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Optical- and acoustic-phonon —limited mobilities for p-type silicon and germanium have been cal-
culated, without the relaxation-time approximation, from solutions of the full Boltzmann equation.
The valence-band dispersions are obtained from Kane s 6)&6 k p Hamiltonian. Hole-phonon tran-
sition rates are calculated using the deformation-potential theory with one adjustable parameter for
hole —optical-phonon interaction strength which is fitted to mobility data at room temperature.
This represents the first such calculation for silicon. Very good agreement is found between experi-
rnent and theory for both mobilities in silicon and for the conductivity mobility in germanium. The
agreement between experiment and theory for the Hall factor in Ge is better than 20%, which may
still be improved upon with more reliable deformation-potential parameters. However, the agree-
ment is better than that attained by earlier calculations. The fitted values of the hole —optical-
phonon deformation potentials are within bounds of independent estimates for their values. It may
therefore be concluded that the deformation-potential theory is well suited for quantitative modeling
of phonon-limited mobilities.

I. INTRODUCTION

Electrical transport measurements continue to be valu-
able tools for characterizing semiconductor materials and
devices. In particular, Hall-effect measurements have be-
come standard diagnostic tools in assessing material quali-
ty and in determining doping concentrations. The quanti-
tative determination of concentrations from Hall data re-
quires a knowledge of the so-called "r factor, " the ratio of
Hall to conductivity mobility. Rarely are Hall mobilities
and conductivity mobilities obtained from the same sam-
ple. Ideally, these two parameters are obtained from the
low and high magnetic field limits of the Hall mobility.
Unfortunately, the high-field limit is often unattainable at
elevated temperatures, due to the large magnetic fields re-
quired, for samples with low mobilities, while the low-
field limit is difficult to measure at low temperatures, for
high-purity samples, owing to the lack of Hall-voltage sig-
nal resulting from too few thermal excited charge car-
riers. ' lt is often found that in these situations theoretical
modeling can be of great utility.

A quantitative understanding of electrical transport
properties is also of intrinsic interest since it can elucidate
basic transport-limiting scattering mechanisms. Depend-
ing upon the material, its composition, and the tempera-
ture range studied, there can be several scattering mecha-
nisms. In order to assess the influence of each mechanism
it is convenient to deal with each one separately. In a pre-
vious paper the present author in collaboration with Ma-
darasz investigated acoustic-phonon —limited mobilities in
p-type silicon and germanium. ' With the use of
deformation-potential concept, ' in conjunction with ac-
curate band-shape models, mobilities were calculated
from the full Boltzmann equation without the relaxation-
time approximation. ' The degree of quantitative agree-
ment attained by that calculation in comparison with ex-
periments ' justifies the extension of transport modeling

to involve optical-phonon —limited transport with the
same degree of rigor.

Phonon-limited transport in nonpolar p-type semicon-
ductors, such as silicon and germanium, has been actively
investigated for many years. Citations to papers dealing
with the acoustic-phonon —limited transport in these ma-
terials are contained in Refs. 2 and 3. References 2 and 3
contained no adjustable parameters to characterize the
strength of hole —acoustic-phonon interaction. In con-
trast, with the exception of the work by Tiersten ' and
Lawaetz, the strength of the interaction is usually treated
as an empirically adjustable parameter.

The optical-phonon scattering mechanisms and the re-
sulting mobilities have been dealt with by many authors.
Except for Lawaetz all these theoretical calculations have
used the relaxation-time approximation and different de-
grees of band-shape approximations. The relaxation-time
approximation results from retaining only the l = 1 angu-
lar momentum component in a spherical harmonic expan-
sion of the steady-state distribution function. ' In the
present work I =1, 3, 5, and 7 are used, thereby going
beyond the relaxation-time approximation.

One of the earliest investigations of hole scattering by
optical phonons was undertaken by Ehrenreich and
Overhauser. " Matrix elements for scattering were con-
sidered for both the rigid- and deformable-ion models and
spherical constant-energy surfaces. The matrix elements
calculated by Ehrenreich and Overhauser were functions
of the scattering angle only. This approach has since been
superseded by the deformation-potential approach. The
more exact model used in this paper considers the matrix
elements as functions of both the incident- and scattered-
hole directions within the deformation-potential model.

Another line of approach owes its origin to the
deformation-potential concept introduced by Bardeen and
Shockley. ' Resulting expressions for nonpolar optical-
phonon —limited mobilities were derived by Conwell. '
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They are strictly valid for electrons in nondegenerate ellip-
soidal bands. This approach is based on the relaxation-
time approximation and phenomenologicajj hole —optical-
phonon coupling strengths. ' ' A good example of this
approach is provided by the calculation of Lin, Li,
Linares, and Teng' for p-type silicon. These authors em-
ploy separate interband and intraband relaxation rates for
the light-(1. ) and heavy-(II) hole bands based on a formal-
ism developed by Bir, Normantas, and Pikus' for the
acoustic process, with optical-phonon —hole relaxation
rates based on the work of Conwell. ' Lin et al. did not
calculate a temperature-dependent r factor. A similar ap-
proach has been pursued by Hackmann, Neubert, Scherz,
and Schlief' for p-type Si using spherscal spin-orbit 5-,
L,-, and H-hole bands, bui with equal relaxation rates for
the L,- and 0-hole bands, and no interband scattering with
the 5-hole band. Transition probabilities calculated by
Hackmann et al. are taken from Wiley' and are func-
tions of scattering angle only. The resulting relaxation
rates are similar to those of Herring and Vogt. The r
factor for p-type Si calculated by Hackmann et al. ' has
an incorrect temperature dependence owing to the
spherical-band approximation.

A simplifying approach due to Wiley' reduces the
complexity of the deformation-potential approach ' of
Bir and Pikus. Here the transition probabilities are pro-
portional to relevant deformation-potential constants (one
for each phonon type) and an overlap matrix element be-
tween initial- and final-hole Bloch states. In Ref. 7 this
approach has been criticized for neglecting the
deformation-potential operator between these two states.
The transition rates in Wiley's formulation' are only
functions of the scattering angle. This approach has been
applied by Costato, Gagliani, Jacoboni, and Reggiani to
Si and Ge. The effect of the overlap correction was found
to double the numerical value of the mobility as compared
with calculations neglecting the overlap. The r factor was
not calculated.

A good example of the phenomenological approach, in
conjunction with the relaxation-time approximation, is
given by the calculations performed by Nakagawa and
Zukotynski. Their relaxation rates involve two empiri-
cally adjustable deformation-potential constants —one for
the acoustic and one for the optical process. In the work
of Nakagawa and Zukotynski the scattering probabilities
were assumed to be proportional to the density of the final
states, and the effect of overlap between initial and final
states was neglected. This makes the relaxation times
equal for the H-hole and I-hole bands. The r factor of
Nakagawa and Zukotynski for Ge is about 50% larger
than measured and the r factor for Si does not match the
experimental r factor at lower temperatures. The present
calculation also regards the optical-phonon —hole interac-
tion strength as adjustable (the acoustic-phonon —hole in-
teraction is not adjustable, as explained in Refs. 2 and 3).
The one adjustable parameter, do, used here can in princi-
ple be related to experimental results from Raman scatter-
ing. In this sense, the present theory could be pursued
from "first principles" without any adjustment of parame-
ters. An extension of the work of Nakagawa and Zuko-
tynski, involving all three 5-, I.-, and H-hole bands of Si,

was performed by Takeda, Sakui, and Sakata. The r fac-
tor calculated by Takeda et al. for Si does not match the
measured r factor due to their use of the simplified
relaxation-time model.

A rather precise formulation of the hole —optical-
phonon interaction has been put forward by Bir and
Pikus ' on the basis of deformation-potential theory.
They have derived expressions for the relevant matrix ele-
ments for a parabolic band model involving the top two
valence bands of Si and Ge. Their results are analytic and
by virtue of symmetry considerations require only one
deformation-potential constant, do, to characterize the
strength of the interaction. The model of Bir and Pikus
has subsequently been used by Lawaetz for p-type Ge. In
Refs. 2 and 3 it was shown that the use of nonparabolic
bands improves the calculated r factor in the acoustic-
phonon —limited regime. The present paper will use a
generalization of that theory by including all three top
valence bands in calculating the scattering matrix ele-
ments.

In reviewing previous work on the subject of mobilities
in p-type Si or p-type Ge it has become apparent that the
degree of quantitative and even qualitative success has
been limited. ' ' "' In a previous paper ' these limita-
tions were found to be due to various band-shape approxi-
mations and the use of the relaxation-time approximation.
In particular, there have been no reports of a successful
calculation of the r factor for p-type Si over a wide tem-
perature range, in spite of the use of empirically adjusted
parameters. Typically, with two adjustable parameters for
phonon-limited transport, if one adjusts the conductivity
mobility to fit the data, the predicted Hall mobility often
does not match experimental results.

The present work addresses the problem of phonon-
limited mobilities employing an improved treatment of
the crucial steps involved in the calculation. In Sec. II the
theory of optical-phonon —hole scattering is reviewed and
generalized to a nonparabolic band treatment. Section III
contains a test of the calculational and theoretical pro-
cedures, and results for p-type Ge. Section IV is devoted
to presentation of results for p-type Si. Finally, con-
clusions are presented.

II. DEFORMATION-POTENTIAL THEORY
QF THE HOLE —OPTICAL-PHONON INTERACTION

The scattering rates for carriers interacting with optical
phonons have been worked out within the deformation-
potential picture by Bir and Pikus. ' The theory has
been subsequently applied to Ge by Lawaetz. Bir and
Pikus developed the formalism for the special case of two
parabolic (I -hole and EI-hole) valence bands, which results
in relatively simple analytic expressions for the scattering
rates. In what follows I shall summarize their theoretical
development and extend it to the treatment of all six non-
parabolic valence bands in diamond-type semiconductors.

