
PHYSICAL REVIE%' B VOLUME 28, NUMBER 10 15 NOVEMBER 1983

Electronic transport at grain boundaries in silicon
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An experimental investigation is reported on carrier transport across isolated grain boundaries in
large-grain cast silicon material. Continuous interface-state densities in the (10' —10' )-m eV
range are measured for the lower part of the silicon energy gap. The grain-boundary diffusion po-
tentials for this material are shown in some cases to vary appreciably over a single grain-boundary
plane; this is thought to be due to a nonuniform spatial distribution of interface charge at the grain
boundaries. Numerical calculations by finite-element methods, of the quasi-Fermi-potentials in the
vicinity of the grain boundary, suggest that the supply of majority carriers by diffusion to this inter-
face may be the 1imiting factor controlling their transport. The experiments have consequently been
interpreted according to the diffusion model rather than the customary thermionic-emission model
of majority-carrier transport across grain boundaries.

I. INTRODUCTION

The transport properties of electrons and holes at grain
boundaries in polycrystalline semiconductors is of consid-
erable present interest, both for academic and practical
reasons. The grain boundary differs from other semicon-
ductor interface systems in that the orientation but not the
crystal structure changes across this interface; this can
give rise to behavior which is unique to this type of inter-
face and as such is of scientific importance. Electronic
and optical processes at grain boundaries are of current
practical importance as a result of their effects on the pho-
tovoltaic conversion efficiency of thin-film polycrystalline
semiconductor solar cells. '

Pioneering work on the characterization of electronic
mechanisms at grain boundaries has been carried out re-
cently by Seager and co-workers at Sandia Labora-
tories. These workers have investigated the effects of
grain-boundary interface states on the majority carrier
transport in n-type polycrystalline silicon. From measure-
ments of current-voltage characteristics performed on iso-
lated grain boundaries, they have been able to extract the
energy distribution of interface states.

In this paper we present the results of an experimental
investigation of transport phenomena at grain boundaries
in silicon. The present work differs from the work of
Seager et a/. in several ways.

One difference is that our investigations are of grain
boundaries in p-type silicon so that the information ob-
tained concerning grain-boundary interface states corre-
sponds to the energy distribution of these states in the
lower half of the energy gap, whereas Seager has obtained
data for the upper half of the energy gap by using n-type
silicon samples. We are also studying a somewhat dif-
ferent material: cast silicon from Wacker Chemitronic
Ltd. of the "Silso" type as opposed to their case of
neutron-transmutation doped polycrystalline chemical-
vapor-deposited (CVD) silicon of smaller grain size and

higher doping concentration. We further include in our
study the cases of both high and low grain-boundary po-
tential barriers. Optical illumination intensity is employed
in addition to bias voltage and temperature as experimen-
tal parameters. With the exception of some recent work
concerning grain-boundary recombination velocity most
of the earlier studies involved dark measurements.

This paper also provides a departure from previous
work in its treatment of the data in terms of a diffusion
model of carrier transport at grain boundaries. This in-
tepretation is guided by results obtained in the present
work by simulation of grain boundaries using finite-
element techniques of numerical analysis. In the course of
the experimental investigations, we have also discovered
that, in the Wacker material at least, the grain-boundary
potential cannot generally be regarded as uniform over the
grain-boundary plane. Several other observations of a
presently qualitative nature indicate that the carrier trans-
port at grain boundaries can be a rather complex process.

II. THE CxRAIN-BOUNDARY INTERFACE

The grain boundary in a polycrystalline semiconductor
is an interface between two identical crystals of different
orientation. The mismatch in bonding between the two
crystals results in bond defects (e.g., distorted bond angles,
dilated or compressed bonds, broken bonds) at the grain
boundary. These defects are expected to exist primarily on
a single plane of atoms, and to a lesser extent on the
neighboring planes. We consider the width of the grain-
boundary region to be negligible on the scale of variations
in the potential in the adjacent space-charge regions.

The bonding defects at the grain boundary translate into
localized electronic states or interface states. The energy
distribution of these states is of importance in the deter-
mination of carrier-transport processes. There is in gen-
eral a net charge associated with the grain-boundary inter-
face states, which is modified by a voltage applied across
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the grain boundary. The interface states also function as
recombination centers for excess electrons and holes at the
grain boundary. It has been observed that for grain boun-
daries in n-type silicon, the interface states inevitably con-
tribute a net negative charge. In p-type silicon the grain-
boundary interface states contribute a positive charge.
The reason for this difference in n- and p-type silicon is
the difference in the position of the Fermi energy relative
to the interface-state distribution in the two cases.

In order to be specific we restrict our discussion to the
case of grain boundaries in p-type silicon. This is the case
which pertains to the experimental work reported below,
and to the energy-band diagram of Fig. 1. It is assumed
that positive charge associated with the interface states is
balanced by a net negative charge due to uncompensated
ionized acceptor impurities. These acceptor impurities are
located in space-charge regions adjacent to the grain boun-
dary in the crystalline regions to either side. It is assumed
that the interface charge is uniformly distributed over the
area of the grain boundary. The magnitude of the poten-
tial barrier at the grain boundary for zero applied bias
voltage ( Vqc in Fig. 1) is referred to as the diffusion poten-
tial of the grain boundary.

Poisson's equation relates the charge distribution to the
electrostatic potential. This may be expressed as
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FIG. 1. Numerical calculations of electron energy-band dia-
gram of the grain boundary under equilibrium conditions ( V=O,
dark), showing the diffusion potential Vdo, barrier height Pb,
bulk Fermi potential P~, intrinsic energy level E;, and interface
states present at %=0; 2V = 10 m, T=300 K, and
Q =1.5&(10'4q Cm

where P; is the electrostatic potential, e is the permittivity
of the semiconductor, and p is the charge density given by

p=q(p n+Xd N—, )+Q;, —.
In Eq. (2), Q;, is the net charge in the grain-boundary in-
terface states and Xd+,X, are the ionized donor, acceptor
impurity concentrations in the semiconductor (assumed
uniformly distributed in space). For the p-type material
discussed in this paper, Ãd ——0 in Eq. (2). In general Q;, is
a function of n and p, the concentrations of electrons and

holes, at the grain boundary. These carrier concentrations
are given by

E —E;
n =n;exp (3)

p =n;exp p

kT

where EF„,Ezz are the quasi-Fermi-levels for electrons and
holes, respectively. In Eq. (1) the potential P; may be re-
placed by E; /q w—here the energy E;, which appears in
(3) and (4), is known as the intrinsic level (see Fig. 1). The
charge Q;, in grain-boundary interface states is dependent
upon the energy distribution of these states, and also upon
their charge state when occupied by an electron (donorlike
or acceptorlike).

