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Radiative decay of the bound exciton in direct-gap semiconductors: The correlation effect
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We present a theory of the radiative decay of excitons bound to neutral donors and acceptors in

direct-gap semiconductors within the spherical-effective-mass approximation. The calculation is
carried out using a three-particle wave function which incorporates Pauli exchange and important
interparticle correlation effects over the entire range of electron- to hole-mass ratios. Thus donor-
and acceptor-bound excitons are treated within the same framework. Radiative lifetimes are stud-
ied and are found to be particularly sensitive to the interparticle distance between electron and hole
for all mass ratios of physical interest. Calculations are carried out for the radiative decay rates of
bound excitons in a number of materials and comparison is made with the measured radiative life-
times of both donor- and acceptor-bound excitons in CxaAs, InP, and CdS.

I. INTRODUCTION

Excitons in the solid are of importance in determining
the optical properties of semiconductors. Studies of the
free exciton (FE) can be found in the literature, and the
theory of exciton absorption has been worked out by El-
liott. ' The formation of excitons usually appears as nar-
row peaks in the absorption edge of direct-gap materials.
The free exciton can become bound to neutral shallow im-
purities to form the bound exciton (BE). The impurity
acts as a site where electron-hole recombination can occur
at an enhanced rate. In direct-gap materials the principal
mechanism of recombination is radiative recombination in
which an electron-hole pair recombine accompanied by
emission of a photon. Auger recombination in which the
energy of recombination promotes the third carrier into
the band continuum is usually negligible in direct-gap
semiconductors. The existence of the BE was first pro-
posed by Lampert, and absorption lines due to radiative
recombination of electron-hole pairs in the BE were subse-
quently identified by Haynes. .

The intensity of these absorption lines is related to the
radiative lifetime of the electron-hole pairs, and these life-
times for acceptor- and donor-bound excitons have been
studied in the spherical effective-mass approximation. In
this model the nature of the BE is determined by the ratio
between the effective mass of the impurity carrier and the
effective mass of the carrier of opposite charge. This di-
mensionless mass ratio is denoted o.. In the limiting case
where o. is small compared to unity, the impurity and the
exciton combine to form a system which is the analog of
an H2 molecule. Where o. is large compared to unity one
obtains the analog of the H ion. Since the electron effec-
tive mass is generally smaller than the hole effective mass
in semiconductors, the acceptor and donor BE's are
characterized by small and large values of cr, respectively.

Rashba and Gurgenishvili developed a simple theory of
the BE radiative lifetime which explained the enhance-
ment of the BE oscillator strength over the free-exciton

fBF.

fFE
1 2

J P, (r)d r
Uvol

where P, (r) was determined from an effective-mass equa-
tion in which the interaction between the exciton and neu-
tral impurity is taken to be a delta-function potential
whose strength is adjusted to give the correct binding en-

ergy of the BE. This delta-function potential is qualita-
tively appropriate to the case of acceptor-bound excitons
(A X), but is not adequate for the treatment of donor-
bound excitons (D X), where the center-of-mass motion of
the exciton is described qualitatively by the Morse poten-
tial. They found that for typical BE's fBE would be on
the order of 10 times larger than f,„,i.e., fnE —10 . This
simple model was rederived by Henry and Nassau and has
been used in the analysis of experimental data by a num-
ber of authors for both donor- and acceptor-bound ex-
citons, despite the qualitative shortcomings in the donor-
bound exciton case.

In the case of acceptor-bound excitons (A X), a theory
of the adiative lifetime was worked out by Osbourn and
Smith. They presented calculations for GaAs and the
HgCdTe alloy system and considered the dependence of
the transition rates on the energy gap and on the acceptor
binding energy. For HgCdTe, whose band gap varies as a
function of composition, they found that radiative recom-
bination dominates Auger recombination except in small-
band-gap samples.

These recombination lifetime calculations suffer from a
number of shortcomings. In the theory of Rashba and
Gurgenesvili, for example, the oscillator strength is due
entirely to recombination between the electron-hole pair in
the exciton while contributions due to recombination of

value. In their model they showed that the ratio of oscil-
lator strengths of the BE to free-exciton values was pro-
portional to the ratio of the volume of the center-of-mass
wave function P„(R) to the volume of the primitive cell,
1.e.,
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the electron with the acceptor hole are ignored. Further-
more, as mentioned above, the center-of-mass wave func-
tion P, (r) is only qualitatively correct for the case of
acceptor-bound excitons. The theory of Osbourn and
Smith ignores correlations between the particles entirely
by using single-particle product wave functions. They ar-
gue that correlation will have little effect on the calculated
oscillator strengths. In the acceptor BE regime, this
seems reasonable since the distance between the core parti-
cles and the outer electron in acceptor BE's is approxi-
mately the distance of the outer electron from the accep-
tor. Our results confirm this is the case for o. & 100 but
not for o. (10, which is typical for acceptor-bound exci-
tons in real semiconductors.

