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Phase transitions in a mercury monolayer
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The physical properties of low-dimensional systems are sometimes vastly different from the prop-
erties of their bulk counterparts. Recently, Miedema and Dorleijn made the very interesting predic-
tion, based on semiempirical theory, that there might exist a wide range of substrates on which a
monolayer of Hg will be nonmetallic. In a fully ab initio study, we have calculated the total energy
of free monolayers of Hg as a function of the lattice constant using local-density theory and the
full-potential linearized augmented-plane-wave method. There are at least three different phases
which are found to play an important role. Near the energy minimum, the variation of the total en-
ergy is small over a wide range of values of the lattice parameter, which includes regions of metallic
and insulating behavior. Hence our results predict that the interaction with the substrate will deter-
mine whether a Hg monolayer is metallic or not.

I. INTRODUCTION

There exist large differences in the physical properties
of one-, two-, and three-dimensional systems. A very im-
portant consequence of the difference in the dimensionali-
ty of condensed-matter systems is a change in the number
of atoms which are in close contact with any given atom.
Consequently, this change in the coordination number has
a profound effect on the nature of the chemical bond be-
tween the atoms. For example, diamond with a coordina-
tion number of four has a covalent tetrahedral bonding
while graphite is a layered m.-bonded material. Another
example is provided by samarium metal, where the atoms
in the bulk are in the trivalent state, but the atoms at the
surface are believed to be divalent. '

Since the type of chemical bond is related to the coordi-
nation number, the largest effects of differences in the
dimensionality will be found in systems which have no
clear preference for one type of bond or another. The
metals in column II of the Periodic Table are in this
category, because in the atomic state Be through Ra have
completely filled s shells and Zn, Cd, and Hg have com-
pletely filled s and d shells. Therefore, there will be a
"competition" betweeen a van der Waals modification and
a metallic modification. Recently, Miedema and Dor-
leijn predicted on the basis of Miedema's semiempirical
model that a van der Waals —type modification becomes
more and more favorable when going to a smaller number
of dimensions. The effect is most pronounced in mercury
where a free monolayer is said to be predominantly
nonmetallic.

Divalent metals are an exceptional case since in the
atomic state they only have completely filled electronic
levels. Therefore, semimetallic behavior occurs because in
the solid the Fermi surface intersects the boundary of the
first Brillouin zone. The energy of the d band in the
group-IIB transition metals is considerably below the Fer-
mi energy; only in solid Hg is there a slight overlap be-
tween the d band and the valence band. The special char-
acter of the metallic bond in divalent metals has a number
of interesting consequences: For example, a metal-

nonmetal phase transition has been observed in liquid Hg
at elevated temperatures and pressures.

We can also describe the formation of the metallic bond
in divalent metals in the following alternative way. Con-
sider a number of divalent atoms which are well separated
in space. By reducing the interatomic distance, the atomic
levels will broaden into bands. The only way to gain ener-
gy is through a lowering of the average energy of the
highest occupied band, which must be caused by the in-
teraction of this band with the lowest unoccupied bands.
This gives rise to van der Waals —type bonding. If the
atoms are close enough, the valence s band will start to
overlap with the unoccupied p band and the system will
become a metal, which is the equilibrium (bulk) situation
for all elements of columns IL4 and IIB of the Periodic
Table.

There are many physical properties which reAect the
weaker nature of the metallic bond in the divalent metals.
For example, the heat of vaporization and the dimer disso-
ciation enthalpy of the divalent metals are much smaller
than corresponding values for ordinary metals. Miedema
and Dorleijn have made an extensive analysis of these data
and have made predictions for the cohesive energy of the
van der Waals modification of the divalent metals for con-
figurations of different dimensionalities. Comparing
these results with the data for the normal metallic config-
uration shows that the van der Waals modification be-
comes more and more favorable when the number of di-
mensions of the system is lowered. For Ca, Sr, and Ba a
linear chain of atoms is definitely metallic and a dimer is
a borderline case. However, a linear chain of Cd, Zn, or
Hg atoms is predicted to be nonmetallic and in the case of
Hg even a free monolayer is expected to be in the van der
Waals modification.