III. CARRIER TRANSPORT ACROSS
GRAIN BOUNDARIES

In the preceding section, we have described the process-
es which contribute to the formation of a diffusion poten-
tial, or potential barrier against the transport of majority
carriers across grain boundaries in semiconductors such as
silicon. We have also introduced the localized interface
states, which act as recombination centers for electrons
and holes, and which modify the diffusion potential by ad-
justing their charge according to the concentrations of
electrons and holes at the grain boundary. In this section
we address the major theme of this work: electron and
hole transport processes.

In order to model the transport of electrons and holes
analytically, an appropriate transport model must be
adopted. To guide this procedure, we have performed a
simulation of grain-boundary transport using finite-
element methods of numerical analysis, which employ the
Newton-Raphson algorithm (Appendix A).

To simplify the interpretation of these numerical re-
sults, we have solved for the case where the charge in
grain-boundary interface states Q;, is fixed, and does not
depend on bias voltage applied across the boundary. In
addition, we ignore recombination through grain-
boundary interface states. %'hile it is realized that these
assumptions are unphysical in a real grain boundary, they
provide for the analysis of electron and hole transport un-
complicated by the effects of recombination at this inter-
face.

An example of the results of the numerical calculations
is given in Fig. 2, which shows the dependence of the elec-
tron and hole quasi-Fermi-potentials, and of the electro-
static potential, upon position for a voltage V applied
across the grain boundary. Note that in this figure, as
well as Fig. 3, the quasi-Fermi-level EF„&Ez~as a conse-
quence of dark generation-recombination currents. ' The
effect of this voltage is to lower the potential barrier, or
band bending, on the forward-biased side of the boundary
and to increase it on the opposite (reverse-biased) side.
The voltage division between these two sides depends,
among other things, upon the charge in grain-boundary
interface states, Q;„and in particular on the manner in
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diffusion potentials which are much smaller than those
normally encountered in Schottky barriers. In addition
there exists, on the reverse-biased side, a large electric field
which is attractive to the majority carriers. The conse-
quence of these factors is that holes, upon reaching the
grain-boundary interface, are collected efficiently and the
supply of these carriers through the space-charge region
may become the limiting factor in determining the
current. Following the work of Rhoderick and of
Crowell and Sze, we consider the energy diagram of Fig.
3 and the extremes of hole concentration at the grain
boundary when transport is limited by diffusion (case 1,
curve D) or by emission (case 2, curve E).

We suggest that a general approximate expression for
the intermediate case may, on the basis of Refs. 7 and 3,
be written

FIG. 2. Numerical calculations of electron energy-band dia-
gram under applied bias voltage V, showing quasi-Fermi-levels
EFn and E+p for electrons and holes, and voltage division V& and
V2 between forward-biased and reversed-biased space-charge re-
gions. (Note: V= V~+ V2. ) V, is the total applied voltage from
X=—20 to + 20 pm, which is approximately equal to Vexcept
at very large current densities. Slope of energy bands and poten-
tials away from grain boundaries is associated with voltage drop
in the series resistance of the grains. This contributes to V, .

( U + )
—1 ][0 9 s pj 1020 —3 T 300

Q;, =1.5X 10' q Cm

which this charge changes under applied bias voltage.
However, in the calculation of Fig. 2, the effects of chang-
ing Q;, are not considered, as discussed above.

We consider the mechanism by which holes cross the
grain boundary in similar generality to the earlier treat-
ment of the metal-senuconductor contacts, or Schottky
barriers. The holes must negotiate the space-charge re-
gion by the usual drift and diffusion mechanisms and
upon arriving at the grain boundary either be accepted
into the other side, or be reflected. The opposite side of
the grain boundary is the same semiconductor, but with a
different crystal orientation. The acceptance of the holes
can be regarded as a process of interface emission charac-
terized by a collection velocity U„which is in series with
the drift and diffusion processes.

In the Schottky barrier, at least for high-mobility semi-
conductors such as silicon, the thermionic emission of the
majority carriers (holes) into the metal becomes the
bottleneck to current flow. This has been discussed by
Gossick, and more recently by Rhoderick. The reason is
that there are very few available states 'n th t 1 h
momentum parallel to the surface to match th t f th

o es from the semiconductor. This is because the energy
at which the holes are transferred is close to the valence-
band edge in the semiconductor, but remote from the band
edges in the metal.

In the present problem, however, the states on either
side of the r

'
grain boundary have the same energy relative

to the band edges. The limitations due to conservation of
parallel momentum are greatly relaxed. We also deal with

4b
exp

Vp

V2—exp
VT

qX„X,
exp

1+
Ud

' exp
VT VT VT

(5)

since V=V&+ V2, where V is the total voltage applied
across the grain boundary, V, is the forward bias on the
left side of the grain boundary in Fig. 2 which is so far an
undetermined portion of V and V2 is the reverse bias on
the right side of the boundary. vd and v„arethe diffusion
and interface recombination (or in our case collection) ve-
locities for the holes, respectively. pb is the equilibrium
barrier height which is independent of V (Fig. l); X, is the
effective density of states in 1;he valence band; U =
with q~&~~~ the max~mum electric field in the space-charge
region on the forward-biased side of the grain boundary.
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FIG. 3. Expanded view of calculations in neighborhood of the
grain boundary (GB) for the case of Fig. 2. Curves D and E
show schematically the limiting cases of diffusion- and
emission-limited transport.
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In the present case U„=pe~ 2, with g~ q the maximum field
on the reverse-biased side. For any appreciable voltage
across the boundary, /~2&&g~~ and u„&&ud in Eq. (5).