A. Scattering operator

The potential experienced by a carrier in a lattice is
composed of two parts. The first part corresponds to the
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static equilibrium configuration of the lattice, Vo( r )

which is the part of the Hamiltonian employed in stan-
dard band-theory calculations, that is,

and

( r —Rf )— [F „(r Rf—)M„,—7" ( r —Rf )M ] .
0

+ Vo(r) g„(k, r)=E„(k)g„(k,r) . (2.1)
2m

leading to the formation of bands F.„(k) with associated
Bloch wave functions P„(k,r). In the presence of lattice
vibrations atoms of the lattice are displaced from their
equilibrium positions by the amount of elf, . The index f
labels the position of the unit cell, with mass Mp, at Rf
and ~ labels the location of the ~th basis atom, with mass
M, in the unit cell at Rf . Bir and Pikus assumed that
the perturbation introduced by the presence of lattice vi-
brations depends on the instantaneous atom positions in
the lattice and not their velocities; i.e., the adiabatic ap-
proximation. For small displacements from equilibrium
the perturbation becomes

5 V( r ) =g F'f„(r ) eef„. (2.2)
f,K

If only one atom at f, tc undergoes displacement ee we will
have

(2. 1 1)

Next we need to consider the range of the lattice-carrier
interaction. air and Pikus assumed that the perturba-
tion at r is determined principally by the motion of atoms
nearest to the point r, namely those atoms for which

Rf I
(2.12)

so that

™»»' ( ~» ™»')samecell ~ (2.13)

where k is the wavelength of lattice vibration. Further-
more, k))ap, where ap is the lattice constant, so that we
are dealing with long-wavelength or short-wave-vector q
vibrations.

In the long-wavelength limit the center of mass of each
cell for an optical mode does not move so that A.f ——0 for
all f in Eq. (2.9). Also in the same limit all sublattices
move identically in each cell, which gives

gV(r)= Wf„(r) ~ (2.3) 5V(r),p,
———,gee„, F'„'~'(r), (2.14)

so that

F'f (r)= 7 0 (r —Rf):= P (r —Rf) .

Altogether then,

(2.5)

5V(r) =g 7 „(r—Rf )-~f (2.6)
f,K

Following Bir and Pikus it is useful to define a cell's
center-of-mass coordinate

eef '= QM» ee f» gM» (2.7)

at point r which is r —Rf away from unit cell f. The lat-
tice periodicity condition requires that an identical atom ~
in the zeroth unit cell produces the same perturbation at a
point r —Rf away, which requires that

(2.4)

where

F '"'(r)—:gP „„(r—Rf) .
f

(2.15)

The c-number vector operator F''~'(r) is a property of
the lattice in equilibrium and has the periodicity of the
lattice.

To proceed further, discrete atomic displacements ~f
are taken over to the continuum limit. This is accom-
plished by observing that in the long-wavelength limit the
discrete displacement of the atom fv at a distance

~

r —Rf i
«A, from the field point r differs only slightly

from the average displacement ee (r) of the ath sublattice
at r. One may then expand each ~f in a series with
respect to r —R f. For acoustic vibrations the first two
terms in the series are retained. For optical vibrations
only the first term is kept, that is,

and the relative displacements in cell f
~fKK'= ~ fK ~ fK' ~ fK'K (2.8)

(2.16)

Equation (2.14) can be specialized to the case of the dia-
mond lattice, where for identical atoms in the unit cell

In these coordinates Eq. (2.6) becomes
M) ——Mp ——M,
Mp ——Mi +M2 ——2M,

(2.17a)

(2.17b)

6 V( r ) =g eef P( r —R.f ) + —, g eef„„7„„(r —Rf ),f f,K, K'

so that from Eqs. (2.8), (2.11), and (2.14)

&V(r),p, ———,
' [~i(r)—~,(r)].P '~'(r), (2.18)

where

(2.9)

(2.10)

where

W '"'( r') =—g F',~( r —Rf )
f

=g [P i ( r —Rf ) —F 2( r —Rf ) ] .
f

(2.19)
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A symmetry analysis of the operators in Eq. (2.18) leads
to great simplifications in the subsequent treatment. The
optical mode in the diamond-structure semiconductors is
threefold degenerate and transforms according to rows of
the I 25 irreducible representation of the diamond space
group O~ (Fd 3m). The relative displacements

(n, k;N
l
T,

l
m, k;N')

=g(n, k;N
l
[a,(q)e'~''+a, (q)e '~'']

x (e, F' ~')
l
m, k '; N' ) . (2.26)

i(r) — 2(r) —= (r) (2.20)

behave then as axial vectors, or pseudovectors, being even
on inversion. Since 7 ' '(r) is the property of the lattice
in thermal equilibrium, it is independent of ~, and is
translationally invariant. If the two atoms in a cell are in-
terchanged via the inversion operation, the potential
5V(r ),„,cannot change. Since ~ is an axial vector, the in-
variance of 5V(r),~, implies that F'' ' is an axial vector
as well. For selection-symmetry purposes the angular
behavior of the operator F' '~'( r ) is that of the basis func-
tions for the I zz representation of Oh. This completes the
derivation and exploration of properties of the scattering
operator for the hole —optical-phonon interaction

An qs

2pco~ 0
q, n', k" qs

(n, k
l

e'~''
l
n', k")

x &n', k"
l
e, ~"'lm, k '&5~~ (2.27)

for scattering with absorption of an optical phonon, and

1/2

q, n'„k "

fi(n + 1)

2pQ)~ 0 (n, k e ' ''
l

n', k"
&

Inserting a complete set of states between the phonon

operators and P '"' results in
1/2

5V(r),p, ———,
' ~(r). F''~'(r) . (2.21) x &n', k"

l
e, ~"'

l
m, k '&5~&+i (2.28)

B. Transition rates

The transition-matrix element for optical-phonon —hole
scattering between Bloch states of bands n and m with

wave vectors k and k ', respectively, with phonon-
occupation numbers % in the initial and X' in the final
states, is given by

(n, k;N
l 2 ~(r) F' "'(r)

l
m, k ';N') . (2.22)

Here

(r
l
n, k) =g„(k,r)=e' "' "u„(k,r)

is the Bloch wave with the cell periodic part u„(k, r ). The
relative displacement field ~(r)= ~& —~z in a quantized
form becomes

where q is the phonon wave vector, s is the polarization
branch, a, (q ) is the phonon destruction operator, and c.c.
denotes complex conjugation. In the long-wavelength
limit the polarization vectors p„(q,s ) are given by

p &(q,s) = —p2( q, s )—:p( q, s ),

~=~i —~2 ——+[pi(q, s) —p2(q, s)]a, (q)e' "+c.c. ,
g, S

(2.23)

for the case of phonon emission. The factors in the square
root contain the phonon-occupation number

n = exp —1 (2.29)
L

where co is the phonon frequency, kz is the Boltzmann
gS

constant, T is the absolute temperature, p is the mass den-
sity of the crystal, and Q is its volume.

In Eqs. (2.27) and (2.28) 7 ' '(r) has the periodicity of
the lattice so that

&n' k" le. .~'"lm k'&=(n' k'I ~s" lm k')5-„,-„-

where (r
l
n, k)=u„(k, r) is the cell periodic part of

( r
l

n k ). On the other hand,

( n, k
l
e —' ~ ' "

l
n ', k ' ) =5-„-„, ( n, k

l
n ', k ') .

For small wave vectors the optical branch for diamond-
type semiconductors is dispersionless,

CO~ =COO,qs

for all three polarization branches. Therefore,

1/2
A(no+ —,

' + —,
'

)
(n, k

l

n', k')
2pco Q

since the two atoms vibrate 180 out of phase. Trivially,
we can choose for the three polarization branches x(n', k'l Fz (r) lm, k')5~~'yi (2.30)

p(q, s)=e, ,

i.e., unit vectors in the 5th direction.
The transition-matrix element for the sth polarization

branch now becomes
g l

n, k)(n, k
l
=1 (2.31)

where T,+, T, represent absorption and emission, respec-
tively. The last forrnal step is to note that the cell period-
ic parts

l
n, k) satisfy the closure relation
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for a fixed wave vector. With this important simplifica-
tion we finally arrive at

(n, k;N
I
T,

I

m—, k';N')

P+ (N—, k;M, k ')

iri(no+ —,+ —,
'

)

2 A 2pcopQ

' 1/2
iri(n + —,'+ —,

'

2pcopQ
n, k

I

~~'(r

(2.32)

s n(X) m(M)
I (n, k

I
F,'"'

I
m, k ')

I

X5(E~(k) EM—(k ')+iriaio), (2.35)

BJ' ( k, k ') =2(n, k
I

D~'
I
m, k ') . (2.33)

A numerical test of the alternative procedure, Eq. (2.33),
for germanium has shown that the two methods agree to
at least four significant figures. The six-band set, as was
surmised, is complete enough for the acoustic-phonon
transition rates among the top valence bands. It is more
satisfying, and more accurate in all cases, to use Eq. (2.33)
instead of Eq. (3.9) of Ref. 4 or Eq. (2.15) of Ref. 7.

Returning back to the discussion of transition rates, the
transition probability per unit time from Fermi's golden
rule is given by

1 —1
vari(no+ —, + —, )

P (n, k;m, k ') —=
2')pQ

Xg I (n, k
I
F,'"'

I
m, k ')

I

I would like to observe that Refs. 4 and 7 do not make
use of relation (2.31) in calculating the acoustic-
phonon —hole scattering rates. Instead, the sum over in-
termediate states n' is carried over the top six valence
bands. In the paper by Madarasz and Szmulowicz,
1 & n' & 6, but clearly Eq. (2.15) of Ref. 7 is better written,
using Eq. (2.31), as

where N =1,2, 3 stands for the S-, I.-, and 0-hole bands
with corresponding Kramer's degenerate doublets:
N(1)=N(2)=1, N(3)=N(4)=2, and N(5)=N(6)=3;
conversely, n (1)= 1,2, n (2)=3,4, and n (3)=5, 6. The
factor of —,

' in front of Eq. (2.35) has been said. to
represent the sum over the final states and an average over
the initial states for the manifolds X and M. "' ' This I
feel might be misleading since it implies that this averag-
ing is the property of the transition rates. I show in Ap-
pendix A that the factor of —,

' is due to the structure of the
Boltzmann equation and not of the transition rates.

Explicit evaluation of Eq. (2.35) requires the input of
the periodic parts of the Bloch wave functions (r

I
n, k).

