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Nonlinear conductivity and noise spectrum of a pinned charge-density wave
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We study the overdamped phase dynamics of a charge-density wave (COW) pinned by randomly
located impurities fully including the internal degrees of freedom of the CDW. The current-field
behavior, the threshold field, and the phase diagram (pinned versus unpinned) are characterized and
discussed. The narrow-band noise is computed explicitly for the full many-body problem, and it is

found to be of the type observed in NbSe3.

The unusual transport properties of NbSe3 have been re-
lated to the two charge-density waves (CDW's) that ap-
pear below T& ——145 K and T2 ——59 K.' This conclusion
is due to the following results: Below T] and T2, an in-
crease of resistivity is observed that manifests dielectric
breakdown under the effect of an electric field. Electric
fields that strongly reduce the resistivity have no effect on
the intensity or period of the CDW. A threshold electric
field exists below which the CDW is pinned and the
power spectrum of the current above this field shows a re-
markable narrow band noise. The pinning is mainly due
to impurities.

Different models have been proposed to describe the de-
pinning and dynamical properties of CDW's. The most
common approach is to treat the CDW (or a portion of it)
as a single classical particle that moves in a periodic po-
tential. The motion is overdamped as shown by the
frequency-dependent conductivity so the kinetic term is
usually neglected. An alternative description is based on
tunneling of portions of CDW's. Both approaches are
supported by some of the available data but also show im-
portant discrepancies. '

In the present paper we characterize and discuss the
properties of the true classical mode/. We study the over-
damped phase dynamics of a CDW pinned by randomly
located impurities fully including its internal degrees of
freedom. Results are presented for the current-field
behavior, the threshold field and the (pinned versus un-
pinned) phase diagram. We also compute explicitly the
narrow-band noise for the full many-body problem and
this results to be of the type observed in NbSe3. Some
contradictory numerical results for models related to the
present one have been reported"' and when possible will
be compared to our results. The variational approach for
the weak pinning region' will be also discussed. Even if
the CDW dynamics in NbSe3 shows some three-
dimensional correlation' ' the model we study is purely
one-dimensional because it is more suitable for numerical
treatments and with proper interpretation can give impor-
tant dues on the analysis of the experiments.

We consider the phase modes of a CDW at T=O K.
The CDW is assumed of the form

p(x) =epo[1+6 cos[qox +P(x)]I, (1)

where po is the one-dimensional electron density (e is the

electron charge) and 1=2vr/qo is the wavelength of the
CDW. The phase P(x) denotes the position of the CDW.

In a Peierls system with a constant density of states per
site Ão there results C =Noh/alpo (Ref. 14) where a is
the lattice constant, 2A is the gap, and A, is the electron-
phonon coupling. Neglecting the kinetic term (over-
damped motion) the energy density is

2

U= ay epo PE+ Vo g p(x)5(x —xj ) .
2qp Bx qp

(2)

The first term in Eq. (2) represents the elastic energy of
the CDW, for a Peierls system K=porn vz (Refs. 15 and
16) where m is the free-electron mass and vF is the Fermi
velocity. The second term couples the electric field E to
the CDW. The third term represents the interaction ener-

gy with impurities located at random positions xj and act-
ing only at these positions. Vp is the intensity of this in-
teraction and the index j runs over the impurities whose
density is n;. To the equation of motion corresponding to
Eq. (2) we add a damping force F~ acting only at the im-
purity positions

It is convenient to introduce the following dimensionless
variables. For the distance u =n;x, for the field g=E/Eo'
where Ep ——CVpn;qp, for the elastic constant
B =2~An; /Ce Vpppqp, for the time s = t/~o where
~o ——2~p n; /CeVppoqp~. For the phase at an impurity

Fd = —
2 g p(x)5(x —xj ),

qpZ

where p is the effective-mass density of the CDW, ~ is a
phenomenological parameter that characterizes the dissi-
pation of energy from the moving CDW to the lattice, and
the dot indicates time differentiation. This assumption
for how damping acts on the CDW is plausible and gives
rise to important computational simplifications. The total
equation of motion is

2 g P(x)5(x —x~ )
KBQ pm

qo & qo&

epp
+epoCVo g sin[qoxq+P(x)]5(x xj )+ E =0 . —

1 qo

(4)
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FIG. 1. Current (J) vs normalized field (g) relation for dif-
ferent values of the coupling B. See Eq. (5). The dots refer to a
case with %=80 impurities. The shaded areas represent the typ-
ical fluctuations due to different N I',with fixed density n; ) and to
different realizations of the random distribution for the impuri-
ties [see text at the point (i)]. The continuous line represents the
asymptotic behavior for large g to which the plotted J is normal-
1zed.
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FIG. 2. Pinned vs unpinned phase diagram. %'e show here
the dependence of the (normalized) threshold field g,h on the
coupling B [see Eq. (5)]. The limit of large 8 (weak pinning) can
be reasonably described by g,h-B ' that arises from the varia-
tional approach. For 8-0 the behavior of /th is nonanalytic.
See point (ii).