Nowadays, systems with reduced dimensionality are ex-
perimentally accessible. One can prepare small particles
by forcing a metal into cavities of a porous material.
Also, one can simulate free monolayers by depositing a
metal on a substrate of low surface energy. Therefore,
Miedema and Dorleijn predict that "it is possible that
there is a wide range of low surface energy substrates on
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which monolayers of Hg will be nonmetallic. "
In this paper, we present results of self-consistent ab ini-

tio all-electron band-structure calculations for free mono-
layers of mercury and use these results to discuss possible
phase transitions in such a system. Section II discusses
the theoretical and computational methods which we have
employed. Section III contains our results for mercury
monolayers in hexagonal- and square-lattice configura-
tions using both the Hedin-Lundqvist and the Wigner ap-
proximation for the exchange and correlation potential.
Finally, in Sec. IV we present a discussion of our results
and draw conclusions regarding possible phase transitions.

II. METHODOLOGY

The calculation of the electronic part of the total energy
of a solid requires the solution of a complicated many-
body problem. However, using density-functional theory
it is possible to prove the important theorem that the total
energy is a functional of the one-particle density only. As
a consequence, one is able to replace the many-body prob-
lem by an equivalent single-particle problem. '

The resulting single-particle equations enable us to cal-
culate the one-particle density of the interacting electrons.
Since the effective potential which appears in these equa-
tions depends on the one-particle density we have to solve
these equations in a self-consistent way. The total energy
derived in this way represents the total energy of the in-
teracting electrons. However, the energy eigenvalues are
only zeroth-order approximations to excitation energies:
only the Fermi energy has an exact meaning. The error
increases with the distance of the eigenvalue to the Fermi
energy, the effect being largest in systems where the
valence band contains d or especially f electrons.

Several standard methods to solve the single-particle
equations exist. We use the full-potential linearized
augmented-plane-wave (FLAPW) method ' in which
there are no shape approximations for the potential for the
valence band. The core electrons are treated fully rela-
tivistically and here we retain only the spherical part of
the potential, which is justified because of the small spa-
tial extent of the wave functions. The valence electrons
are treated semirelativistically, e.g., we neglect spin-orbit
coupling.

We have performed self-consistent all-electron band-
structure calculations for a free monolayer of Hg formed
as either a hexagonal or a square lattice at several values
of the lattice parameter. As approximations to the local
exchange and correlation potential we have used both the
f'ormula of' Hedin and Lundqvist' and the Wigner inter-
polation formula" for the correlation energy combined
with the Gaspar-Kohn-Sham form for the exchange. The
value of the muffin-tin radius (RMr=2. 5 a.u. ) was kept
the same for all geometric configurations. As a result, the
ratio of the volume of the interstitial region and the
volume inside the muffin-tin spheres depends on the value
of the lattice constant and hence we have to adjust the
number of APW basis functions in each case in order to
guarantee the same absolute accuracy in the convergence
of the total energy. For this reason, we have used a large
number of APW basis functions for a one atom per unit
cell calculation, namely more than 150. The values of the
energy parameters were chosen to be —0.8 Ry (near the

III. RESULTS

Many-body quantities which are truly represented in
density-functional theory are the single-particle density,
the work function, and the total energy. We have calculat-
ed the total energy as a function of the atomic volume for
two different lattice configurations and for two different
local approximations of the exchange and correlation po-
tential. In this case, the atomic volume is an area given by
S=a~ for the square lattice and S=—,'a M3 for the hex-

agonal lattice, a being the lattice parameter. The results
are shown in Fig. 1. The relative error in the total energy
is 0.1 mRy, while there is a systematic error of roughly 1

mRy. Of course the error due to the local-density approx-
imation is much larger, e.g., the difference in total energy
between the two local approximations which we have em-
ployed is 7 Ry. Figure 1 shows that both local approxi-
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FIG. 1. Total energy of a free monolayer of Hg for a hexago-
nal (Q) and a square (S) lattice as a function of the atomic
volume. Upper part gives the results using the signer formula
and lower part gives the Hedin-Lundqvist results. Vertical lines
indicate the metal-nonmetal transition for the hexagona1 lattice.
Drawn lines are a parabolic fit to the points near the minima.