In the present calculation these are obtained from the
solution of the 6X 6 Kane's k. p Hamiltonian. The solu-
tions take the form

I
n, k)= ga„z(k) I e~),

p=1
(2.36)

where (r
I ez) transform as x t, yt, z&, xi, yl, and zl for

p =1—6, respectively. Thus (r
I ez) transforms according

to the I zs representation of Oi„with both spins included.
Since 1 „~'-x, P z~'-y, and P,~'-z behave as polar vec-
tors in each ato~ic subcell, there is only one nonzero ma-
trix eleinent possible on the basis of syinmetry. If r, t, and
s stand for Cartesian coordinates, then the nonzero inatrix
elements are '

«.
I

~t'"'
I

&. ) =(do«o)v 3
I
~„ I

(2.37)

X5(E„(k ) E(k ')+Sicko), (2—.34)

where the contributions from all three polarization
branches have been summed. In Eq. (2.34) n and m will
range from 1 to 6 for the three doubly degenerate top
valence bands. The transition probability appropriate for
scattering among the doubly degenerate manifolds is ob-
tained by summing over its members, so that

as long as r and s refer to the same spin. do is the only
parameter characterizing the strength of the
hole —optical-phonon interaction used in the present work,
ap is the lattice constant, e~ represents the Levi-Civita
density and dp will be treated as an adjustable parameter
in a way to be described later.

To make contact with the earlier four-band model of
Bir and Pikus, ' I rewrite Eq. (2.35), using Eqs. (2.36) and
(2.37), in the following form:

(2.38)
2ir(no+ —,

' + —,
'

)
P +(N, k;M, k ')= —

z
—dog g g ga„*z(k)

I ezz, I a~&(k ') 5(E~(k) EM(k ')+irido) . —
2pcopQap 2 s n(~)m(~) piq

The factor in the parentheses is identically U (Mk, Nk ')
in the four-band model in Eq. (2.30) of Ref. 9. The ana-
lytic result for the four-band model is given in Eq. (Bl) of
Appendix B.

Owing to the inelastic nature of the hole —optical-

phonon scattering,

P +(N, k;M, k ')~P —(M—, k ',N, k) .

On the other hand, it is clear from Eq. (2.38) that

(2.39)
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U (M, k;N, k')=U (N, k';M, k) . g.40) a„~(k)=a„~(—k) . (2.42)

If one examines the structure of the 6&&6 Kane's k p
Hamiltonian with spin-orbit splitting, one observes that
the matrix elements are quadratic in k since inversion is a
symmetry operation for diamond-type semiconductors.
The time-reversal symmetry gives

Therefore, Eq. (2.38) has the additional symmetry

P+ (N-k M k ') =P (N—k M —k ')

=P +—(N, —k;M, k '), (2.43)
E„(k ) =E„(—k ) . (2.41)

In addition, from the structure of the k p Hamiltonian
the solutions a„z(k ) in Eq. (2.36) have the property that

which is called the momentum randomization. This prop-
erty will be important in setting up solutions to the
Boltzmann equation, which will be discussed next.

C. Solution of the Boltzmann equation

The general form of the Boltzmann equation is [see Eq. (A10)]

—F.V- — B [V' Eic(k)X V-„] f~(k)

J dk' P(M, k', N, k)fM(k') 1—
M (2ir)

—P(N, k;M, k ')f~(k) 1—

(2.44)
where F and 8 are the electric and magnetic fields, respectively, and P is the sum of transition rates from all scattering
processes. For the acoustic-phonon process, assumed to be elastic, the microscopic reversibility holds

P„(M,k ',N, k ) =P„(N, k;M, k '), (2.45)

(2.46)

so that the fM(k ')f~(k) cross terms in Eq. (2.44) vanish. Clearly, for the acoustic process only the scattering term as-
sumes the form

, fdk'P„(N, k;M, k ')[fM(k ') f~(k)] . —
M (2m)

In thermal equilibrium the Fermi-Dirac distribution is a function of energy only. Since EM( k ) =E&(k ) in the acoustic
process, the scattering term, Eq. (2.46), vanishes in thermal equilibrium.

For the optical-phonon process, using the energy-conservation condition, one can obtain the following structure for
the scattering terms:

f«~) 0 f«~)U (Eic,Eiv +fico)f (Eiv +fico) 1 —— (n + 1)+U (Ex,Eic 'Iico)f(E& f—ico) 1——
2 2

rI

f«~ ~) f(Ed+fico)
(EN~+N ~)f(EN) 1 (n + 1) U (EN~ N+~)f(EN)

(2.47)

where U 's are given by the large parentheses in Eq.
(2.38). It is easy to show that for the optical process the
scattering term vanishes only if f is the thermal equilibri-
um Fermi-Dirac distribution and n is the Bose-Einstein
equilibrium phonon distribution.

In the nondegenerate case one may assume f «f
which eliminates cross terms in the collision term, Eq.
(2.44), and allows one to facilitate further analytical
developments. With the elimination of cross terms in Eq.
(2.44) the scattering term for the optical process vanishes
if n is the Bose-Einstein distribution but f now is the
Boltzmann distribution. The scattering term for the op-
tical process, in the nondegenerate case, now becomes

Id k '[P,p, (M, k ',N, k )fM( k ')
M (2m. )

P, , (N, k;M, k ')f~( k )] . —(2.48)

Since we will be interested only in the odd parity
"current-carrying" parts of f we can simplify Eq. (2.48)
further. fM(k ') is odd in k ', and P,„,(M, k ',N, k), by
virtue of the momentum randomization, is even in k '.
Therefore, the first term in Eq. (2.48), also called the "in-
scattering" term, vanishes identically in the present model
of optical-phonon —hole scattering. ' This is a very cru-
cial simplification since all the hole-distribution functions
can now be evaluated at a single energy E~(k). The in-
scattering term would have required one to evaluate
fM(k ') at E~( k )+fuuo and no simple procedure exists for
dealing with this case.

All angle-dependent quantities are expanded in cubic-
harmonics series:



28 CALCULATION OF OPTICAL- AND ACOUSTIC-PHONON —.. . 5949

P@M(k, k ') +—=

Pg ~(k, k ')= g QA~L MI (E~(k)) gKL"(k)KL" (k ') 5(E~(k) E—~(k ')),
2QA L, L' p=1

2

& (no+ g +
& ) g BLI (E~( k )~EM( k ') )KL (k )KI. (k ')5(E~( k ) —EM( k )+Piet)o)

pcooQa o

(2.49)

(2.50)

The steady-state distribution function is expanded in fields
I'" and B as

S
3 g~xx "(8'»)~ ex",mv'( 8')5

f~(k)=f~(k)[1+.F @~(k)+(F)&8)X~(k)],
with

N~( 8', k ) =ge K g(k )e~g( 8', T )
kBT

and

(2.51) = g su~-, M~(@' TXMv(8» .
M, A,

"

The field-term matrices were derived in Ref. 3 to be

l~

G (8')= ——g fdkK "(k}l (8',k)
6 p=1

X~(8',k) =g
A,

Kg(k)g~g(8', T} .
B

and
(2.53}

dE~(k)
ak

E~( k )=8'

Here Ki"(k) is the cubic harmonic for the pth row of the
ith irreducible representation of O~, with angular momen-

turn index I., in direction k. The expansion coefficients A
for the acoustic process are functions of a single energy.
For the optical process the expansion coefficients B are
functions of both the initial- and final-hole energies. Ow-
ing to the momentum randomization only even represen-
tations occur in P'~'. Of these only the invariant I 1 or a
representation coefficients are needed. The field expan-

sion, Eq. (2.51), for f~(k) was derived in an earlier publi-

cation. ' The "vector" cubic harmonic K~ is defined as

5

V~P ~P

X &5,v', A,
"

~

r„(8')h,"(8')
~
&,p', ~"'),

(2.59)

where Is=3 (dimensionality of the I ~5 representation).
Also

3/22mo, ~~ dy~(8', k)
rN(8', k) =

2
yNI/2(8', k) ', (2.60)

fi d8'

with

Kg"(k )e„

K g(k ) = Kg~(k )ey

K '(k)

(2.54)

(2.61)

being the solution of the cubic equation for band calipers
k~ of band N in direction k, e is the Levi-Civita density,
and

Kg"-(k)5(8' —E~(k))d k (2.55)

since the rows of the I » ——6 representation can be labeled
with Cartesian coordinates.

A solution of the Boltzmann equation will yield the
energy-dependent expansion coefficients 8 and g in Eqs.
(2.52) and (2.53). Equation (2.46) in conjunction with Eq.
(2.48) constitutes the collision term of the Boltzmann
equation. Multiplying both sides of the Boltzmann equa-
tion by

hp (8', k) =e~.[V-„E~(k)X V-„] (2.62)

is the operator evaluated on the constant E&( k ) = 8' ener-

gy surface. The bra-kets denote solid-angle integrals in
the Brillouin zone.

The "scattering" matrix S is a sum of scattering ma-
trices for the acoustic and optical processes. A derivation
analogous to that of Ref. 3 leads to the following defini-
tion:

and integrating over k yields a system of linear equations
for 0 and g. These are

Gxx-(8') = g Snrx", Mx (8'~ T)OMv(8', T), (2.56)
M, A,

'

S» M, (8', T)=[S~,- M„(8')].,5 5

+[Sxq Mz (8', T)],~, .