Ungier et al. ' have reported calculations on radiative
recombination rates for bound excitons. They used a vari-
ational wave function which is capable of stabilizing the
bound-exciton system for all mass ratios. However, their
wave function gave an oscillator strength which is an or-
der of magnitude too large in the H2-molecule limit.
Furthermore, their oscillator strength is a monotonic de-
creasing function of the mass ratio, which is in qualitative
disagreement with the results obtained using an adiabatic
approximation as will be demonstrated later. This is be-
cause the form of their variational function does not
describe the vibrational behavior of a H2 molecule ade-
quately.

To improve upon these theories it is necessary to take
correlation effects into account by using wave functions
which depend on interparticle separations and in which
Pauli exchange is included. Furthermore, the form of the
wave function should be appropriate for both the H2 mol-
ecule and the H ion (the two limiting cases of the
bound-exciton system). This is necessary if one wishes to
develop a theory for radiative recombination rates which
is valid over a wide range of o values and in particular for
the intermediate case o.—1.

In this paper we present such a calculation of radiative
lifetimes for bound-exciton systems in the spherical-
effective-mass approximation for direct-gap materials.
The wave function we use is appropriate for the entire
range of o. values, and it is shown that the resulting transi-
tion rates are sensitive to correlation effects. Qur results
are compared with experimental measurements of radia-
tive rates.

II. THEORY

The bound-exciton state is expanded in terms of linear
combinations of the products of the single-particle Bloch
states associated with the unperturbed solid. In the
effective-mass approximation it can be written as

&l ~Z»3

&&
I vi &

I v~& I v3 &

where C(J,M;p&, pz, p3) are spin angular-momentum ad-
dition coefficients and

~ p & denotes the periodic part of a
Bloch state at the band extremum with spin component p.
For the conduction band p= ——,', —,

' and for the valence

where H;(r;) is the single-particle effective-mass Hamil-
tonian for particle i and U(i,j) is the mutual Coulomb in-
teraction between particle i and j. In a spherical model in
which the angular dependence of the effective-mass tensor
is neglected and in which the fourfold degenerate valence
band is approximated by a single band, the three-body
effective-mass Hamiltonian is given in effective atomic
units (in which energy is measured by e m'/2eoA', where
eo is the dielectric constant, m is the effective mass of
particle 1, and distance is measured by eofi /m'e ) by

2 2 2 2H = —V) —V'2 —OV3-
r~

2 2 2+ +
r2 r3 r&2

r 13 r23
(2)

where subscripts 1 and 2 refer to the electrons (holes) in
donor (acceptor) systems, and 3 refers to the hole (elec-
tron). The mass ratio cr is the ratio between the effective
masses of particles 1 and 3. We refer to particles 1 and 2
as the core particles and to 3 as the outer particle.

Three interesting special cases are contained in the
Hamiltonian which are worth mentioning briefly. In the
limit of large o. the mass of the outer particle becomes
vanishingly small so that the kinetic energy term dom-
inates over the other terms involving the outer particle.
Thus in the ground state the outer-particle wave function
becomes spread out over an infinite volume and essentially
disappears from the system leaving behind an analog of
the H ion. In this case it is quite easy to obtain an esti-
mate of the outer-particle wave function by the approxi-
mation r&3

——r23 ——r3. Then the wave function is separable
and is given by the eigenstate of H3 —= —o73—2/r3. This2

corresponds to a hydrogen atom with a ground-state Bohr
radius a =o..

In the opposite extreme of vanishing o., the outer parti-
cle becomes very heavy and the kinetic energy term be-
comes small. We are thus left with the analog of the H2
molecule. The special case o.=1 corresponds to positroni-
um hydride (PsH) whose wave function has been studied
by a number of authors. "

To study the relative importance of correlation in the
radiative decay of bound-exciton systems, we performed
three calculations with different degrees of sophistication.
In the first calculation the correlation effects are com-
pletely neglected. In the second calculation the dominat-
ing effects of electron-electron correlation are included,
and in the final calculation dominating effects of both
electron-electron and electron-hole correlation are includ-
ed.