site P~ =P(xj. )/2m. . Furthermore, we introduce

Qp qp/2'

nT;
.——

hee equation of motion [Eq. (4)] can be integrated ex-
actly between any two subsequent impurities' [this is the
advantage of having the damping in the form given by Eq.
(3)] and reduces to a difference equation that only involves
the phases llJ at each impurity site. %'ith the new vari-
ables just introduced we have then simply

0/+ i PJ-=B
dS TJ'+) J rj J'

—sin[2'( u~ Qp+ PJ )]+gQJ, (5)

where r~+] J
——uz+~ —uj is the normalized distance be-

tween two subsequent impurities and QJ ——, (rj + ~J-
+rj J ~) can be considered as the effective charge associ-
ated with the impurity at position j. In terms of the lit& s
the current density is given by

where n, is the bulk electron density and ( ) represents an
average over all impurity sites. Equation (5) has been
solved numerically with cyclic boundary conditions. The
number of impurities has been varied normally between 1

and 1000 but a few runs, up to 5000, have been made to
check convergency. The position of the impurities has
been assumed to be random (Poisson distribution) and the
strength of their potential equal for all. The results can be
summarized as follows:

(i) Polarization, threshold field g,I, and J (g) relation
The threshold field g„h is defined by the maximum value
of g for which Eq. (5) has solution dlitjlds=0. In study-
ing this question numerically caution has to be taken for
the following problem. Given a system relaxed into a
stable configuration and applying a field g it often hap-

pens that the system evolves into a new configuration and
afterwards it stops. This phenomenon of nonlinear polari-
zation (that also produces an hysteresis) gives rise to
diaz/ds&0 for some finite time interval but it should not
be confused with the onset of a current in the system.
This produces some complications in defining g,h starting
from low fields because the current has to be averaged
over a long time. The problem can be avoided by starting
at large g and defining g,h as the value at which the
current becomes zero. In Fig. 1 we report some examples
of current (J) versus field (g) behavior. The current is
normalized with respect to its asymptotic behavior. For
each value of the coupling B we have varied the number
of impurities X and also considered different configura-
tions for the random impurities. The dots refer to a par-
ticular case with %=80 and the shaded areas indicate the
typical fluctuations due to different values of X (from 20
to 1000) and to different realizations of the random distri-
bution. No appreciable monotonic behavior is observed
for g,h as a function of N. Our results indicate, therefore,
that g, h should remain finite for X~ ao. This is in agree-
ment with Ref. 12 and in contrast to Ref. 11. The results
(Fig. 1) also indicate that the singularity of dJ/dg at g,h

present in the single-particle model disappears for our sys-
tem or at least is confined to a very narrow region. The
best "sample" we have considered (large 1V, long-time
average, and starting from large g) seem to indicate that
the current starts as J—g —g,h. This behavior should not
be too sensitive to the effect of some 3d coupling and it is
in good agreement with preliminary low-temperature
(T-4 K) data. '

(ii) Dependence of g,t, on 8. Pinned Uersus unpinned
phase diagram The threshold . field g,h is only a function
of the parameter B introduced after Eq. (4). This depen-
dence is shown in Fig. 2 and it is in qualitative agreement
with Fig. 5 of Ref. 11. In the limit of large 8 (weak pin-
ning) using the variational approach of Ref. 13 one ob-
tains g',h-8 ' (to which corresponds Eth =Epgth nt )
in reasonable agreement with the numerical results of Fig.
2. For a three-dimensional case one has instead g,h-B
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Flax. 3. Example of narrow-band noise above g, h for a system
with X=40, 8=10, /=1. The power spectrum (plotted as a
function of the frequency in arbitrary units) can be interpreted
along the skeleton of the single-particle model. See point (iii).

impurity. This corresponds mathematically to many
domains with a distribution of pinning energies' and pro-
duces a long tail in J(g') so that g,h ——0. For any small
(but finite) value of B the CDW portions cannot really
decouple and the threshold field is large (g,h

—+1).
(iii) Narrow ban-d noise W. e have investigated numeri-

cally the noise spectrum corresponding to the dynamics of
the CDW above g,h and an example is reported in Fig. 3
for the case B=10, g= 1, and N=40. The noise intensity
plotted is I(co)=logto[

~

J(co)
~

] where J(co) is the
Fourier transform of J(s) (s is a dimension time unit).
This noise spectrum peaks at frequencies m„- nJ/l
(n =1,2, . . . ) and can be interpreted along the skeleton
given by the single-particle picture. This shows that the
complete field description for the CDW also gives rise to a
narrow-band noise of the type of that observed experimen-
tally. 4

and E,h -n; .2

In the limit B~0 (strong pinning) there is a problem of
nonanalyticity because for B=O the CDW splits into in-
dependent portions of different lengths each pinned by an
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