Here, as in Ref. 3, for the acoustic process

(2.63)

[S}t,x„,, (8')]..= 2 &I v ~"
I

r„(8')
I J v L &~4,M,. &i,v,L'

I
r (8') ~j,v, i,')

L,L'

3—6 g &J, ,X";j, ,k'~r (8)~,L)A &,L'~r, (8')~ »
P=1

(2.64)
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which from the matrix-element theorem is in fact independent of the partner index v. The optical scattering term is
diagonal in band indices and is given by

3

[~&~,Mi. (&»~.pt= —»~~ X 2 &j v ~"j v ~'
l

l x(@')
l

a L )
L,L'P=1

X [(no+1)Bgl pL (8', 8' ficoo—)(aL'
~

I p(E —irido) ~
1)

+n 8 (8', 8'+%co )(a,L'~ I (8'+ficoo)
~

I) j . (2.65)

D is a material-dependent constant (aL'
i
I p(8'+ficoo)

i
I )

2 66 are evaluated by methods outlined in Ref 32doA d o

kii Tp(fuuo)a 0 t
D. Transport coefficients

The conductivity and Hall mobilities are evaluated us-
ing Eqs. (2.53a) and (2.53b) of Ref. 3. In the more stream-
lined notation of the present paper we have

g fd8'e e~—,(F,T)Gx, (r)
8 4& NA,

kaT 4irg f dS'e ~ (ao I ~(S') ~ao)
N

&o,——2.345 X 10

(measured in Ry a.u. ), and for silicon with parameters in
Table I

~s;——3.400X 10

(measured in Rya. u. ), where do is the numerical value of
do in Ry and t is the numerical value of T in K. For ger-
manium with parameters in Table I

(measured in Rya. u. ), where a.u. is the Bohr radius.
Selection rules used in deriving Eq. (2.65) project out only
the I

~

——a components of Bj .
Note that the matrix S~i Mi (8', T), Eq. (2.63), is sym-

metric in the combined (NA, ",MA, ') indices, a useful prop-
erty for matrix manipulations. The first term in S,„, is
for optical-phonon emission, 5'~8' —irido, and the second
for phonon absorption, 8' —+8'+%coo. The temperature
dependence of 8 in Eq. (2.56) and g' in Eq. (2.57) is entirely
due to D and no in S,p, . Additional integrals, not appear-
ing in the acoustic case, in Eq. (2.65)

2~e
rp, =—

(2.67)

kxi. ( &»)Gxi. ( &)

gf dS'e ~ (ao~I~(8') ~ao)
x

(2.68)

Results for Ge and Si using the formalism developed
above are presented in Secs. III and IV. The temperature
range covered is from ?0 to 400 K. There are valid ques-
tions concerning the use of the equipartition approxima-

Quantity Si

TABLE I. Experimental input parameters.

Notation

Band parameters
(dim ensionless)

Deformation potentials
(eV)

Mass density (g/cm')
Phonon parameters
(dyn/cm )

c =phonon speed

Spin-orbit
splitting (meV}
Lattice constant (A)
Optical-phonon
energy (meV)

'Reference 24.
Reference 5.

'Reference 19.
Reference 31.

'Reference 32.

P
PC

longitudinal

pc
transverse

ao
ADO

—4.27'
—0.63'

4.93'
2.1'

—2.2'
—S.3'

2.328
18.852 ~ 10"

6.804~ 10"

44.0'

5.430 86

-13.27'
—8.63

2.0b

—2.1
—7.0

5.3267"
1.53 X 10"

5.75+10"

300

5.65748'
37d
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tion at lower temperatures in the acoustic-phonon treat-
ment. In Appendix C it is shown that in reality another
approximation is used which is accurate to better than
1%.

III. RESULTS FOR CiERMANIUM

Acoustic- and optical-phonon —limited mobility for ger-
manium has been calculated previously by Lawaetz in the
.four-band parabolic band approximation. ' Results
presented in this section were obtained using all of the top
six valence bands with the material parameters used by
Lawaetz. Therefore, this section not only presents a
comparison between the two calculations but also serves as

a check on the accuracy of the parabolic band model.
Several of its shortcomings were pointed out in Refs. 2
and 3 for the acoustic-limited mobility.

A. Hole —optical-phonon transition probabilities

The hole —optical-phonon transition probabilities were
calculated using the formalism developed in Sec, II. For
comparison with the analytic results of Bir and Pikus ' in
the case of parabolic bands it is useful to list the quantity
U (N, k;M, k '). The expression for U (N, k;M, k ') in the
parabolic model is given by Eq. (Bl) in Appendix B. The
corresponding general result in the six-band model is
given in Eq. (2.38). Table II presents the comparison for

TABLE II. Comparison between numerical results for U (N;k;M, f ') in the four-band model, Eq.
(Bl), and the six-band model, Eq. (2.38). U (X,k;M, k ') is in units of do. The incident hole's energy is
8'=0.0135/17 eV and the scattered hole's energy is 8'+Acro.

Scattering
directions

[100]~ [100]

[100]~ [010]

[100]~[111]

[111]~[111]

[110]—+ [110]

[100]~[321]

[111]~[111]

[110]~[110]

[100]~ [110]

[110]~[111]

Bands

H —+H
L~L
H~L
L~H
H~H
L~L
H —+L
L~H
H —+H
L~L
H~L
L~H
H —+H
L~L
H~L
L —+H
H~H
L~L
H~L
L~H
H —+H
L~L
H~L
L —+H
H —+H
L~L
H~L
L —+H
H —+H
L~L
H —+L
L~H
H~H
L —+L
H —+L
L~H
H —+H
L~L
H~L
L~H

Six-band model
present work

0.0000
0.0168
3.0000
3.0000
2.2500
2.2548
0.7632
0.7500
1.5000
1.5126
1.5126
1.5000
0.9999
0.7551
2.2653
2.0049
1.1304
0.6696
2.3460
1.9212
0.9978
0.9564
2.0664
2.0178
1.6668
1.7649
1.2615
1.3317
1.6161
1.8849
1.1421
1.4208
1.3389
1.2228
1.7994
1.7055
1.2378
1.1130
1.9083
1.7661

Four-band model
of Bir and Pikus (Ref. 21)

0
0
3
3

9/4
9/4
3/4
3/4
3/2
3/2
3/2
3/2

1

1

2
2

0.8352
0.8352
2.1648
2.1648
0.9344
0.9344
2.0655
2.0655

5/3
5/3
4/3
4/3

1.6701
1.6701
1.3299
1.3299
1.1955
1.1955
1.8045
1.8045
1.2360
1.2360
1.7637
1.7637
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several selected scattering directions between the &- and
I.-hole bands.

The four-band model entries in Table II which are ra-
tional numbers are exact results independent of band pa-
rameters 8, C, and D. Other entries do depend on these
parameters which along with other parameters used in
this calculation for germanium are given in Table I. The
results in Table II indicate that the intraband and inter-
band scattering probabilities are of comparable magnitude
and are significantly anisotropic. In general, results in-
volving the H-hole band are more in agreement with the
analytic four-band model than the results involving the
less parabolic I.-hole band.

The transition probabilities for the acoustic and optical
scattering processes were calculated on the same scattering
directions and energy meshes as in Refs. 2, 3, and 8. That
is, 128 (k, k ') progenitor directions were used for one
direction mesh and a larger 250 (k, k ') progenitor-
directions mesh was used for the other. Two separate en-

ergy meshes were used. The small energy mesh had a
spacing of 0.0135/17 eV with 16 energies with this mesh
size. The second mesh had a spacing of 0.0045 eV and 52
eneriges with this mesh size, up to the maximum hole en-

ergy of 0.234 eV. Since the split-off energy in germanium
is 0.3 eV, and %coo——0.037 eV, transitions involving the S-
hole band were not calculated. The maximum energy of
0.234 eV is estimated to provide sufficient accuracy to cal-
culate p, and pII up to 400 K, somewhat above the tem-
perature where high-purity germanium becomes intrinsic.

The acoustic- and optical-phonon —hole scattering rates
were fitted to a double —cubic-harmonic series as described
in Ref. 8. Twenty-four cubic-harmonic pairs were used to
represent angular variations of the rates, at each calculat-
ed energy, in both the incident and scattered hole direc-
tions. The cubic harmonics in the fit were, in the Von der
Lage and Bethe notation ao e4 o.'6 o.'s & &3 &5 &s &7

and 67, and the maximum combined angular momentum
of the cubic harmonics was I. +I '=8. Note that other
cubic harmonics were not used in the fit since they are not
needed in the calculation of the scattering matrix, Eq.
(2.63). Also, note the addition of two new cubic harmon-
ics, 67 and 67, in order to improve convergence of various
angular momentum sums, Eqs. (2.49)—(2.53), (2.56),
(2.57), (2.64), (2.65), (2.67), and (2.68). Since 57 and 67
were not calculated in Ref. 33, I provide below their func-
tional dependence in the notation of Ref. 33:

(3.1)

&7 = —,&5X7X 11[z(x +& )+ —,
'

[57,]—+I[&'„]—+,
'

[gs, ]

Several checks performed with the above forms for 67 and
67 indicated that they agree with their spherical harmonic
forms derived by Altmann and Cracknell.

In Appendix 8 it is shown that the cubic-harmonic
decomposition of U (N, k;M, k ') for the 1"

&
representation

I I I

GERMANIUM

24

a
O

23
E

22
O+0

2I

20

19

has only one nonzero coefficient,

~LL' 6~~L0~L'0 & (3.3)

for both emission and absorption, which is independent of
energy. The cubic-harmonic fitting in the double series of
the present rates yields the fitting coefficients shown in
Fig. 1 as a function of the incident hole's energy. It is
only at the lowest energies that the expansion coefficient
Boo approaches the parabolic-band result of 6~. Other-
wise, Boo is a strong, yet smooth, function of the incident
hole's energy. From Eq. (2.40)

U (M, k,EM(k);X, k ', EN(k '))

= U (X,k ', EN(k ');M, k,EM(k)), (3.4)

so that the expansion coefficients must also satisfy the re-
lation

+ML, NL'(+~++~0) +NL', ML(++~0~+) (3.5)

BML NL ( 8', 8'+fuo0) refers to the hole in band M at ener-
gy 8' absorbing one optical phonon in going to band X at
energy 8'+fico0 BNL ML(8'+Pic. o0, 8') refers to the hole in
band iV at energy 8'+%coo emitting one optical phonon in
going to band M at energy 8'. In Fig. 1 I, =L'=0 so that
the absorption and emission curves are identical except for
the permutation of the band indices and the shift of the
emission curves by ~o with respect to the absorption
curves.