To obtain an envelope wave function without correla-
tion effects, we chose a variational wave function of the
following simple-product form:

band p= ——,, ——,, —,, —, in the limit of strong spin-orbit
interaction. F( r &, r z, r 3) is the envelope function, which is
the eigenstate of the effective-mass Hamiltonian

M =H&(r&) +H(rz) +&3(13)+U(1, 2) —v(1,3)—U(2, 3),
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in which the particles are in 1s Slater orbitals. The coeffi-
cients a and y are obtained by the Ritz variational
method of minimizing the expectation value of the Hamil-
tonian. X is the normalization constant. This is essential-
ly the wave function used by Osbourn and Smith in their
calculation of radiative transition rates.

One expects this wave function to be adequate to
describe recombination in the large-o. limit where the
outer-particle wave function is approximately a Slater or-
bital. The next level of sophistication, which is more ade-
quate in the large-o. limit, consists of improving the wave
function to get a better description of the H -ion core.
This is accomplished by allowing the identical particles 1

and 2 to occupy independent 1s orbitals in a ground-state
singlet orbital. Thus an improved variational wave func-
tion of the following form was considered

Again, N is the normalization constant. This wave func-
tion takes the radial correlation of particles 1 and 2 into
account. In what follows we will refer to I'] and F2 as the
restricted and unrestricted variational wave functions,
respectively.

In the third calculation electron-hole correlation effects
are taken into account by including the electron-hole rela-
tive coordinate in the wave function in an explicit way.
The wave function is written as

F3( 1 2 3) + [AD( r1)kc(R23)'t'»( 23)+( ~»]
where pD and p» are Slater ls orbitals describing the
donor and exciton, respectively, % is the normalization
constant, and Pc is a wave function describing the center-
of-mass motion of the exciton. R23 ——[o /( 1+cr ) ] r 2

+[I/(1+cr)]r3 is the center-of-mass coordinate for the
exciton, and r23 ——r2 —r3 is the relative coordinate of the
electron and hole in the exciton. The symbol (1~2) in Eq.
(5) represents the exchange term, in which the roles of
particles 1 and 2 are interchanged.

The effective potential for the center-of-mass motion
1I)c can be represented by the soluble potential'

B
Vc(R) =

R '

where A and B are constants that depend on o.. Thus we
are motivated to use the exact solution of this potential
for the center-of-mass motion. %'e have

1/2

~ (rp/2 —1) bpR (7)—

mass coordinates can be approximated by r23 ——r3 and

R23 ——r2. In this limit the wave function F3(r1, r2, r3) is
identical in form with F2( r1, r2, r3). In the above opposite
limit in which o. approaches zero, our wave function
F3(r„r2, r3) describes the H2 molecule in the Heitler-
London approximation.

By expanding the pD and 1t, » Slater orbitals as a sum of
4 or 5 optimized Gaussian orbitals with exponents given
by Huzenaga' and by expanding 1t. c as a sum of four op-
timized Gaussian orbitals, it is possible to compute all the
required matrix elements in closed form. These matrix
elements are listed in Appendix A. 'In this calculation the
donor and exciton wave-function exponents are fixed at
their noninteracting values of 1 and 1/(I+o), respective-

17

The wave functions we have chosen to study correlation
effects have the advantage that they are easy to visualize
and interpret in terms of the correlation effects which
have been included. Furthermore, all of the matrix ele-
ments for these wave functions can be calculated in closed
form. This greatly facilitates the computational task and
makes the inclusion of band-structure effects in a future
calculation tractable.

The radiative recombination rate of a bound exciton is
given by'

where

R

2e co n

3c m

f = 2 1(I IP IF&
fKOm gBE I F

(Sb)

I
I ) denotes the initial bound-exciton state given by (1),

and
I
F) denotes the final impurity ground state given by

IF&=4(r )
I VF)

where P( r ) is the envelope function for the neutral impur-
ity, and

I pF ) is the periodic part of the associated Bloch
state at the band extremum with spin component pF.
Here g&E is the spin degeneracy of the bound exciton, n is
the index of refraction, m is the mass of a free electron,
and a denotes the three possible components of the
momentum operator.

Let us first consider zinc-blende materials. For D X,
g&E ——4; for 3 X, g&E ——12. For acceptor-bound excitons
we have

(rIP IF)I =121(s IP„Ix&I'1(rIF)
a, I,F

The parameters ~0 and bo are related to 2 and B by

ro —1+V'1+ 4A

bo ——B/~o .