In case 1 (shown schematically as D in Fig. 3), the inter-
face collection velocity U, is considered to be large. The
hole current is then limited by diffusion through the
(forward-biased) space-charge region and the concentra-
tion of holes at the grain boundary remains small under
applied voltage. This is illustrated by a rise in the hole
quasi-Fermi-level EF~ as the grain boundary is approached
from the forward-biased side. The transfer of holes across
the grain boundary which in this case is proportional to
their concentration at x=0, p (0) is kept small by the lim-
ited supply to the boundary. Qn the other hand, if the col-
lection velocity v„is small (case 2 and E in Fig. 3) holes
arriving at the grain boundary are not immediately re-
moved by the reverse-biased side. The supply of holes to
the grain boundary is bountiful and p(0) increases to its
maximum value determined by the hole Fermi level on the
forward-biased side. In this case EF~ is relatively flat up
to the grain boundary. As we observe in Figs. 2 and 3
which show the results of an exact calculation, the true
situation is intermediate between these extremes, with EF~
rising (in this case by more than kT) as the grain boun-
dary is approached.

On the basis of the results of Figs. 2 and 3 from the nu-
merical analysis, we believe that the diffusion model
(U„»U~), as originally described by Stratton, ' is the ap-
propriate basis for the interpretation of majority-carrier
transport across grain boundaries. This model is em-
ployed in the analysis of the experimental data of the fol-
lowing sections.

polycrystalline wafers (100X100X0.4 mm ) were cut into
strips approximately 1)&20 mm. These strips were chemi-
cally polished in 3:1:1 HNO3 (79%%uo), HF (49%), glacial
acetic acid, for =3 min to eliminate saw damage and to
highlight the grain boundaries. " Cxrain boundaries were
examined under an optical microscope to identify those
which were planar and which extended over the entire
cross section of the strip in both the lateral and vertical
directions; the latter requirement was determined by ex-
amining the back face of the samples.

Aluminum contacts were evaporated in a four-probe
configuration (Fig. 4) and were sintered at 600'C for 2
min in N2 to form Ohmic contacts. Aluminum connec-
tions were bonded to the (inner two) voltage-measurement
contacts. A single grain boundary was then enclosed be-
tween the voltage probes. Current was injected and re-
moved at the outer two contacts. Contact potential errors
in the determination of the voltage across the grain boun-
dary were avoided by means of this four-probe technique;
voltages were measured using a Keithley 610C electrome-
ter with input impedance of 10" Q. All measurements
were made under dc conditions.

Measurements at temperatures from 300 to 200 K were
performed in a FTS Systems Inc. Multi-Cool closed-cycle
refrigeration unit. For temperatures from 100 to 200 K a
cryogenic liquid-nitrogen sample chamber fitted with a

IO

IV. SAMPLE FABRICATION AND MEASUREMENTS
IO

The material used in this study was p-type cast silicon
of large grain size (typically 1 mm) of the "Silso" type, ob-
tained from Wacker Chemitronic Ltd. The doping con-
centration X, from bulk measurements (e.g., C vs V of
Schottky-barrier capacitance-voltage characteristics for
diodes within single grains) was =3X 10 ' m . The
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FIG. 5. Experimental dark characteristics of grain boundary
B-10at several measurement temperatures.
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heater for temperature variation was employed. Tempera-
tures were measured using Cu-Co thermocouples. Optical
illumination was provided by a Sylvania ELH projection
lamp with an infrared filter to remove all photon wave-
lengths A, & 1 pm. This ensured a relatively uniform pho-
togeneration throughout the sample. The optical intensity
was determined using an Optikon Model 550-1 radiome-
ter. The accuracy of this determination was approximate-
ly +30%. The reflection from the silicon surface was es-
timated to be 30%.

The equilibrium grain-boundary diffusion potential,
Vdo, was observed to vary over a wide range for samples
cut from different grain boundaries [Vdo values from
~ 0.1 V (electrically inactive) to =0.33 V at 300 K].

V. EXPERIMENTAL RESULTS

Figure 5 shows a typical example of the current-voltage
characteristics measured on a grain boundary having a rel-
atively large zero-bias diffusion potential ( Vdo==0.25 V
at 300 K). Results are given for a number of measure-
ment temperatures. Measurements such as these were per-
formed for a variety of samples over the temperature
range 100& T & 300 K. Figure 6 shows a typical example
of the corresponding characteristics for a grain boundary
with a somewhat smaller (zero-bias) diffusion potential.
These grain boundaries turn out to exhibit a spatial varia-
tion in their properties over the boundary plane. Figure 7
is representative of a different case of grain boundary in
which the potential barrier is spatially uniform, as we dis-
cuss in a later section.

The effect of optical illumination on the grain-boundary
current-voltage characteristics is illustrated in Figs. 8 and
9. This data was obtained for optical powers of 0.2 and 50
%'m, respectively, with 1.0&A, &1.1 pm. A range of
optical-illumination intensities was investigated, but the
rather complicated behavior observed at higher intensities
is still under study at this time.

In Fig. 10 we show the dependence of the activation en-
ergy E (defined in Sec. VI) upon the voltage V applied
across a boundary region. This activation energy is deter-
mined from the temperature dependence of the current-
voltage characteristics such as those of Figs. 5—7. Figure
11(a) shows the dependence of E, upon T (determined at a
low value of V) for two of the same samples. From Fig.
11(a) and the expressions of Sec. III we are able to derive
the equilibrium (dark, zero-bias) diffusion potential Vdo,
assuming that this potential is spatially uniform over the
boundary plane. This is shown in Fig. 11(b), together with
the result expected from a one-dimensional theory. Fig-
ures 12(a) and 12(b) give the observed dependence of E,
and Vd upon optical illumination intensity (at 300 K) for
the same samples. In this case Vd is no longer the equili-
brium diffusion potential Vdo.