As the consequence of the coefficients B being larger
than 6~, Fig. 1, the optical-phonon scattering is stronger
than predicted by the four-band model of Bjr and Pjkus
for the same value of the optical deformation potential do.
Nevertheless, mobilities calculated with the two models
should agree since the difference between the B's in Fig. 1

and 6~, for the more important emission case, is not
greater than 5% at lower energies. The expansion coeffi-
cients for other I ] cubic-harmonic pairs such as o;oa4,

IS I I I I
C

I I I I l

0 IO 20 30 40 50 0 IO 20 30 40 50
E(0.0045 eV)

FIG. 1. Energy dependence of the isotropic expansion coeffi-
cients, Eq. {2.50), for the optical-phonon —hole transition rates in
Ge: optical-phonon absorption, left panel; optical-phonon emis-
sion, right panel. The optical-phonon energy Acro ——0.037 eV.
H and L represent the heavy- and light-hole bands, respectively.
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a4o.'4, co+6, and aoa8 are less than 0.1 for all energies ex-
amined; other even representations were not employed in
the fit. Therefore, as far as the mobility calculations are
concerned, the optical-phonon scattering produces isotro-
pic scattering rates in germanium.

5000

4000—

B. Mobility results for germanium

The formalism developed in Sec. II was employed for
calculation of p, and p~ in p-type Ge. Unlike the case
when the acoustic-phonon scattering acts alone, when
both the acoustic and optical processes are present togeth-
er, one cannot factor out all of the temperature-dependent
factors in Eqs. (2.52) and (2.53). In Ref. 3 it was possible
to calculate energy-dependent qualities only once. Here
one must calculate all the quantities at all energies and as
a function of temperature.

For purposes of interpolating integrands in the numera-
tors of equations for the two mobilities, Eqs. (2.67) and
(2.68), it is useful to know an analytic form for the low-

energy behavior of the integrands. Using the same argu-
ments as those leading to Eqs. (3.4)—(3.8) of Ref. 3, one
can show that the integrand in the numerator of Eq.
(2.67), for parabolic bands and in the present model at low
energies, behaves as

a 8'+b(no/T)[(8'+ficoo) 8']'~i

where a and b are parameters to be obtained from a nu-
merical fit to the integrand. Similarly, the integrand in
the numerator of Eq. (2.68) behaves at low energies as

g'v g
IcS'+(dna/T)[S'(8'+Sicko)]'~

1

(3.7)

with two other fitting parameters c and d. The two terms
in the denominator reflect the contributions of the
acoustic- and optical-absorption processes, respectively.
At higher energies, 8' & Sicko, the optical-emission process-
es become operative so that in the parabolic-band model
an additional term,

T
—[8'( 8' —%coo) ] 'i 6( 8' —fico()), (3.8)

where 8 is the Heaviside step function, will appear in the
denominators of Eqs. (3.6) and (3.7). Therefore, the in-
tegrands suffer a discontinuity in slope which requires
caution in interpolating the integrands. The slope discon-
tinuity is of course present in the more exact six-band
model employed here. At higher temperatures though, the
discontinuity becomes small due to the 1/T dependence in
Eq. (3.8). This is also the region where the optical-phonon
emission becomes important in the transport coefficients
calculation, Eqs. (2.67) and (2.68). When necessary the in-
terpolation was performed via the Lagrange method.
All integrations involving the Boltzmann factor were done
using the 25-point Gauss-Laguerre integration.

The present and Lawaetz's implementations of the opti-
cal deformation theory for the calculation of galvanomag-
netic coefficients employ one adjustable parameter —the
optical deformation potential constant do. There are in-

C4

3O0O—

2000—

1000 I 1 J I I I I

10 15 20 25 30 35 40 45

do{ev)

FIG. 2. Conductivity mobility in germanium as a function of
the optical-phonon —hole interaction strength parameter do at
300 K, with parameters of Table I,

dependent estimates of the magnitude of do which place
its value for most group IV and III-V semiconductors in
the (30—40)-eV range. Figure 2 shows the calculated
value of p, as a function of do for germanium at 300 K.
As do increases the optical-phonon scattering becomes
stronger so that the mobility decreases. If one were to use
the approximation

1 1 1+ (3.9)
P Pac Popt

given that p,p, -do, then one would expect that p -do—2 —2

in the region where the optical-phonon scattering is the
dominant mobility limiting mechanism. In fact, Fig. 2 ex-
hibits this behavior for do ~ 25 eV.

To proceed further one must choose a particular value
for do based on a measured value of p, or p& at some
high temperature. The 300 K temperature is convenient
to use given the large strength of optical-phonon interac-
tion and optical-phonon population at this temperature.
Unfortunately, there are a number of p, (300 K) values
quoted in the published literature. Qne of the earliest
values is given by Prince as p, (300 K) = 1820 cm /V sec
from drift-mobility measurements, a minority carrier ex-
periment. Brown and Bray' give p, , (300 K) = 2060
crn /V sec from conductivity measurements. This number
depends crucially on the assumption that the hole concen-
tration in their samples is constant from 77 K on up and
that the strong field limit has been attained below 77 K
with 7-kG fields. The p, (300 K) value is extrapolated
from T ~ 260 K data since their sample 1123 went intrin-
sic above this temperature. The time-of-flight measure-
ments of Ottaviani, Canali, Nava, and Mayer on high-
purity Ge can be extrapolated from T &220 K data to
yield p, (300 K) =2245 cm /V sec. This again is a minori-
ty carrier experiment.

Lawaetz uses the Brown and Bray' value of p, to fit
do for which he obtains do ——(6.41+0.03) eV. In another
publication, though, Lawaetz states that Ref. 9 obtains
do-40 eV. I surmise that the former value is the square
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IO6

8
7
6
5
4

verged by 0.09 eV.
In Ref. 9 Lawaetz approximately corrects for nonpara-

bolicity of the bands but not for the concommitant effect
on the transition rates. If the correction is dropped, do
fitted by Lawaetz rises to 6.53 eV. Therefore, the band-
shape nonparabolicity alone appears to lower the value of

0.
Figure 3 shows the total and partial conductivity mobil-

ities for germanium, where the partial band mobilities are
defined as

IO'
cv & 8
V

5
4

3

I-I c,a =

3
Ng Pc, HPx

N=1
(3.10)

10
8
7
6
5
4

3IO
I 0 20 30 40 50 70 I 00 I 50 200 300 400

T(K)

FIG. 3. Calculated total and partial conductivity mobilities in
germanium using do ——40.0 eV and parameters of Table I as a
function of temperature.

and

O.» ——ePPc

~i23 =e5'PcPa

IO7,
8
7
6
5
4

for the choice of do ——40.0 eV, which gives p, =2060
cm /V sec of Brown and Bray' at 300 K. From effective
mass considerations, mL /m~ ——,', one expects p, H to be
greater than p, H. The overall contributions of the bands
to the conductivity tensors

root of the latter. Reggiani et al. cite Lawaetz as having
said that do ——40.25 eV. Thus indirectly it appears that do
in Ref. 9 is about 40 eV. This is consistent with tabula-
tions for do of Wiley. ' From Fig. 1, do ——44. 1 eV will
yield p, (300 K)=1820 cm /Vsec of Prince, do ——36.5
eV will yield p, (300 K)=2244 cm /Vsec of Ottaviani
et al. , and do ——40.0 eV will yield p, (300 K)=2060
cm /Vsec of Brown and Bray. ' This last value is very
close to that obtained by Lawaetz. This agreement is due
to the fact that the coefficients displayed in Fig. 1 do not
differ by more than 5% from the 6n. value used by
Lawaetz for transitions involving the H-hole band below
0.09 eV. The H band will be shown to dominate p, and
the Boltzmann integral for p„Eq. (2.68), is well con-

IO
8
7
6
5
4

10
8
7
6
5
4

I. H
O 123/ 4"123 pH ~pi

TABLE III. Ratios of band contributions to the conductivity
tensors in germanium, do ——40.0 eV, as a function of tempera-
ture. oil and o.»3 are defined in Eq. (3.11). pH and pr are
thermal band occupancies.

IO4
8
7
6
5
4

10
50

100
150
200
250
300
350
400

6.06
4.69
4.39
4.21
4.13
4.11
4.14
4.19
4.25

1.06
1.60
1.86
2.04
2.15
2.22
2.26
2.29
2.31

24.79
23.72
23.32
23.00
22.66
22.22
21.64
20.88
20.27

IO~

8
7
6

IO 20 30 4050 70 Ioo I50200 300400
T(K)

FIG. 4. Calculated total and partial Hall mobilities in ger-
manium for do ——40.0 eV and parameters of Table I as a func-
tion of temperature.
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are given by

No i& =ePcPx

and

(3.11a)

(3.11b)

IO6
8
7
6
5
4

io~
8
7
6

o 4
Ol

3

2

i04
8
7
6
5

that is, crit and cr&z3 are proportional to numerators of Eq.
(3.10). By including the band occupancy factors, p~, the
conductivity tensors give a better picture of each band's
contribution to the current. In Table III the ratios of con-
ductivity tensors for the light-hole and heavy-hole bands
are displayed at selected temperatures. The overall contri-
bution of the heavy-hole band to the crt~ tensor is only
four times that of the light-hole band even though the
heavy-hole band has about 20 times as many holes as the
light-hole band. Nakagawa and Zukotynski give

cri i/cri i
——3.45 at 60 K and 3.70 at 300 K.

Figure 4 presents the decomposition of the Hall mobili-
ty into its partial-band mobilities. The light-hole band be-
comes the dominant band by about a factor of 2 as can be
seen from the second column of Table III. At 60 K Nak-
agawa and Zukotynski provide cr[$3/crtg3 —2.69 at 60 K
and 2.73 at 300 K.

Figure 5 gives the comparison between the measured
and calculated conductivity mobilities. It is intended that
only the data of Brown and Bray' (Xz ——1.25&& 10'
cm ) be used for critical comparison since do=40. 0 eV
fits their 300 K p, , mobility. The agreement between ex-
periment and theory is seen to be very good. At 30 K
there is an indication that the data exhibit the effect of
ionized impurity scattering. The break in slope at the on-
set of strong optical-phonon emission around 70 K is well

2.2 — —

7

2. I

2.0—
l.9—
I 8.—
l.7—
1.6—
l.5—

4

I 1 i I i 1 f I I I I I I I 1 l I I

GERMANIUM

predicted by theory, as well as are the shape and magni-
tude of the curve for T & 70 K. Beyond 200 K the calcu-
lated curve decreases in slope. This is a common feature
of several mobility calculations for Ge. ' ' Caution needs
to be exercised in interpreting this feature as being real.
One is dealing here with high-energy holes for which the
6&(6 k p extrapolation may not hold with the same accu-
racy as at lower-hole energies. For example, at 0.2 eV the
heavy-hole wave vector is one-eighth of the
Brillouin-zone distance. The degree of agreement with p~
data will be discussed with reference to Fig. 6 for the r
factor.