These parameters are determined variationally by minim-
izing the expectation value (F3

I
H

I
F3 ) of the total ener-

gy of the bound exciton. In the limit of large o., the pa-
rameter ~o approaches 2 and the relative and center-of-

and for donor-bound excitons,

'=41(s
I P„

I
x)

I
'1(r

I
F )

a, I,F

Here 1(S
I
P„

I
x)

I
is the optical-matrix element be-

tween Bloch states at the conduction-band minimum and
valence-band maximum, and the overlap integral (I

I
F)

is defined by
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(I
l
F) =—fF(r], r~, rp)y(r] )d r, d r2, (12) 0.2

where F(r&, rz, r2) is the envelope function of the bound
exciton with r3 set equa1 to r2. Details of this derivation
are given in Appendix B.

Thus we can see that the radiative decay rates for both
donor- and acceptor-bound excitons in zinc-blende materi-
als are given by

2e con
3c tll

(13)
+R %co

where P =(2/m)
l (5 lP„ lX) l

. A similar derivation
shows that (13) holds for wurtzite materials as well (see
Appendix B). It is a straightforward matter to calculate
this overlap integral for the normalized envelope functions
and the results are presented in the next section. In par-
ticular the overlap for our wave function F3 is given by

O. l

0—

CC

m -O. l

LLJ

c —0.2
QJ

C:
"C3 -05
Q3

—0.4

(F3
l
F)=Ngx(0) f (hc(R )d'r+. . . (14)

-0.5

where N is the normalization constant for F3 $~(0) is the
exciton wave function evaluated at the origin, pc(Q) js the
center-of-mass wave function, and the ellipsis includes an
exchange term. The exchange term is typically less than
10% of the leading term in Eq. (14) for all mass ratios.

While the wave function F3 is qualitatively correct for
all mass ratios, it systematically overestimates the radia-
tive rate. This problem arises because the potential for the
center-of-mass motion in the Heitler-I. ondon approxima-
tion is too shallow, giving rise to a center-of-mass wave
function, which is too diffuse. This causes us to overesti-
mate the center-of-mass volume integral in (14). In order
to estimate the effects of the remaining correlations, we
define a corrected wave function F4 obtained from F3 by
scaling the parameter bo by a constant factor. This results
in a more localized center-of-mass wave function. By
choosing a single scaling factor it is possible to obtain the
correct transition rates in the limiting cases o.—+0 and
o.~~, as will be discussed in the next section.

III. RESULTS AND DISCUSSIONS

A. Energy spectra

The stability of the BE system within the spherical
effective-mass approximation has been studied by a nurn-
ber of authors with the use of various approaches. '

The most successful of these calculations performed to
date was undertaken by Stebe and Munschy. They used
a variational wave function which included correlations
between all the particles in the BE system and found that
the BE system is bound for all values of o.. Furthermore,
they succeeded in improving the variational binding ener-
gies obtained by other workers over the entire range of o.
values.

Figure 1 shows the binding energy (E~) in effective
Rydbergs (Ry") of the BE system as a function of the
mass ratio o. for the three calculations we have performed
as well as the results obtained by Stebe and Munschy.
Our results for the third wave function confirm the bind-
ing of the BE system for all values of o. Our binding en-

ergies are lower than those of Stebe and Munschy which
can be primarily attributed to the failure of our basis set
to include the correlation effects completely. It is noted
from this figure that for o ) 10, the unrestricted variation-
al calculation gives slightly larger binding energy than
does the third calculation.

B. Wave functions

The variational wave functions F) and F2 were found
with the use of the Ritz variational principle. The varia-
tional parameters obtained by minimizing the variational
energy E„ for different values of the electron- to hole-
mass ratio o. are shown in Table I along with the comput-
ed binding energy (Ez).

As a function of o., the inverse Bohr radius of the outer
particle y is seen to increase as expected, and in the limit
of large o, y approaches the hydrogenic limit y =1/o. .
In the large-o. limit the unrestricted variational wave func-
tion E2 gives a reasonable approximation to the bound ex-
citon, and stable binding is achieved. Both the variational
wave functions E~ and E2 are poor approximations in the
small-cr regime.