It was also observed that for large grain-boundary volt-
ages, and hence moderately large current densities
(=10—50 V and 4X10 —10&10 Am ), the current ex-
hibited oscillations such as those shown in Fig. 13.

The magnitude of these oscillations was typically on the
order of 1% of the dc current. It was observed that a
sample biased below the threshold current density for
these oscillations could be thermally stimulated into oscil-
lation. Generally, more and larger pulses are observed at
higher current densities, and these effects are reversible.
We believe these oscillations are due to field emission of
carriers from grain-boundary interface states, as discussed
in a later section.
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VI. INTERPRETATION OF RESULTS

The steady-state current-voltage characteristics of the
grain boundary in general consist of a component due to
the transport of majority carriers over the grain-boundary
potential barrier, J&, a component due to minority carriers
transported in the opposite direction, J2, and finally a
component associated with recombination of electrons and
holes in grain-boundary interface states, J3. These three
components are illustrated in the energy-band diagram of
Fig. 14. Our interpretation of results from the preceding
section is that the first component is completely dominant
over the other two, at least under dark conditions. That
is, currents such as those of Figs. 5—7 are to be identified
with the transport of majority carriers (in our case, holes)
over the potential barrier at the grain boundary. (The
downward bending of the bands at the grain boundary
presents a barrier to holes. ) In this interpretation we are
in agreement with previous workers. ' ' We do,
however, consider the other two components in their in-
direct effects upon the majority-carrier current. This will
be discussed further below.

In view of the discussion of Sec. III, we adopt the
diffusion-limited value of Eq. (5) for the majority-carrier
current J~. In this case (U„&&ud), Eq. (5) becomes

GRAIN
BOUNDARY

Ec

FIQ, 12. The dependence of (a) the activation energy and (b)
the diffusion potential on illumination intensity for 8-10 and 8-
12. T=300 K.
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FICz. 13. Current oscillations observed at high dc current den-
sities. Cxrain-boundary sample 8-11. V=15 V; I=150 mA.
Vertical scale: 500 pA/division. Horizontal scale: 1

ms/division.

FIG. 14. Electron energy-band diagrams for grain boundary
with (zero-bias) diffusion potential Vdo. (a) V=O; (b) V~ 0. J~ is
the majority-carrier current, Jq is the minority-carrier current,
and J3 is the recombination current at the grain boundary.
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4'bJ J(-qX„Udexp — exp
VT Vp

1 —exp
V

VT

Vdp V)=qN„lj,g, exp — — exp — exp
VT VT VT

V
1 —exp

VT

Vdo V)=q~, pg~ i exp — exp
VT VT

V
1 —exp

VT

where pb ——V~0+ pz (Fig. 14) and we have used
exp( P~/—VT)=N, /N„which is true provided the accep-
tor impurities (of concentration N, ) remain ionized, i.e.,
for T ) 100 K in silicon.

For V« Vz and V~ && VT we can simplify (2) to

I

term for spatially uniform grain boundaries, so that in this
case E,+E,(T).

We have chosen to take the temperature dependence of
the low-field mobility given by'

p( T)=54.3T„
V Vdp

J=qN, pg ~ exp
T T

(7) 1.36' 10'T-'"
+ 1+[N, /(2. 35 && 10' T„)]0.88T„

and define an activation energy for the potential barrier at
the grain boundary as

d ln
qN, pg ~( V/VT )

d (1/kT)

d( Vgo)
=q "+qd(i/T)

(T„=T/300)to the left-hand side in Eqs. (8) and (8'). In
these equations, the parameters J, p, and Vdp are tempera-
ture dependent, in addition to the explicit appearance of T
and VT kT/q-—

The equilibrium diffusion potential V~0 in Eq. (8} is
temperature dependent for two reasons. First, the tem-
perature dependence of the bulk Fermi potential P~, given
by

ln(N„/N, ),kT
g

(10)

d Vdo=q V~o(T) T—
dT

(8) gives rise to a temperature dependence of Vdp which may
be written as

Equations (7} and (8) apply for V« VT. For relatively
large applied voltages, on the other hand, i.e., for V&~ VT,
they are replaced by

d V~0 dp~
dT dT

Vdp
J=qN, pg &exp

VT
exp

T

=qN, pg ~exp
VT

(7')

where Vd —Vdp V1

din
qN, pg

d (1/kT)

dVd
qVg( T) T-—

dT
(8')

Note that the second term on the right-hand sides of Eqs.
(8) and (8') turns out to be negative, as discussed below
and exactly cancel the temperature dependence of the first

where we have used Eq. (10) and neglected the weak tem-
perature dependence of 1nÃ„. y is a parameter which ac-
counts for Fermi-level pinning at the grain boundary by
interface states. For samples 8-12 and 8-10, for example,
we have that y=0.9—1.0 and y=0.6, respectively, for the
N;, measured in these samples (see Appendix 8 for deriva-
tion of y).

Second, the occurrence of a spatial variation of dif-
fusion potential over the grain-boundary plane will give
rise to an "effective V~0" in Eq. (7) which also exhibits a
temperature dependence in addition to that of Eq. (11).
This is because the current transport through various por-
tions of the grain boundary with different Vdp will be
weighted by the temperature-dependent factor
exp( qV~O/kT). At lower —temperatures a larger portion
of the current will flow through the regions of lowest Vdp
and the effective V~o will decrease. For a spatially uni-
form grain boundary dVdp/dT is therefore given by Eq.
(11), whereas for a nonuniform boundary, an additional
term dependent upon the nature of the spatial nonunifor-
mity contributes to d Vd p/d T.
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The maximum electric field g i in Eq. (7) corresponds
to that close to the grain boundary on the left-hand side of
Fig. 14, given in the depletion approximation by'

1/22',-( Vdo —Vi —Vr)
&s

(12)

where e, is the silicon permittivity.
As the applied voltage V increases, we have that

V= V)+ V2,

= —[2qe, N ( Vdo —V) —VT)]'r

Q2 ———qN, 8'2

= —[2qe, N, ( Vdo+ V2 —VT)]

Qi+Q2+Q;, =0
for all V. Vdo, V&, and V2 have been defined above; 8'&
and 8'2 are the widths of the space-charge regions on the
forward- and reverse-biased sides of the grain boundary,
respectively. Q& and Q2 are the charge (per unit area) in
these space-charge regions (within the depletion approxi-
mation), and Q;, is the charge per unit area in the grain-
boundary interface states.