The r factor for germanium is shown in Fig. 6 together
with the data of Goldberg et al. ' and Beer and Willard-
son. The general effect of adding the optical-phonon
scattering is to raise the r factor from the value it had for
the acoustic-phonon scattering process, do ——0 eV. The
calculated r(81 K)= 1.45 may be compared with the calcu-
lated acoustic-phonon value of 1.43 and the value of
1.36+0.07 of Beer and Willardson. The influence on
these results due to the uncertainties in the deformation
potentials a, b, and d have already been discussed in Ref.
3. A gratifying feature in the results of Fig. 6 is that the
addition of the optical-phonon processes has resulted in
the correct shape for the r vs T curve as compared with
the data of Goldberg et a/. ' The discrepancy in the
overall magnitudes is due to several factors. First, the de-
formation potential for Ge, especially d = —7 eV, is not
as well known as in Si. The value of the deformation-
potential parameter a is also in doubt. This affects pH
more than it does p, since p~ is calculated by using the
scattering matrix twice. Second, with Xz —XD ——2&&10'
cm the sample D of Goldberg et a/. must be affected by
ionized impurity scattering which lowers the r value.
Third, at higher temperatures Ge, with its small band gap,
is affected by the presence of electrons which again lowers
the "apparent" hole r factor. This is well illustrated in
Fig. 3 of Goldberg et al. ' by contrasting the behavior of
sample D (X„—XD ——2 )& 10' cm ) and sample G
(N~ —AD=3.4X10' ). The r factor for sample D is
higher than that for sample 6 when T &200 K because it
is less affected by the ionized impurity scattering. For

I 03
Io 20 30 4050 70 IOO I50 200 300 400

T(K)

FIG. 5. Calculated and experimental conductivity and Hall
mobilities for p-type Ge in the phonon-limited regime. The cir-
cles represent time-of-flight data of Ottaviani et ai. (Ref. 38)

l X& —ND
~

=2 X 10' cm ' and triangles represent data of
Brown and Bray (Ref. 15) N& —ND ——1.25 && 10' cm

1.2
0 20 60 IOO 140 ISO 220 260 300 340 380

T(K)
FIG. 6. Calculated and experimental r factor for p-type Ge in

the phonon-limited regime. The do ——0 eV curve gives the result
for the acoustic-phonon scattering. The triangles represent sam-
ple 2-C of Beer and Willardson (Ref. 42) N~ —ND ——1X10'
cm ' and the circles represent Goldberg, Adams, and Davis
(Ref. 41) sample D, N& —ND ——2.4&10' cm . The data point
of Beer and Willardson (Ref. 42) at 196 K is from a sample with
N, —ND ——2X10'4 cm —'.
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T ~ 200 K the situation is reversed because of the larger
p /n ratio in sample G. The falloff of the r factor for sam-
ple D in Fig. 6 is due to the intrinsic electrons.

Nevertheless, the difference in magnitude between ex-
periment and theory in Fig. 6 is less than 20%%uo for
T &200 K. The r factor of Nakagawa and Zukotynski
for Ge varies between 1.95 at 50 K and 2.2 at 200 K. The
r factor of Lawaetz has generally the same shape as the
calculated r factor in Fig. 6 but is greater in magnitude
since Lawaetz's r(81 K)—1.6—1.7. It has been the experi-
ence of the previous calculation that the r factor de-
creases as the band nonparabolicity is included in the band
dispersions and in calculating the scattering rates. By
neglecting the latter, Lawaetz's r factor is larger than the r
factor shown in Fig. 6. This point will be discussed fur-
ther in Sec. IV with comparison to the calculation and
data for p-type Si.

Figure 7 shows the calculated temperature exponents
a, H for both mobilities

3I
30
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24

~E 23
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td' 2I
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IS

SPIN- QR 8 IT
l6-
l5——a H(T)

p, H(T)-T (3.12) I4-
13-

At low temperatures a, —1.5 consistent with the parabolic
band value (p, is dominated by the more parabolic heavy-
hole band). This is observed in the data of Brown and
Bray' and Ottaviani et al. The least parabolic band L
produces the deviation from 1.5 in a~ at low tempera-
tures. At higher temperatures experiments show that
a, =2.3 (Goldberg et al. , ' Brown and Bray, ' Ottaviani
et al. ), while Morin gives a, =2.33. From the calcu-
lated e, it appears that 2.3 is an average a, for
100& T & 300 K. For T ~ 200 K a, decreases due to the
decrease in slope discussed in connection with Fig. 5 for
p, . Goldberg et al. ' also provide aH -2. 1 in the
optical-phonon —limited region which is closely reflected
in Fig. 7. The temperature exponents are then found to be
predicted satisfactorily in both the acoustic- and optical-
phonon —dominated temperature regions.

Overall, this section has shown that the present calcula-
tion agrees in the optical region with the earlier calcula-
tion for p, while improving on earlier calculations ' for
p~ and r. The 20% discrepancy in the r factor is due to
inadequacies of parameters used to represent the
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FIG. 7. Calculated temperature exponents (dimensionless) of
the phonon-limited mobilities in p-type Ge. The error bar gives
the estimated accuracy of extracting exponents when T & 250 K
from 5-K interval data.
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FIG. 8. Energy dependence of the isotropic expansion coeffi-
cients, Eq. |,'2.50), for the optical-phonon —hole transition rates in
silicon. The optical-phonon energy is %coo——0.063 eV. H, L, and
5 stand for the heavy, light, and spin-orbit hole bands. The case
of scattering with phonon absorption is depicted.

acoustic-phonon region since the optical-phonon contribu-
tions to the r factor adds onto the r factor for the acoustic
process in Fig. 6.

IV. RESULTS FOR SILICON

A. Hole —optical-phonon transition possibilities

The quantities Bgo Mo(S', 8'+fuoo) for phonon absorp-
tion, Eq. (2.50), in silicon are shown in Fig. 8. First, one
observes that these quantities are not equal to 6m in any
energy limit. Second, most of the energy variations occur
for energies less than the spin-orbit energy. Beyond the
spin-orbit energy the expansion coefficients B&o Mo are ef-
fectively constant except for those XM band pairs which
involve the spin-orbit band S. The symmetry principle
Eq. (3.5), exemplified in Fig. 1 for Ge, can be used to ob-
tain the corresponding curves for the case of phonon emis-
sion. Silicon parameters used to calculate B~LML are
given in Table I. An examination of calculated B&L MI
indicates that although the coefficients for I =I.'=0 are
always the largest, on the order of 20, nonspherical contri-
butions can be on the order of unity. Typically, this
occurs for transitions involving the S-hole band, otherwise
the nonspherical contributions are on the order of 10
By and large, then the optical-phonon scattering can also
be regarded as being isotropic in p-type Si.

The lack of similarity between Figs. 1 and 8 for Ge and
Si, respectively, has its roots in different valence-band
dispersions for these materials. For Ge-hole energies of
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interest, 8'&0.25 eV, are still less than the spin-orbit
splitting energy, while for Si they are 6 times that energy.
As a result, silicon bands attain their parabolic E-k
behavior for smaller values of k, and therefore at smaller
energies than in germanium. ' In the parabolic band
limit the coefficients Bzi ML are known to be energy in-
dependent ' ' since the wave functions are only direction-
ally dependent. Given the large optical-phonon energy,
%coo——0.063 eV, for Si, at least one of the bands in Fig. 8
must be above the spin-orbit energy, which is not the case
with Ge where %coo——0.037 eV. It is therefore desirable to
exercise some caution in accepting uncritically the band
dispersions of Kane at the substantial energies used in the
present and other calculations.

p, (cm /Vsec)

495'
480+ 15
504'
478"

'Reference 45.
Reference 49.

'Reference 50.
"Reference 46.
'Reference 1 ~

2 3a,b

27+0 1

2.24"

pH (cm /Vsec)

425'
369'
398g
370'
412'

Reference 47.
gReference 51.
"Reference 48.
'Reference 52.
'Reference 53.

2 93'
2.91g
2.91'

TABLE IV. Published values of 300 K mobilities in high-
purity p-type Si and of temperature exponents of the mobilities.

B. Mobility results for silicon
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FIG. 9. Conductivity mobility, Hall mobility, and the r factor
in p-type Si in the phonon-limited regime as a function of the
hole —optical-phonon deformation potential do at 300 K. Ma-
terial parameters from Table I are used.

The formalism already outlined and presented in Sec.
III for p-type Ge has been applied to p-type Si. Rather
than fitting various energy dependences for low energies
in numerators and denominators of Eqs. (2.67) and (2.68),
as was done for Ge, Eqs. (3.6)—(3.8), all energy-dependent
quantities for Si were calculated on a logarithmic energy
mesh as well as on a linear-energy mesh. The linear mesh
size was 0.045 eV with 52 energies and the log mesh was
given by

8' =exp[ —13.305 + (j—1 )0.6]

(measured in eV), with 1 &j & 16. The interpolating forms
were checked out and were found to be quite valid for Si
as well. Same directions in k space were used to calculate
the rates for Si as for Ge, and the same least-squares fit-
ting procedure for the transition rates was implemented.

With one fitting parameter do the mobilities and the r
factor displayed in Fig. 9 were obtained. The do depen-
dence of p, and pH is approximately followed for larger
do. The 300-K r factor varies between 0.78 and 0.'70 for

the choice of do from 20 to 44 eV. Therefore, if one were
seeking agreement with data on the r factor for Si a varia-
tion of do alone would not be a large degree of freedom;
the acoustic-phonon deformation-potential parameters
would also play a role even at 300 K.