We now consider the third wave function F3. The op-
timized values for ~p and bo as functions of the mass ratio
cr are found to be well described by polynomial expansions
in the quantity X =( I/o )'~,

and

~o——2.4X —1.4X +2

—06 I I I I I I I I I j I

0.0l O. l l lO l00
Mass Ratio (cr)

FIG. 1. Binding energies (E~ ) of the bound exciton plotted as
functions of the mass ratio (o.). Curves labeled 1, 2, and 3 are
obtained using the trial wave functions F~, F2, and F3, respec-
tively. The results obtained by Stebe and Munschy (Ref. 20)
(dashed curve) are included for comparison.
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0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.50
2.00
3.00
4.00
5.00
6.00
7.00

10.0
20.0
30.0
50.0

100.0

0.847
0.843
0.836
0.829
0.823
0.813
0.804
0.796
0.789
0.783
0.777
0.772
0.767
0.749
0.737
0.721
0.709
0.705
0.701
0.698
0.693
0.689
0.688
0.688
0.688

0.526
0.513
0.494
0.477
0.462
0.435
0.412
0.392
0.375
0.359
0.345
0.333
0.321
0.275
0.242
0.197
0.162
0.14S
0.128
0.115
0.087
0.048
0.033
0.012
0.010

—0.539
—0.519
—0.488
—0.461
—0.435
—0.391
—0.354
—0.323
—0.296
—0.273
—0.252
—0.235
—0.219
—0.163
—0.130
—0.094
—0.077
—0.068
—0.063
—0.060
—0.056
—0.054
—0.054
—0.054
—0.054

1.131
1.128
1.123
1.118
1.114
1.107
1.101
1.096
1.092
1.088
1.085
1.082
1.080
1.070
1.064
1.056
1.052
1.049
1.047
1.046
1.043
1.040
1.040
1.039
1.039

0.561
0.555
0.546
0.538
0.530
0.517
0.505
0.494
0.485
0.476
0.469
0.461
0.455
0.428
0.408
0.379
0.360
0.346
0.335
0.327
0.311
0.292
0.287
0.284
0.283

0.506
0.493
0.474
0.458
0.442
0.416
0.393
0.373
0.356
0.340
0.326
0.314
0.302
0.257
0.225
0.182
0.153
0.133
0.117
0.105
0.081
0.046
0.032
0.020
0.010

—0.515
—0.494
—0.462
—0.434
—0.408
—0.362
—0.323
—0.290
—0.262
—0.237
—0.216
—0.197
—0.180
—0.119
—0.081
—0.038
—0.016
—.0031

.0051
0.011
0.019
0.026
0.027
0.027
0.'027

50 ——0.59X —0.32X+0.28 .
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the resulting wave function F4 gave correct decay rates in
both the H2-molecule limit (o —+0) and the H -ion limit
(cr~ ao ). For small mass ratios (o. & 0. 1), accurate
description for the center-of-mass motion wave function
Pc(R) can be obtained by adopting the adiabatic approxi-
mation. The effective potential for the center-of-mass
motion in this approximation is given by the Morse poten-
tial, which can be approximated by the expression (6) with
2=1.4 and A=2.0 for R near the minimum point Ro.
Thus ro ——2.4v'I/o and b o=0.83M1/o for o &0.1. For
large mass ratios (o & 100) the bound-exciton wave func-
tion can be described by the product of a single-hole wave
function (e "

) and a H core wave function. The H
core wave function can be approximately represented by
Chandrasekhar's variational form

(r»r2)=(e ' 'e ' '+e ' 'e ' ')(1+cr&2)

with o;~ ——1.075, a2 ——0.478, and c=0.312. With this ap-
proximation, the bound-exciton radiative decay rates can
be calculated analytically.

The suitability of the BE wave function for transition-
rate calculations near o-=1 was tested by calculating the
two-photon annihilation rate for PsH. In atomic units,
the annihilation rate is shown by Navin et al. " to be
given by the integral

P =100.94(I
i
5(r, )

I
I),

in units of ns '. Using our wave functions I'3 and I'"&, we
obtain annihilation rates of 1.84 and 2.35 ns, which are
in good agreement with the 2.22 ns ' obtained by Navin
et al. " This again represents a substantial improvement
over 0.372 and 0.378 ns ', respectively, obtained by using
our restricted and unrestricted variational wave functions
I'~ and I"z.