Let us assume that the grain-boundary interface states
remain in equilibrium with the majority carriers (holes)
under an applied bias voltage. If we adopt the convention
of earlier workers ' that the change with bias voltage in
the quasi-Fermi-level at the grain-boundary interface is
approximately equal to the change of its value in the bulk
on the forward-biased side, it then follows that

g,, ( V) =g,, (O)+qN, , V,

grain-boundary potential which is spatially uniform over
the boundary plane, in accordance with the one-
dimensional analysis.

As a general interpretation of the current-voltage
characteristics of Figs. 5—7, at very low voltages ( V & VT )
the curves are near Ohmic as expected from Eq. (7). A.t
higher voltages, the increase in J with V originates pri-
marily from the exp( V, /VT) term in Eq. (6). The detailed
shape of the characteristic depends upon the variation of
V& with V, which in turn is controlled by the degree of
pinning of the quasi-Fermi-level for holes by grain-
boundary interface states. The concave nature of these
curves at higher V is associated with a high density of in-
terface states N;, near midgap (strong pinning), which
drops off appreciably towards the valence band. This in-
terpretation is consistent with that offered by Seager
et al. for grain boundaries in n-type silicon, in which
case X„alsofalls towards the conduction band.

is an important parameter since, among other
things, this determines the appropriate value of y to be
used in Eq. (11). We have determined N;, as a function of
energy by analysis of the current-voltage characteristics at
a constant temperature (Fig. 5) in terms of the diffusion
theory of the carrier transport. This is in the spirit of the
deconvolution scheme of Seager et al. , and data at
three measurement temperatures have been combined to
give rise to the X;, vs E of Fig. 15. For this sample y is
then determined to be 0.6, as described in the Appendix.
Our results for X;, agree within an order of magnitude
with those obtained by Seager et a/. , in their case in
the upper half of the band gap in neutron-transmutation-
doped silicon. Comparison of N;, (E) with earlier workers
is made in Fig. 16. The picture which emerges is a peak
in the density of interface states of magnitude X;,=10'
m eV or greater at the peak and of energy spread

—2 —1

DE=0.1 eV.

for an interface-state density N;, (m eV ') which is in-
dependent of energy. For an energy-dependent interface-
state density, N~, V& in Eq. (17) must be replaced byIN„dVi.

It is important to realize that the value of X;, deduced
from measurements using Eq. (17) represents a lower limit
on the true interface-state density. From our discussion of
the majority-carrier transport above, we anticipate a hole
transport which is restricted by the supply of holes to the
grain boundary (diffusion model) and an appreciable
change in the hole quasi-Fermi-level Ezz across the
forward-biased space-charge region. Thus the change in

Ezz at the grain boundary with applied voltage may be
somewhat less than V& and X;, will be underestimated us-
ing Eq. (17) with the experimentally-determined Q;, ( V).

Finally, we point out that the grain boundaries were
modeled as planar interfaces; the possibility of curvature
on a macroscopic scale was not accounted for. This may
affect the numerical values of X;, to some degree.
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VII. DISCUSSION OF RESULTS

We have used the diffusion model of Sec. III to analyze
the results of Figs. 5—12. This treatment assumes a

FIG. 15. Density of localized grain-boundary interface states
vs energy in band gap of silicon I', sample 8-10). Points show re-
sults obtained from current-voltage characteristics at constant
temperature T, for three values of T.
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FICi. 16. Comparison of present results for grain-boundary
interface states with earlier results for silicon grain boundaries
(Refs. 27 and 28). Note units of X;, are cm eV ' for this fig-
ure.

In Fig. 10 we show the dependence of the activation en-

ergy E, (defined in Sec. VI) upon the voltage applied to
the grain boundary. In the determination of E„the tem-
perature dependence of the mobility, given by Eq. (9), has
been removed, i.e., ln[J/qN, p(T)g ~] is plotted versus
1/T, and the slope used to find F., in accordance with Eq.
(8 ). For grain boundaries which are spatially uniform, we
can interpret the decrease in E, at the larger V unambigu-
ously as arising from a decrease in diffusion potential
Vd

——Vdp —V& due to the increase in V~ [see Eq. (8')]. As
we see below this is the case for grain-boundary sample
8-12 but not for 8-10 or 8-6.

One should realize that the considerably smaller value
of E, for sample 8-6 as compared to 8-10 and 8-12 is a
property of the temperature dependence of the current.
This does not imply that the absolute value of the current
density at a given temperature is much larger. The value
of the current density is controlled by the diffusion poten-
tial Vdo, which for sample 8-6 is not significantly lower
than for the other samples. The relation between Vdo and
E, is strongly dependent on the nonuniformity of the
grain boundary.

The increase in E, with V at low voltages for 8-12 in
Fig. 10 arises from the preexponential factor in Eq. (6).
The temperature dependence of the low-field mobility has
been accounted for in arriving at E, . The temperature
dependence of the high-field mobility is smaller than that
of the low-field mobility since we are approaching the re-
gion of velocity saturation. ' Since the electric field g
decreases with V, the activation energy at larger V there-
fore increases.

In the case of grain boundaries 8-6 and 8-10, argu-
ments which follow indicate that these samples exhibit
substantial nonuniformity in their diffusion potentials

over the plane of the grain boundary. This prohibits the
analysis of the results of Fig. 10 for B-6 and B-10 in terms
of the model of Sec. VI, which presupposes spatially uni-
form grain-boundary potentials.