In selecting a value of do I was confronted by a large
disparity between various published results. Table IV
gives the values of various parameters for high-purity p-
type Si found in the literature. The p, values quoted are
from minority carrier drift measurements on n-type Si. In
this case it is preferred to use pH values. The most recent
values for IM~ are both around 370 cm /V sec. The mea-
surements of Baron et al. are particularly careful since
in their study they considered the effects of surface
preparation and used high-purity Si:8 samples:
N& ——5X10" cm and ND ——1.1X10" cm '. With p~
(300 K)=370 cm /V sec, from Fig. 9 do ——29.3 eV,
p, =505 cm /Vsec, and r(300 K)=0.73. For compar-
ison, with do ——26.2 eV, pH(300 K)=412 cm /Vsec of
Elstner, with p, (300 K)=554 cm /Vsec, and r(300
K) =0.744. The choice of do ——29.3 eV is consistent with
the typical do ——30—40 eV values found for most group
IV and III-V semiconductors. The value of p, =505
cm /Vsec is also consistent with the drift-mobility mea-
surements in Table IV. Results for the r factor will also
be shown later to be in good agreement with the data.

Figure 10 provides the total and partial conductivity
mobilities for p-type Si and comparison with data. The
lower-temperature region is compared with the data of
Mitchel and Hemenger. ' Above 100 K the data of
Ludwig and Watters is used. Table V summarizes the
relative importance of the three bands to the overall con-
ductivities. Apparently, the H-hole band dominates the
conductivity mobility. The calculated p, exhibits a slight
tailing effect for T & 300 K which is not seen in the data
of Ludwig and Watters but can be seen in pH data for
sample 8-8 of Braggins, N~ ——1.5 X 10' cm
ND ——5X10' cm . It is also a feature in calculated
curves of Nakagawa and Zukotynski, Takeda et al. ,
and Jacoboni et al. It is not clear whether the effect is a
true one or simply connected with inadequacies of the
6X6 k.p Hamiltonian for higher energies. The relative
constancy of the hole population ratios for the H-hole and
L,-hole band is indicative of the parabolic band behavior at
higher energies, Table V. Nevertheless, the agreement be-
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FIG. 10. Total and partial conductivity mobilities and experi-
mental results in the phonon-limited regime for p-type Si with

do ——29.3 eV as a function of temperature. The circles represent
sample 1202-H, Hall bar of Mitchel and Hemenger (Ref. 1),
Nq ——6.57&&10" cm, ND ——3.96X10" cm and the squares
represent the Ludwig and Watters (Ref. 46) minority carrier
drift mobility on n-type samples with resistivities between
19—180 0 cm.

tween experiment and theory in Fig. 10 is very good even
though the data of Ludwig and Watters has p, (300
K) =485 and the fit for do uses p, (300 K)
=S05 cm /Vsec. For comparison with entries in Table
V, Nakagawa and Zukotynksi obtain o~~lo~~ ——2.56 at
60 K, 4.55 at 300 K; o (p3/o f23 ——2.37 at 60 K and I 40 at
300 K. This is in agreement with the general trend but
with much slower temperature dependence than in Table
V.

Figure 11 presents results for the total and partial Hall
mobilities together with the data of Mitchel and
Hemenger' on sample 1202-H. From Table V it is seen
that the I -hole band governs the behavior of the pH more
than the H-hole band, but only in the acoustic-
phonon —limited regime. In the optical-phonon —limited
regime it is the H-hole band which again dominates pH.
This is in sharp contrast to the situation for Ge, Table III,
where it is the H-hole band for p, and L,-hole band for pH
which are most significant over the entire temperature
range. This different behavior will be seen to account for
different shapes of the resultant r factors. Again the data
do not exhibit the slight bowing in the calculated curve.
It should be said that the particular sample used for com-
parison is so pure that it becomes intrinsic at about 350 K.
Therefore, the apparent Hall mobilities may be somewhat
depressed in value owing to cancellation of the Hall volt-
age by intrinsic electrons. If this effect were to be
corrected, the high-temperature end of the data would be
raised somewhat to produce the predicted bowing of the
mobility. The sample VS 14 (Nq ——1 && 10' cm
ND =6.5)& 10' cm ) of Elstner does exhibit the bowing
for T ~ 250 K perhaps because it is doped higher than the
sample 1202-H of Mitchel and Hemenger and does not
convert in type close to the room temperature. The agree-
ment between experiment and theory is seen to be very
good. It is especially important that with one fitting pa-
rameter, do at 300 K, the break in the p~ curve at the on-
set of strong optical-phonon scattering is reproduced
correctly, as is the curve beyond the break. Below the
break the agreement with the data has already been
demonstrated in Refs. 2 and 3.

In Fig. 12 the calculated temperature exponents of both
mobilities are shown. At the very lowest of temperature
there is good agreement with the data of Mitchel and
Hemenger. ' The average exponent in the (100—300)-K
range was calculated to be a, =2.4 and B~——2.9. This is
to be compared with the measured values in Table IV
which are a -2.2 —2.3, 2.7+0.1, and aH -2.9—3.0.
The theory indicates that exponents have an appreciable
temperature dependence. At higher temperatures this
dependence is the consequence of the bowing effect dis-
cussed above. Since experiments typically extract only
one exponent, the comparison with the average values
cx, 0 appears to be more relevant.

Figure 13 gives the calculated r factor for three choices

pa~Zi ~ps

TABLE V. Ratios of band contributions to the conductivity tensors in Si, do ——29.3 eV.
0 I. S L 0 S

O 123~o 123~o 123

10
50

100
150
200
250
300
350
400

2.57:1
2.93:1
3.74:1:0.0011
4.64:1:0.0106
5.40:1:0.0285
5.93:1:0.0547
6.28:1:0.0861
6.50:1:0.118
6.64:1:0.146

1.74:1
2.07:1
2.04:1:0.0003
1.71:1:0.0034
1.25:1:0.01 15
0.96:1:0.0224
0.77:1:0.0364
0.67:1:0.0506
0.59:1:0.0654

6.40:1
7.52:1
8.84:1:0.0063
9.37:1:0.0294
9.49:1:0.0566
9,46:1:0.0864
9.39:1:0.104
9.31:1:0.121
9.24:1:0.135
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FIG. 11. Total and partial Hall mobilities with experimental
data in the phonon-limited regime for p-type Si with do ——29.3
eV as a function of temperature. The circles represent the data
of Mitchel and Hemenger (Ref. 1), sample 1202-0.

of do. At lower temperatures the three curves are the
same, but with the onset of optical-phonon scattering im-
portant differences arise. The r factor at low temperatures
is within 4% of the values for samples 1202-H and 1300-
V of Mitchel and Hemenger. ' There is a conspicuous ab-
sence of data in the intermediate-temperature range. The
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FIG. 12. Temperature exponents (dimensionless) for the con-
ductivity and Hall mobilities, e, and aH, respectively, for p-type
Si with do ——29.3 eV. The closed circle represents

a, =1.75+0.05 and the open circle represents aH ——1.65+0.05
of Mitchel and Hemenger (Ref. 1).
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FIG. 13. Calculated and experimental r factor for p-type Si.
The circles represent Mitchel and Hemenger (Ref. 1), sample
1202-H, N& ——6.57&& 10" cm, ND ——3.96&& 10" cm . The tri-
angles represent Mitchel and Hemenger (Ref. 1), sample 1300-V,
van der Pauw configuration, N& ——9. 14 && 10" cm
ND ——3.33&&10" cm '. The square represents Reid and Wil-
lardson (Ref. 57), sample 8A, 2700 Acm-Nq —ND ——4)&10'
cm . The inverted triangles represent Long (Ref. 58), 35
0 cm -N& —ND ——3.5 &( 10' cm '. The diamonds represent
Morin and Maita (Ref. 49), sample 127, Nq ——7.0&&10' cm
ND ——2.2)& 10' cm . The dashed curve represents Messier and
Flores (Ref. 51), 6200 Oem-N& —ND ——2&& 10' cm

lone data point of Reid and Willardson makes it plausi-
ble that the r factor should still rise until at least 77 K.
Given the 0.7—0.8 measured r values ' for T) 150 K,
the r factor should peak and fall off, but the peak value
and the rate of fall cannot be compared with experiment.

At higher temperatures the data of Morin and Maita,
Messier and Flores, ' and of Long are given. The data
of Messier and Flores ' employ pH (300 K)=398
cm /Vsec which is larger than pH ——370 cm /Vsec used
here. Also they use p, (300 K) =471 cm /V sec of Ludwig
and Watters (from the p, =2.3&C 10 T ' expression )
compared to p, (300 K)=505 cm /Vsec used here. As a
consequence Messier and Flores ' obtain r(300 K)=0.84,
about 14% higher than r(300 K)=0.73 in Fig. 11. The
data of Morin and Maita was taken using p, (300
K)=500 cm /Vsec of Prince" which is consistent with
p, (300 K) =505 cm /Vsec calculated with do ——29.3 eV.
With these provisos it can be concluded that the calculat-
ed high-temperature r factor is in good agreement with
the data. A comparison with the data of Messier and
Flores ' is complicated by their use of the a, =2.7 ex-
ponent from Ludwig and Watters, a lower p, and higher
pH than used here. It is possible to calculate the r factor
from the Hall coefficient of Messier and Flores, '

R~ ——r/qp, by assuming that for T&150 K p is constant
(as was done by Long and Brown and Bray), and normal-
izing this r to 0.73 at 300 K. By this procedure agreement
with the theory is very much improved for the shape of
the r factor. The assumption that p is constant should
break down below the exhaustion ration, T & 150 K, or so.

From Table V the falloff of the r factor at higher tem-
peratures is due to the increase in the importance of the
H-hole band to pH while its importance to p, is relatively
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constant. Therefore, r =p~/p, decreases since H holes
are less mobile than the L holes. This effect is much
stronger in this calculation than predicted by Nakagawa
and Zukotynski and accounts for the relatively sharper
peak in Fig. 13 for the r factor. Nakagawa and Zukotyn-
ski indicated that the temperature dependence of the r
factor can be understood in terms of band warpage or an-
isotropy. A band with large anisotropy, such as the
heavy-hole band of Si, tends to decrease the r factor with
temperature while the more isotropic L,-hole band tends to
increase it. These two effects compete since the degree of
warpage in the H-hole band of Si increases with hole ener-

gy so that at higher temperatures the total r factor de-
creases.