IO

IO

-I
IO

-2
~ IO
O

)
C)

IO

IO

IO5

-6
IO

O.OI O. I I IO
Moss Rotio (o-)

I OO IOOO

FIG. 3. Overlap integrals
I (I

I
F) I

for the radiative decay
of the bound exciton plotted as functions of the mass ratio (u).
Curves 1—4 are obtained using the trial wave functions F&, F2,
and F3 and the corrected wave function F4, respectively. The
dashed curve denotes the results obtained by adopting an adia-

batic approximation for mass ratios (o.) less than 0.1. The dot-

ted curve denotes the results obtained by using the H wave

function of Chandrasekhar (Ref. 22).

C. Transition rates

The
I
(I ~F) I

overlap between the initial and final
states which is proportional to the oscillator strength and
radiative decay rate is plotted in Fig. 3 as a function of o.
for the wave functions considered. The results obtained
by the adiabatic approximation for o. ~0. 1 and by using
Chandrasekhar's wave function for o.~ 100 are also in-
cluded for comparison. It is seen that our results using I'4
agree well with the two limiting-case calculations. As ex-
pected, correlation between the core particles and the
outer particle causes an enhancement in the radiative tran-
sition rate. The calculated radiative decay rate is seen to
be very sensitive to correlation effects, most notably in the
intermediate limit o.-1, where the use of the final wave
function gives rise to an oscillator strength about a factor
of 20 larger than that obtained by use of an uncorrelated
wave function.

The general shape of the curve as a function of o. can be
understood qualitatively from (12). In the limit of large
o, Pc(R) becomes a constant function describing the
motion of one of the core particles in the analog of the
H ion, and hence the behavior of

I (F4
~

F ) I
as a func-

tion of o is dominated by the behavior of $~(0). Thus for
large o.

In the case of small o, Px(0) is approximately constant
and the behavior of

I (F4
~

F) I
is then determined by

the volume integral of the center-of-mass wave function.
Hence

as a function of rr, this integral increases as the center-of-
mass wave function becomes broader. Hence the peak in
the curve is due to a competition between the increase in
the volume of the center-of-mass motion and the spread-
ing of the exciton wave function with increasing mass ra-
tio.

We can use curve 4 of Fig. 3 and (13) to calculate radia-
tive lifetimes for donor- and acceptor-bound excitons in
various direct-gap materials. Results of these calculations
are tabulated in Table II along with experimentally mea-
sured values for GaAs, InP, and CdS. The results seem to
be in reasonable agreement with experiment for the case of
acceptor-bound exciton data to within a factor of —3.
For the case of donor-bound excitons, our theoretical re-



28 RADIATIVE DECAY OF THE BOUND EXCITON IN DIRECT-. . . 5893

suits are in disagreement with the experimental data by an
order of magnitude.

The disagreement between theory and experiment may
be explained as follows. The experimentally measured
lifetime of the bound exciton is usually a combination of
the time of formation and the actual radiative lifetime of
the bound exciton. The formation time for the acceptor-
bound excitons in CdS has been measured by Henry and
Nassau to be between 0.65 and 1.3 ns. This formation
time could account for the difference between the mea-
sured and calculated lifetimes. If we assume the forma-
tion time for the D X is of the same order of magnitude,
then the measured lifetime in the case of D X reflects the
formation time and not the much shorter radiative life-
time.

IV. SUMMARY AND CONCLUSIONS

We have developed a theory of the radiative lifetime of
excitons bound to neutral donors and acceptors in direct-
gap semiconductors within the spherical effective-mass
approximation which incorporates Pauli exchange and im-
portant interparticle correlation effects. The wave func-
tions incorporate correlation effects in their functional
form, are easy to visualize in terms of the correlation ef-
fects which have been included, and allow calculation of
the matrix elements in closed form. The final wave func-
tion gives a stable bound exciton for all values of the mass
ratio o. and is sufficient for the calculation of radiative de-
cay rates within the limitations of effective-mass theory.
The dependence of the radiative rate on mass ratio cr is
studied and is found to be sensitive to correlation effects.
A principle feature of the dependence of the radiative rate
on the mass ratio is an enhancement at intermediate
values of o., which is seen to be the result of correlation

between electron and hole coordinates. This effect can ac-
count for an enhancement in the calculated radiative rate
by a factor of 10 to 20 above the radiative rates calculated
with wave functions in which correlation effects are ig-
nored. The theoretical method used here can be extended
to indirect semiconductors, where the band-structure ef-
fect is also important. This application will be reported in
a future publication.
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APPENDIX A: CALCULATION
OF MATRIX ELEMENTS

The envelope wave function F3 is written as

I
+3 & QC. I f. &

TABLE II. Radiative lifetimes of bound excitons. The available experimental data are included in parentheses.