In Fig. 11 we show how E, and Vdo depend upon tem-
perature for the two grain boundaries 8-10 and 8-12. For
a uniform grain boundary, the activation energy E, will
correspond to Vdp for very small N;, (y=0) and to P& in
Fig. 14 for very large N;, (y=1). It must be stressed that,
in order to recover the equilibrium diffusion potential Vdo
from the activation energy E„wemust employ the
analysis of Sec. VI and in particular Eq. (8), since V & VT
in the experimental determination of E, . Knowing the y
to be used in Eq. (11), we obtain dVdp/dT for Eq. (8)
which allows us to determine Vdp from E, . We have
therefore implicitly assumed grain boundaries which are
spatially uniform in their properties. In Fig. 11(b) we
show the results of this procedure for 8-10 and 8-12, to-
gether with the dependence of Vdo upon T expected
theoretically. As we readily observe, 8-12 conforms well
to the uniform model of Sec. VI with a Vdo which de-
creases slightly with T, in accordance with the tempera-
ture dependence of the bulk Fermi potential Pz.

On the other hand, as was discussed in the paragraph
following Eq. (11), a grain boundary with spatially nonun-
iform properties may show a marked increase of E~ and
Vdp with T. This is the case for sample B-10 in Fig. 1 1.
We conclude that while 8-12 represents a uniform grain
boundary which is suitable for the model of Sec. VI, and
which therefore allows an accurate quantitative deter-
mination of Vdp(T) as in Fig. 11(b), sample B-10 does not.
The data of Fig. 11(b) are not expected to be quantitatively
correct for 8-10, and the most we can say is qualitatively
that the apparent Vdo increases substantially with increas-
ing temperature as a consequence of its spatially nonuni-
form grain-boundary potential. Even if Eq. (7) applies
with an "effective" Vdp( T), the unknown form of the tem-
perature dependence excludes a separation of the two
terms on the right-hand side of Eq. (8) for nonuniform
samples. We have separately obtained a first-order model
for 8-10 by assuming a Gaussian distribution of Vdo
values over the grain-boundary plane. ' The errors are
rather large in this fitting procedure, presumably because
a Cxaussian distribution of potentials is unphysical in this
problem.

The origin of the nonuniformity in diffusion potential
for B-10 (also B-6 and others, not shown) is thought to be
a spatial variation over the plane of the grain boundary in
X;„in X„orboth. This nonuniformity must be over
macroscopic distances (greater than the width W&, IV2 of
the space-charge regions) since otherwise their effects
would be integrated electrostatically. The segregation of
dopant impurities to the grain boundary can also affect
the interface-state distribution in a spatially nonuniform
way. We are presently working to quantity this model,
which gives a three-dimensional nature to the transport
problem. We must point out that in the work of Seager
et al. , the impurities were introduced by neutron-
transmutation doping, which is expected to produce a uni-
form X„unlike the present case of cast silicon with
dopant introduced into the melt. ' At any rate, it seems
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fairly certain that both uniform and nonuniform grain
boundaries exist in the Wacker silicon material of this
study.

One possible source of spatial nonuniformity is the sur-
face region of the sample. We are satisfied that this is not
important in our samples on the basis of experiments with
a zerostat, which allows us to deposit either positive or
negative charge on the surface. The deposition of nega-
tive charge causes a noticeable temporary increase in the
current across the grain boundary, undoubtedly because
the potential barrier of this boundary is substantially
lowered near the surface by the negative charge. On the
other hand, the deposition of positive charge on the sur-
face of a virgin sample has no observable effect, which im-
plies that the grain-boundary barrier near the surface of an
undisturbed sample is not substantially lower than in the
bulk. The barrier near the surface may instead be higher,
of course, but the fraction of the total current-carrying
area affected is small enough to be neglected in this case.

It is observed in Figs. 8 and 9, and also in Fig. 12, that
the exposure of the samples to optical illumination sub-
stantially reduces the diffusion potential at the grain boun-
dary. Comparing 8-6 and 8-10 in Fig. 9 shows that the
grain boundary with the larger V~0 (B-10) exhibits a much
greater sensitivity to illumination. These effects were
predicted earlier ' and may be understood by consider-
ing the effects of photogenerated minority carriers (elec-
trons) which are attracted to the grain boundary by the
electric field in the adjacent space-charge regions. Elec-
trons accumulate at the grain boundary until their concen-
tration reaches the magnitude at which their capture by
the interface states exactly balances the supply by photo-
generation within a diffusion length on either side of the
grain boundary. Provided this electron concentration
(which increases approximately linearly with photogenera-
tion rate) is sufficiently large that no„=poz. (o.„,cd are
the capture cross sections of grain-boundary interface
states for electrons and holes) the interface charge Q;, will
decrease. ' More interface states will be occupied by
electrons than under dark conditions, and V~ will decrease
below its dark value V~o. The effect is reduced in B-6 be-
cause the lower V~o implies a larger p, which requires a
larger n (higher optical intensity) to meet the na„=go&
condition.

The results of Fig. 12 further indicate that, for each
order-of-magnitude change in the photogeneration rate,
the value of Vq for V=O decreases by approximately 0.07
eV. Since the majority-carrier concentration at the grain
boundary p-exp( —V&/VT) and VT ——0.026 V at 300 K,
we expect approximately an order-of-magnitude increase
in this concentration. This observation is consistent with
our earlier theoretical work, and confirms that for appre-
ciable photogeneration, na.„=per&at the grain boundary. '

This condition implies a charge in grain-boundary inter-
face states which is modified by the photogeneration in
such a way that the decrease in diffusion potential hV~ is
one half of the quasi-Fermi-level separation AEF
=EF„—E~~ at the grain boundary.

Series-resistance effects from the bulk silicon grains has
been found to be negligible in the data presented in Sec. V,
except at the largest current densities and lowest V~o. For

these currents, the coalescence of the various curves at dif-
ferent temperature and optical-illumination intensities
(Fig. 5 to g) indicate the onset of series-resistance effects.
For the nonuniform grain boundaries, this mechanism
occurs at lower current densities than would be expected
on the basis of a one-dimensional model of the current
transport, particularly at low temperature. This is under-
standable since at the low temperature, the effective area
of active grain-boundary conduction is small and under
these conditions, the series resistance increases and is ex-
plained in terms of a spreading resistance calculation.