This type of behavior is consistent with observations
made by Allgaier who examined the effect of anisotropy
of constant-energy surfaces on the r factor. His general
conclusion was that the band-shape anisotropy decreases
the r factor while the anisotropy in the scattering rates in-
creases it. In the optical-phonon region the rates are ef-
fectively isotropic for p-type Si so that the band anisotro-
pies are the determining factors. The H-hole band in Si is
more warped at higher energies which depresses the r fac-
tor due to both the acoustic and optical processes.

The anisotropy of the valence bands in Ge is small in
comparison to Si bands. Here it is the band nonparaboli-
city which governs the shape of the mobility and r-factor
curves. Owing to the large spin-orbit splitting energy, the
nonparabolicity of the L-hole band persists to higher ener-
gies in Ge than in Si, which makes the r factor rise in Fig.
6. All these effects are only qualitative in nature and
must be tested on each real system.

In indirect support of the r factor in Fig. 11, Hall-data
analysis for sample 1202-H of Mitchel and Hemenger
was performed with the calculated r factor. The low-
temperature r factor was already shown to correct for the
"spike" anomaly in the p vs 1/T curve. ' The addition of
the calculated SO& T &400 K r factor in the analysis ex-.
tended the boron exhaustion plateau up to about 300 K,
near the onset of intrinsic conduction. The plateau was
flat which indicates that the r factor has considerable nu-
merical accuracy. (It also indicates the absence of any sig-
nificant amounts of impurities deeper than boron in the
sample. )

V. SUMMARY AND CONCLUSIONS

The conductivity and Hall mobilities for p-type silicon
and germanium have been calculated in both the acoustic-
and optical-phonon —limited regimes. The model involved
accurate band disperssons for all three top valence bands,
the deformation-potential theory for calculating phonon-
hole transition rates, and the solution of the full
Boltzmann equation.

The one fitting parameter do used to adjust the strength
of hole —optical-phonon interaction was within the range
of independent estimates of its value. This fact lends sup-
port for the physical basis of the deformation-potential
theory.

Results of the calculation are most strenuously tested
when the calculated r factors are compared with experi-

ments. The theoretical r factors were shown to be con-
sistent with experimental data. The agreement for Si is
very good at low temperatures; at higher temperatures
substantial agreement is found with two sets of data. The
present model has thus considerably reduced the existing
disparity between experiment and theory. By comparison,
the r factors for p-type Si by Takeda et al. and Hack-
mann et al. ' do not conform even qualitatively to the
measured r factor. Results of Nakagawa and Zukotyn-
ski do much better in this regard, except at lower tem-
peratures. The present model predicts a sharper peak in
the r factor than that of Nakagawa and Zukotynski, in
better agreement with experiments. The origin of dif-
ferent temperature behavior for the r factor of p-type Si
and p-type Ge has been explained in terms of competing
effects of the I.-hole and H-hole bands. This fact has also
been explained by Nakagawa and Zukotynski in terms of
band warpage and band nonparabolicity. Use of the cal-
culated r factor has resulted in improved Hall-data fits for
high-purity p-type Si.

Owing to as yet an unresolved situation regarding
values of acoustic deformation-potential parameters,
agreement with data for p-type Ge is less satisfactory.
The conductivity mobility is well predicted. The Hall-
mobility and the r-factor results are in substantial agree-
ment with the data, on the order of 20% at higher tem-
peratures. This is an improvement on an earlier calcula-
tion where errors on the order of S0% arose. The
present set of deformation-potential parameters works
well but clearly is not the optimal set.

Overall, it appears that only more rigorous models of
phonon-limited transport can resolve fine details of the
mobility curves and particularly of the r factor. Although
many band details influence results through band disper-
sions alone, appreciable band effects are also contained in
the transition probabilities. Apparently, the deformation-
potential theory takes these well into account. It is also
the experience of this calculation that the steady-state dis-
tribution functions have important high angular momen-
tum components beyond I = 1. This fact restricts the lim-
its of validity for the relaxation-time approach to mobility
calculations in p-type Si and p-type Ge.
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APPENDIX A

The factor of —, in front of Eq. (2.35) is due to the
structure of the Boltzmann equation

P„(k,k ')f„(k)],—
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where ~ stands for the field operators, P for the transi-
tion rates, and f are the distribution functions. The band
indices n, m single out individual members of the degen-
erate band manifolds. Since the scattering mechanisms
considered here do not affect the carriers' spin

f„(k)=f (k) as long as n and m are within the same de-
generate manifold, N(n)=N(m). To cut the task of solv-
ing Eq. (A2) in half one may sum Eq. (A2) over the
members of the same manifold n (N)

M g f„(k)= 3 g g fdk'[P „(k',k)f (k')
n(N) (2~) m n(N)

and
1

fm fm (M) 2 fM

W fN(k)= g fdk'[PMN(k', k)fM(k')

PNM(—k, k ')fN(k)], (A7)

where

The structure of the Boltzmann equation can now be writ-
ten as

P„(—k, k ')f„(k)] .

(A2)

PNM ( k, k ') = —, g g P„(k, k '),'.(N) -(M)
(AS)

X
fn(N) fp(N)=

2
(A3)

For a fixed manifold index N, and n (N) =p (N), we have
and Eq. (AS) explains the factor of —, in Eq. (2.35). The

distribution functions fN(k) take into account the band
occupancy including spin, so that the thermal equilibrium
function is

so that Eq. (A2) becomes

~fN(k)= gg fdk'[P „(k',k)f (k')
(2&) m n(N)

EN(k) —PfN(k)=2 exp +1
k~T

(A9)

——,P„(k,k')fN(k)] .

(A4)

where p is the chemical potential. Therefore, the ex-
clusion principle in the scattering term of the Boltzmann
equation, Eq. (2.44), will have the form

The sum over m proceeds over all available indices so that [1—2fN(k)] (A 10)

m M m(M)
(A5) so that scattering into band X at k is forbidden if the level

is doubly occupied.

APPENDIX 8

The expression for the hole —optical-phonon scattering rate of Bir and Pikus ' in the case of two parabolic bands,
heavy and light, can be expanded analytically in t[;he double —cubic-harmonic series. Although Lawaetz provides the re-
sult, he does not provide the derivation, which is given below.

We need a double —cubic-harmonic decomposition of the following analytic expression:

z O„k~k„'kp+(c. p.), 2 2D (k k ') —8 +(3B D)[k „k„' +—(c.p. )]
U (A, , k;A, ', k ')=D d() + —,d() —3d()

ki, k 'A, ' kA, k 'k'

which is proportional to the scattering rate. In Eq. (Bl)
B, C, and D are band-shape parameters; k„, k~, and k, are
components of the unit vector k, c.p. stands for the cyclic
permutation of coordinates, and

Clearly,

fdk fdk Uo(A, O'A k )KI.(O)&I. (O )

(84)

E„- =( —1) IB +C [k kp+(c. p. ))I'

where A, =1,2 represents the heavy- and light-hole bands,
respectively. For the mobility calculations we only need
the cubic-harmonic expansion of U in terms of the I ]

cubic harmonic

U A, k'A. 'k' = QB)„1)„L Kl (k)XI (k ')+ ' ' ' (83)
dO L,L'

where the ellipsis stands for other even representations
and do has been factored out to be consistent with Eq.
(2.50).

+A.L, A, 'L' 6~~LO~L'0 ' (85)

The third term in Eq. (81) contributes exactly zero to

with two solid-angle integrations of Eq. (Bl). First, note
that F.- in Eq. (83) transforms according to the invariant

kA,

representation I i. The numerator of the first term in Eq.
(81) transforms as xy, yz, and xz according to the e or I 25

representation in both k and k'. Therefore, the solid-
angle integrals in Eq. (84) with the I i cubic harmonics
yield zero for the first term of Eq. (81). The second term
of Eq. (81) yields the following contribution to B~iL i I .
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Bxt qL . This can be seen simply as follows. The (k.k ')
term, when expanded, becomes

(k.k ') =(k„k ' +c.p. )+2(k„k k ' k '+c.p. ) . (B6)

over both solid angles. The first term of Eq. (B7) is iden-
tical in each of the 48 irreducible wedges 8' of the Bril-
louin zone and is equal to

KL (k)ICt (k ')
3B (48)&48)f dk J dk' 'k. k'

(B8)

The second term of Eq. (B7) can be similarly written out
in terms of its contribution from all the irreducible
wedges; the result is exactly negative to Eq. (88). There-
fore, Eq. (B5) gives the only cubic-harmonic expansion
coefficient for the o. representation in the analytic case.

APPENDIX C

The approximation for the Bose-Einstein phonon distri-
bution function

The cross terms in Eq. (B6) drop out from the integration
since they transform according to the I z5 representation.
The first term in Eq. (B6) cancels exactly the ( D—) term
in Eq. (Bl). What remains is to integrate

B' 3B'—(k 'k '+k,'k,'+ k,'k,')
3

'
KL(k)KL (k '),

kA, k ', A,
'

ment of the acoustic-phonon —hole scattering in this paper
and in Refs. 2—4 and 9.

From conservation of energy and momentum one can
show that the typical phonon energy is given by

%co =Acq =2m*c (C2)

where c is the average long-wavelength phonon speed andI* is the hole's effective mass. For silicon, in the worst
case m =0.5mo for the heavy-hole band and c=7&&10
cm/sec. Therefore, fico=2. 8 X 10 eV, equivalent to
about 3 K, which validates the idea of elastic hole scatter-
ing. But, at 20 K, where typically first experimental data
points are used for comparison,

x =6.2, (C3)

which gives an 8% error in the equipartition approxima-
tion, Eq. (Cl). At 10 K the error is 18'~/o.

The approximation employed here goes beyond the
equipartition expansion of no,

(C4)

The transition rates for the emission and absorption of
acoustic phonons are taken to be the same apart from the
phonon occupancy factors, that is,

Rate-(no+ 1)+no,

for emission plus absorption, respectively. The approxi-
mation that is being used is

Ace
no = exp

k~T
(Cl)

1(no+1)+no ——2x 1+ + . =2x,
12x

(C6)

is strictly valid only for kit T» fico. Question may be
raised whether this approximation is valid for the treat-

which at 10 K is good to 0.9% and at 20 K is good to
0.2%. This then is decidedly better than the equipartition
approximation alone.
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