Subst. Eg (eV) I (eV) me mp ~d (ns) v., (ns)

GaN
GaAs

GaSb
InP

InAs
InSb
ZnO
Cds

CdTe
PbS

3.62'
1.52'

0.81'
1.42'

0.42'
0.237'
34a
2.56'

1.6'
0.29'

20b

25.7'

22.4'
20.4'

22.2'
23.1'
20b

20

20.7'
20b

0.2'
0.067'

0.045'
0.08'

0.023'
0.014'
0.32'
0.20'

0.096'
0.1'

0.8'
0.5'

0.39'
0.40'

0.33'
0.18'
0.27'
0.99~

0.35'
0.1'

2.4'
3.4'

3 9'
3.37'

3.42'
3 75'
2.02'
2.5'

2.75'
3.7'

0.25
0.13

0.12
0.2

0.069
0.078
1.19
0.20

0.27
1.0

18.78
16.66

15.93
18.27

13.15
13.69
10.73
18.3

18.79
11.89

1.87
0.54

0.39
1.23

0.13
0.18

13.49
1.27

2.30
11.89

0.021
0.031
(1.07)
0.062
0.038
(0.5)'
0.17
0.25
0.047
0.030
(0.5)b

0.041
0.27

0.21
0.96
(1.6)'
2.5
0.58
(1.5)'
17.1
18.9
0.038
0.42
(1.03)h

0.33
0.27

'P. Lawaetz (Ref. 23).
Rough estimation.

'J. I. Pankove (Ref. 24).
Hwang and Dawson (Ref. 6).

'Hwang (Ref. 7).
~U. Heim (Ref. 8).
~J. J. Hopfield (Ref. 25).
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defined by Huzenaga. ' Thus
I f„) is given by the expan-

sion

If.&=+DR
l, m

where

)
I
e I D"1 e n 23e m xP23 )+(1 2)

2a1=PlaD

2 2
a2 anl41+Pmax r

2 2a 3 ——anP2+Pm aX,

2a4=a plp2 P—ax

(A7a)

(A7b)

(A7c)

(A7d)

The Dl and X are expansion coefficients for the donor
and exciton wave functions, respectively.

Using the transformation from particle coordinates to
center-of-mass and relative coordinates, i.e.,

P23 2 3

and

R23 ((rr2+ r3)/( 1 + (r)

we see that
I g„l ) can be expressed as

where we introduce transformed quantities as follows:

where M(n, n', l, l', m, m') are matrix elements relative to
the basis (A6), i.e.,

M«n'l l'm m')=(gnlm IM Igni'm'~ (A9)

The matrix elements (A9) are obtainable in closed form
and can be worked out in a straightforward manner. The
results are listed below.

The general matrix elements in the basis of (AS) are ex-
pressed in the following standard form:

M„„=(f„
I
M

I f„ l= y D1D1X X M(n, n', l, l', m, m'),
l, l'

m, m'

(A8)

Overlap:

I
g'1'm'~ B1B23+B3B234 .

Nuclear interaction for core particles:

1 2 1/2 723
gnl gn l m = B1B23 (~1) +

P1 S3

1/2

(A10)

2+ ~ B3B234
/234

S3(a 1 +a2) —a4

1/2
f234+

S3(a1+a2 ) —a4

' 1/2

(Al 1)

Nuclear interaction for outer particle:

1 4 y23
gnlm gn'l'm' r +1+23

I"3 V ~ S2

Mutual interaction between core particles:

f234+
(a1+a2)(a2+a1)

' 1/2

(A12)

(
1 4

gnlm gn l m~''1 23

' 1/2
7234+ ~ B3B234

1 3+723

' 1/2

(A13)

Mutual interaction between core and outer particle:

gnlm
1 2

gn'I'm' ~ +1@23
~13

y23

S2+S3+2S4

1/2
S1X23+ 2~2(~1+~3)—~4

1/2

2+ ~ B3B234

1/2
7234(a1+a2 )

234+ (a 1 +a2)(a1 +a 2 +a 4 )

)'234(a1+a»+
1 234+(a1+a2 )(a1 +a2+a4)

(A14)
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Kinetic energy of core particles:
r

rzszs3+ I +zs4 —S4(a za4+a 4az)r, +

+6B3 234

Kinetic energy for outer particle:

y23

a iaz[S3(az+ai ) —a4 ]—a ia4(ai+az )

y234

aiaz[S3(a 1+az) —a4] —aia4 (az+ai )
+

y234
(A15)