center of the d band) in all cases; because of our large basis
size the total energy is almost independent of this choice.
For example, if we set the s and p parameters equal to the
Fermi energy ( ——0.3 Ry) the total energy changes by
less than 0.1 IRy. The logarithmic radial mesh for the
integrations inside the muffin-tin spheres employs 381
points and a step size of 0.03; its use gives an error in the
total energy of less than 1 mRy. However, this error is
mainly due to the core electrons and will therefore be of a
systematic nature, because the core-electron density hardly
changes. We have estimated the error due to the changing
valence density to be much less than 0.1 mRy. Since we
are investigating a metal-nonmetal transition there are
drastic changes which occur in the Fermi surface. There-
fore, we have used 66 k points in the irreducible part of
the Brillouin zone together with a triangular integration,
resulting in an error in the total energy of less than 0.1

mRy.
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TABLE I. Fitted total energy as a function of the atomic volume: E =
2 a(S —Sp) +Ep. All quan-

tities are in atomic (rydberg) units.

Sp

Hexagonal lattice
Hedin-Lundqvist
Wigner

—39 301.862 15
—39 294.564 13

30.206
31.584

0.343 00 X 10-'
0.375 18~ 10

Square lattice
Hedin-Lundqvist
Wigner

—39 301.861 34
—39 294.563 19

30.843
31.614

0.588 32 &( 10
0.65844~ 10

mations to the exchange and correlation potential qualita-
tively give the same results, the hexagonal lattice having
the lowest energy and the energy differences being corn-
parable. We have fitted the points near the energy minima
to a parabola (see Table I). These fits do confirm the rela-
tive accuracy of 0.1 mRy in our calculations.

The charge density does not change very much near the
minima in the total energy. There are 1.8 electrons per
atom outside the muffin-tin spheres and these electrons
are easily accomodated in the interstitial regions. At
smaller values of the lattice constant the number of elec-
trons inside the muffin-tin spheres increases and the d
bands start to overlap. In the hexagonal lattice this is the
case for values of the area occupied by one atom less than
27 a.u. , where the interstitial charge suddenly starts to de-
crease. This effect is clearly seen in the total-energy curve.
The calculated points are below the parabola because we
gain energy due to the combined effect of the direct over-
lap of the d bands and the hybridization with the free-
electron-like band.

The single-particle eigenvalues are almost independent
of the choice of the approximation to the exchange and

correlation potential. The d band is located 7—9 eV below
the Fermi energy and is (3—2)-eV wide, depending on the
value of the lattice constant (See Fig. 2). The bottom of
the free-electron-like band is always hybridized with this d
band, but the interaction becomes smaller with increasing
values of the lattice parameter. For large values of the lat-
tice constant the free-electron band is separated into an oc-
cupied s band and an empty p-like band.

The work function changes from 3.9 to 5.0 eV (see Fig.
3) as a function of the atomic volume. There is no differ-
ence between the values for the two types of exchange and
correlation approximations. We see a clear nonanalytic
behavior near the metal-nonmetal transition. At this point
the density of states at the Fermi level changes very rapid-
ly from 0—7 states/Ry atom (Fig. 4). In the square lattice
the jump is smaller. This is a purely geometrical effect;
the boundary of the first Brillouin zone in a hexagonal lat-
tice resembles a sphere more closely than in a square lat-
tice. Therefore, when the system becomes a semimetal the
number of electron and hole pockets will be larger in the
hexagonal phase, resulting in a larger value of the density
of states at the Fermi level.
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FIG. 2. Typical band structure for a free monolayer of mer-
cury in the hexagonal phase. We have indicated the dominant
orbital character of the wave functions near the Fermi level. d
bands are 7 eV below the Fermi level and they are hybridized
with the bottom of the s band.
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FIG. 3. Work function as a function of the atomic volume.
Vertical line indicates the metal-nonmetal transition for the hex-
agonal lattice. Dashed line is added as a guide for the eye.
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FIG. 4. Density of states as a function of the atomic volume.
Position of the metal-nonmetal transition is very accurately es-
timated from the behavior of the bands near the Fermi level as a
function of the lattice parameter.