Additional support for the notion of characteristic in-
terface defects (a peak in N;, near midgap) comes from a
consideration of the crystal mismatch at the grain boun-
dary. Let us consider this mismatch on the basis of a sixn-

ple model such as that of Fig. 17. This represents a realis-
tic mismatch angle for grain boundaries in cast silicon.
Note that characteristic defects are periodically repeated
along the grain-boundary plane but at distances of many
atomic spacings. In the vertical direction, the repetition
distance will be much shorter, the dimension of a unit cell.
It is clear that not all of these defect sites contribute inter-
face states near midgap (which would correspond to un-
satisfied bonds) since f N&, dE=10' 10' m —over the
energy range corresponding to the midgap peak, whereas
the total density of atoms on the boundary plane is
10 —10 times larger. This assumes that the orientational
mismatch between adjacent grains is preserved over mac-
roscopic distances.

It is interesting to also note that, by virtue of the period-
ic nature of the defect structure, a two-dimensional band
conduction should be possible in the grain-boundary plane.
These bands will be rather narrow for momentum parallel
to the page in Fig. 17 as a result of the repetition length
being several atomic distances, but could be wide for
transport in the perpendicular direction.

With regard to the oscillations reported in Sec. V, we
believe these to be due to electric-field-enhanced emission
from the localized interface states at the grain boundary.

Orientational Mismatch 8 =20

2D Grain-Boundary Model

FIG. 17. Periodic nature of defect structure is suggested by
this two-dimensional (2l3) model. Note repetition of approxi-
mately equal disorder structure with a period of three atomic
spacings along the interface between the two crystals. True
periodicity is indicated by the arrows.
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The beneficial effect of increased temperature supports
this view, as it would pmvide for thermally assisted field
emission. An alternative explanation which we considered
for a time was impact ionization in the localized regions
of high electric field that are expected from the spatial
nonuniformity of the grain-boundary potentials, but this
would be expected to display a negative temperature coef-
ficient. The oscillations appear to reflect the periodic
emptying and filling of the interface states with charge,
which in turn affects the electric-field distribution. As the
states capture holes, the field g 2 on the reverse-biased
side of the boundary is enhanced, and at a particular
value, the emission rate increases rapidly. Having released
their charge, g z decreases, quenching the emission and
refilling of the states begins again.

The relative orientations of the crystals on either side of
the interface of sample (810) of Figs. 5, 8, and 10—12
were measured using x-ray precession photography. The
crystals were found to have a 9 mismatch of the (111)
planes, and the grain-boundary plane bisected this
mismatch angle. These mismatch angles were typical of
electrically active grain boundaries in the silicon material
studied in this paper.

VIII. CONCLUSIONS

On the basis of the experimental studies described in
this paper, and the theoretical arguments concerning the
collection velocity for majority carriers of the grain boun-
dary, the rate-limiting process of majority-carrier supply
by diffusion to the grain boundary should be incorporated
into any transport model. The thermionic emission theory
used by previous authors is expected to provide at best an
order-of-magnitude estimate of the current across the
electrically-biased grain boundary. Grain boundaries with
a variety of diffusion potentials exist in Wacker "Silso"
silicon, and many of these boundaries contain potential
barriers which are spatially nonuniform over macroscopic
portions of the grain-boundary plane. Spatially uniform
grain boundaries also exist in this material, and for these
samples a reasonable agreement with the theoretical one-
dimensional model is obtained. Grain-boundary
interface-state densities measured in this material are in
the range of 10' —10' m eV ' and exhibit an increase
with energy away from E„in the lower half of the energy
gap between 0.3 and 0.5 eV. More direct measurements of
these interface-state distributions, such as depleted-layer
spectroscopy techniques are necessary for accurate deter-
minations, since the results are otherwise transport-model
dependent. An adequate understanding of grain-boundary

phenomena in cast silicon materials, or vapor-deposited
polycrystalline thin films, will challenge research workers
for some time to come.
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APPENDIX A: NUMERICAL ANALYSIS
OF GRAIN BOUNDARIES

The general semiconductor transport problem, neglect-
ing quantum-mechanical effects such as reAection by the
grain-boundary i.nterface, is solved self-consistently with
the following equations.

Poisson's equation relates the charge distribution to the
electrostatic potential. This may be expressed as

V2$
E

(Al)

J„=qp„ng+qD„Vn =Ij,„nVEF„, (A3)

J,=W,S 4 eD, Vs =I—,uVE~, ,

and current continuity equations

an 1=6 —U+ —V J
at

ap =6 —U ——V. J
at q

(A4)

(A5)

(A6)

where 6 is the generation rate and U is the net recombina-
tion rate. For simplicity, we shall restrict ourselves to the
steady state (dnldt =dp/dt=0), and in the bulk of the
semiconductor, we have employed the usual recombination
model, "

1 pn —nI
2

U=
p +n +2n;

(A7)

with r=(o'u, Nh, )
' as the bulk lifetime for minority car-

riers.

1. Program formuiation

A nonuniform, one-dimensional mesh (of 61 nodes) was
constructed to simulate an isolated grain boundary in p-
type silicon. The boundary is situated at x=0, and 20 pm
of bulk semiconductor is allowed on either side. Guided
by the depletion approximation, one expects a space-
charge region on the order of 1 pm for the doping concen-
tration considered in this paper. Hence elements are more
densely packed near the boundary than in the bulk materi-
al. Dirichlet boundaries (i.e., those of a fixed, known po-

where P; is the electrostatic potential, e is the permittivity
of the semiconductor, and p is the charge density given by

p=q(p n+—Ng+ —X, )+Q;, .