(gnlm I
~3

I g In' m& 12+1+23

r

Sza3a 3 +S3a4a 4
—S4(a 3a4+a 4a3)

S2S3 —S42

[ 3( 1+a2) a4][ 3( 1+ 2) —4']
+ 12B3B234

S3(a1+az)(az+ai) —a4(az+ai) —a4 (ai+az)
(A16)

y23 ——S2S3 —S4,2

y234
—— 3( '1 +az)(az+ai) —a4 (a1+az)

—a4(a,'+a, )

3/2

(A18)

(A19)

B;=
S;

2 3/2

i =1,3 (A20)

In Eqs. (A10)—(A16), we define the following quanti-
ties:

S;=a;+a, i =1, . . . , 4 (A17)

where 1ricu is the energy of the emitted photon, m is the
electron mass, gBE is the degeneracy of the initial bound-
exciton state, and Pa is the momentum operator with
component a. The summation sign in (81) represents a
sum over final states F, initial states I, and component a.

For donor-bound excitons the two electrons in the con-
duction band are coupled to form a spin singlet state of

3
total spin zero. Thus the total angular momentum J= —,,

and the spin-Bloch part of the initial state defined in (1) is
given by

l
J,M & = g C(0,0;o1,oz)5M&

l
S,o 1 &

l
S,oz&

l p &,

B23 —— (A21)

B234 =

y23
' 3/2

m. S3

y234
(A22)

a;a;
r

Qg +Qi
17 ~ ~ ~ p 4 ~ (A23)

l (I~m gBE
(81)

The a's are defined by the transformation equation (A7).

APPENDIX B: CALCULATION OF OSCILLATOR
STRENGTH

The oscillator strength f is given by

lIM&=QC( ', ,p;a', c—r) la'&
l

o.&,
a', cr

(83)

where
l
o & is the hole spinor,

l

a'& denotes the three p-
like Bloch states, and C( —', ,Iic;a, cr) are Clebsch-Gordan
coefficients. The spin-Bloch part of the final electron
state is given by

l
S,of &. Using (82) and (83) we have

(82)

where
l
S,cr 1 & and

l
S,o z & denote the s-like conduction-

band Bloch state for the two electrons with spin oi and

oz, respectively; l)Lc & denote the four degenerate valence-
band Bloch states. In (82) the nonzero Clebsch-Gordan
coefficients are C(0,0; —,', ——, ) = —C(0,0; ——,', —,

'
) =1/v 2.

For zinc-blende materials,

I &JM
I
P

I
S of & I

'=2 2 2« —' M'a' o) &
—o

I of &(S
I
P. I

a'&( —»'"+ (84)
2M, of,a Maaf ,a,,a

where we have converted the hole bra state (a'
l

(o
l

into an electron ket state ( —1)' +
l

a'&
l

—o.
& in the recombina-

tion process. A factor of 2 was introduced in (84), because the hole can recombine with either of the two electrons. This
procedure can be verified by field theory. (S

l
Pa

l

a'
& is the momentum matrix element, which equals

(S
l
P„

l
X&5 . Summing the Clebsch-Gordan coefficients, one obtains

(85)
M, of,a
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For wurtzite materials (e.g. , CdS) a similar calculation yields

M, crf, a
(B6)

The extra factor of 2 is compensated for in (11) by the fact that gsE ——2 in these materials. The calculation for
acceptor-bound excitons is similar. The total angular momentum (J) of the acceptor-bound exciton in zinc-blende ma-
terials can be —,, —,, or —,. The initial state is given by

JM) —g C(J M pt pp (73) I pt) I p2) I

S cr3)
p]p2 ~3

and the final hole state is given by
I pF ). Thus for zinc-blende materials,

I &J,M IP I pp) I
=2 g g C(J,M;p), )M2, o3) g C( —,,p|,a), o.))

J,M, a,p+ ~~Mr &~pF p) ~ ppr ~3 al 01

'&p2 PF&&~1 l~3&&~t IP IS&

'2

(B8)
&s in the case for donor-bound excitons, (B8) can be converted into a sum over Clebsch-Gordan coefficients which can
be evaluated explicitly to give

(B9)

For wurtzite materials the case for acceptor-bound excitons is the same as for donor-bound excitons, since the hole has
spin- 2 .
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