IV. DISCUSSION

The total-energy curves in Fig. 1 show that the ground
state of a free mercury monolayer is a hexagonal nonme-
tallic structure. However, in an experiment one can only
simulate a free monolayer by depositing a monolayer on a
substrate of low surface energy. Depending on the nature
of the interactions between the substrate and the mono-
layer we will either find a square-lattice configuration, a
metallic hexagonal configuration, or a nonmetallic hexag-
onal configuration. Since the difference in total energy be-
tween the square and the hexagonal lattice is less than 1

mRy (or 158 K) we predict that room-temperature mea-
surements always will give a mixture of all phases. In or-
der to detect the metal-nonmetal phase transition in the
hexagonal structure, one either has to use different sub-
strates (at low temperature) which fix the lattice constants
at different values or one has to apply pressure.

If we consider the parabolic fits to the total energy as
harmonic-oscillator potentials for the atomic nuclei, we
can derive an estimate for the energy of the zero-point
motion of the atoms. Using the values given in Table I we
find this energy to be 0.7 mRy for the hexagonal lattice
and 0.9 mRy for the square lattice. This indicates that ex-
periments on quasifree monolayers of mercury might be
hard to interpret and that we probably do need the
substrate-adsorbate interaction to stabilize a particular
phase.

There still remain two approximations which can influ-
ence our results. First, we have treated the valence elec-
trons in a semirelativistic way, and second, we use the
local-density approximation. The dominant effect of the
first approximation is due to the incorrect treatment of the
p~~2 electrons, which now have zero density at the nucleus.
In a bulk material like Pb this introduces errors in the en-

ergy levels on the order of 30 mRy. ' Since in our case the
metallic behavior is caused by the interaction between the
6s and the 6p electrons, the semirelativistic approximation
will have its largest effects near the Fermi level.

The important p states in our calculations are the states

near I . When we reduce the value of the atomic area,
these states are lowered in energy and they are responsible
for the metallic behavior of the film. However, these p
states have p, symmetry, i.e., their charge distribution is
perpendicular to the film. As a consequence, 90% of their
density is outside of the muffin-tin sphere. Because the
effect of the semirelativistic approximation is only impor-
tant near the origin, this indicates that the error in the Hg
monolayer is greatly reduced compared to the error we
would have made in a bulk calculation. The important p
states will only drop by a few mRy and hence the position
of the metal-nonmetal phase transition is shifted to a
value of the atomic volume which is increased by less than
1%. Nevertheless, in the Hedin-Lundqvist case this is
sufficient to make the ground state metallic. The effect
on the total energy is also expected to be small, which can
already be deduced from Fig. 1 where the points in the
metallic and nonmetallic regions are both on the same par-
abola and no discontinuity can be seen. On the other
hand, the p, character of these p states makes them very
sensitive to the interaction with a substrate and this will be
an important factor in determining the conductivity of an
adsorbed Hg monolayer.

The second approximation we have used is the local-
density approximation. Near a metal-to-nonmetal transi-
tion the cooperative behavior of the electrons changes
dramatically and it is an open question how well this situ-
ation is described in the local-density approximation. The
plot of the work function as a function of the atomic
volume (Fig. 3) indicates that upon using the local-density
approximation we find nonanalytic behavior at the point
where the system changes from a semimetal to an insula-
tor. Although the difference between the two local ap-
proximations we have used is only qualitative, we do not
know how large the changes would be using nonlocal po-
tentials or the exact exchange and correlation potential
(which is, of course, only known after solving the com-
plete many-body problem). This is another reason why we
are interested in the results of experiments on adsorbed
mercury monolayers, because these experiments would
supply additional information concerning the quality of
the local-density approximation in describing a metal-
nonmetal transition.

In this paper we have studied the electronic properties
of free monolayers of mercury. We have found that at
least three different phases are important and that they are
close in energy. Experiments of adsorbed mercury mono-
layers on suitably chosen substrates should reveal the ex-
istence of these phases. From a theoretical point of view
the metal-nonmetal transition in the hexagonal phase is of
special interest as a test case for local-density theory.
Clearly experimental results are needed in order to com-
pare with our theoretical predictions.
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