In Eq. (A2), Q;, is the net charge in the grain-boundary in-
terface states (assumed in our results to be independent of
n and p, and hence of bias voltage) and N~+, N, are the
ionized donor, acceptor impurity concentrations. We also
have the current-density expressions'
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tential) are enforced at the regions' edges and the grain
boundary is modeled as an interior Neumann interface.
The current density is evaluated from

n (e1V Q E—2VQ); =k(i), (A13)

boundary conditions, together with the interface condi-
tion,

J = J„+J~= —q(p„nVP„+pzpVQ~), (A8)

with the use of the quasi Fer-mi pote-ntials P„= Ez„—/q
and P~ = Ez~—/q. The gradients of P„and P~ are deter-
mined by numerical differentiation.

the functional may be explicitly written as

I'= f e(VQ) —2$pdQ

—2 f Phds —f Pkds . (A14)

2. Finite-element modeling techniques

In order to efficiently simulate the transport processes
associated with semiconductor materials, one requires a
model which is both physically accurate and numerically
stable. Previous researchers have successfully applied
variations of the finite-difference ' and finite-element '

methods to a number of semiconductor problems. Unfor-
tunately, many of the earlier techniques suffer from lack
of generality (e.g., restricted forms of carrier transport)
and limited accuracy of solutions.

The method presented here uses quadratic, iso-
parametric elements together with a fully implicit
Newton-Raphson algorithm to achieve accurate Fermi po-
tentials with acceptable computational effort. Although
the grain-boundary examples cited within this paper are
analyzed in one spatial dimension, the method is equally
suited for two- and three-dimensional analysis.

The electronic transport processes describing the
behavior of a semiconductor device may be reduced to a
set of three simultaneous, nonlinear, Poisson-type equa-
tions. A variational scheme is applied along with finite-
element discretization to generate a quasilinear system of
equations which is then transformed into a suitable residu-
al vector. The final solution to the transport equations is
obtained by zeroing that residual vector via Newton's al-
gorithm. The foHowing discussion describes the finite-
element method in a very superficial manner. Interested
readers are referred to Refs. 32—34 for related rnathemati-
cal proofs and a more detailed explanation of the tech-
nique.

Providing e is strictly positive, the operator I. will be
positive-definite. Choosing a suitable basis set a and writ-
ing

a=a (A15)

p=p a=c' p

CX=g E, (A17)

leads to the matrix equation

(S'e)(h =Bp, (A18)

or

(A19)

where

S*=f [(Va).(VaT)La dA,

B = f aaTdQ,

(A20)

(A21)

4. The Newton-Raphson algorithm

and superscript T refers to the transpose of the column
vectors. If the basis set is selected to cover only small re-
gions of space in a piecewise-continuous fashion (i.e., a
finite element) then the local matrices S and 8 may be ac-
cumulated on an element-by-element basis to form a large,
sparse global system matrix. The actual shape functions
to be integrated are generated via an isoparametric
transformation in order to cover deformed regions of
space. '

Co@sider

3. The finite-element method We now shall relax the restriction requiring the source
and medium to be independent of the potential. To solve

LP= —V (@VS)=p, (A9) R =Sf b=0, —

where, for the moment, the medium e and source p are as-
sumed to be functions of position but independent of the
potential P. It can be shown that under suitable boundary
conditions, the energy functional,

the iterative sequence

Jn(gy)n+ 1 gn

where

(QP)~ 41 yn yn+1

(A23)

(A24)

is minimized by the solution of (A9). The triangular
brackets denote a suitably defined inner product. Under
influence of the Dirichlet,

will converge quadratically for a suitable starting estimate
of the potential vector. The Jacobian matrix is given as

az," a~"
'

ap"

P ~, =g(s),
and Neumann,

n (eVQ) ~, =h (s),

(A 1 1)

(A25)

and is reevaluated at each step in the iterative sequence.
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Note that as e and p are explicitly known functions of po-
tential, the Jacobian is easily calculated. One should also
observe that although 5 is sparse and symmetrical, J is
sparse (and of the same topology as S) but asymmetrical.
Furthermore, the structure of J does not change as the
iterations proceed and, provided J is nonsingular, the final
solution is independent of the Jacobian.

When three equations are involved, the potentials may
be combined into a single, complex vector with the result-
ing matrix equation

d Vdo dip
dT dT

(81)

dQ;,
dT

drab
q1V;, dT

d(Qi+Q2)
dT

d (Q t+ Q2) d Vd0

d Vdp dT

(82)

(83)

We now derive y in terms of the interface-state density %;,
at the grain boundary. With the use of Eq. (16),

'

aR,-

ay,

BR„
ay,

BRp

QR; BR;

ay,
aR„ aR„
ay„ay,
()Rp BRp

ay„ay,

R;

Rn ' (A26)

d Vdp

dT

dVdo d(Qt+Qz) dVdo

dT dT d Vdp dT

1 dip
d(Qi+Q2) 1 dT

1+
d Vdp qX;,

(84)

(85)

for V& = Vp =0 and Vdp &) Vz-. Also, from the fact that
4b = Vdo+0p

As before, the local matrix expressions are accumulated
(element by element) into a sparse system matrix.

During each iteration of (A26) a large sparse system of
linear equations must be solved. The method chosen for
this task relies on obtaining a bifactored form of the in-
verse. The program package ASYMPAK (Ref. 38) incorp-
orates such an algorithm while allowing the user to ignore
details of the matrix structure. With this procedure, con-
vergence is usually achieved in three to four iterations for
each step of the current-voltage curve being generated.

APPENDIX B: DERIVATION OF y AND
ESTIMATION OF ITS MAGNITUDE FOR PRESENT

GRAIN-BOUNDARY SAMPLES

The relationship between dVdoldT and dgpldT for a
uniform grain boundary is expressed by Eq. (11) as fol-
lows:

Comparing Eqs. (85) and (11) we have that

1

d(Qi+Q2)1+
d V«qX, ,

(86)

In order to evaluate y for our samples, we employ Eqs.
(10) and (11) for Q~ and Q2 from which we obtain

d(Qi+Q2) = —[2qe&, (V„o—Vr)f '~ 2qeN,
d Vdp

2qeiV,
1/2

Vdp —Vr

For example, in our sample B-10, X =3)&10 ' m
@=1 1.geo, Vdo=0. 32 V, and X;,=(6—8)X10' m eV
at the equilibrium Fermi-level position (=E„+0.5 eV)
from which we obtain y=0.6.
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