m'n = g &IkIDmDI Rk.Ri.
i,j,k, l

p .„„.= g vjkIR;
i,j,k, l

~mm 'nt' = g +ij klDim Dj mRkn Clt ~'Pt'm'nn' 'g ~ij kIRim'C jt'RknR In'

i,j,k, l i,j,k, l

(85)
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In terms of these quantities one finds

( t ~Om'» H,~Om'„'wt ), =4Cm;Cm, [2Dm (2U„„„„—W„„„„)+D„„(Um„m„—2W m „„)+P„„(2Smm„„—Sm„m„)
(B7)

& wt'ttOm'n'HresOm» wttr &t: =4Cmt'Cm't [ mm'(2 Unnn n '' Wn nn 'n)'+ Pnn'( Umnm'n ' 2 Wn nm'm') Pnm'(2 Umnn'n' Wn'nn'm )

P—„(2U„„„W—„„„)+D„„(2P„„P—„„)],
and finally for the coupling terms between ground-state parameters ilmn' and excitation parameters il'mn',

(B8)

(B9)

I

What remains is the evaluation of (wt O'"„'0'"„'w, ),. This matrix element is again diagonal with respect to the in-
drces sc a':

( wt ttOm'n Omnwtn ) =4Cm t Cmt[(2Dm mD»»P» n
—D» mDm «P» n )5k e5k t

—(2Pmm D»» Pn» —Pm» D»» P»m )5k p5k' p]

(B10)

This completes the summary of the matrix elements needed to compute the correlation energy of a quasiparticle in the
conduction band. When considering a hole in the valence band still the same formulas apply. In that case in all dia-
grams the orientation of the solid lines must be inverted, this implies simply a redefinition of the expectation values of
Eq. (51). The definitions of R; and D;m as well as Pm„and Dm„must be interchanged, while the quantities C;, and Cm,
are now defined as C;t=(t2; w, ) and Cmt=(bm w, ).
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