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A calculation is presented of the effect of a compressive uniaxial stress on the saturation of the
intervalence-band absorption in p-type Ge for light having a wavelength of 10.6 um. The intensity
dependence of the absorption coefficient can be approximated by the expression for an inhomogene-
ously broadened two-level model where the value for the saturation intensity depends on the direc-
tion of applied stress, magnitude of the stress, and polarization of the light. Values of the saturation
intensity are reported for compressive stress along the [001] direction and light polarized along the
[001] and [100] directions, and for compressive stress along the [111] direction and light polarized
along the [111] and [011] directions. For the directions of stress and light polarization investigated,
we found that the saturation intensity is significantly smaller when the direction of polarization of
the light is parallel to the stress direction. For light polarization perpendicular to the direction of
applied stress, there is no significant change in the saturation intensity for compressive uniaxial

stresses below about 7 10° dyncm 2,

I. INTRODUCTION

There is considerable interest in saturable absorbers due
to their practical use in laser systems. Some of the appli-
cations of saturable absorbers to pulsed CO, lasers include
their use for the generation of passively mode-locked
pulses of subnanosecond duration, and their use in the
design of high-power CO,-laser systems to provide ade-
quate interstage isolation of the oscillator and amplifier.
The attempts have been to find a material that is integr-
able into a beam transport system and has a broadband
low-intensity absorption coefficient which saturates at
high intensities. Several p-type semiconductors should ex-
hibit these properties for light with wavelengths over the
CO, laser spectrum. Most of the experimental studies on
the absorption saturation in p-type semiconductors have
used samples of p-type Ge.!~® In a recent paper,’ a theory
was presented to calculate the intensity dependence of the
‘absorption coefficient in several p-type semiconductors for
light with a wavelength in the (9—11)-um region, which
corresponds to the CO, laser spectrum. The dominant ab-
sorption mechanism in this spectral region is
intervalence-band transitions, where a free hole in the
heavy-hole band absorbs a photon and makes a direct
transition to the light-hole band. At sufficiently high
light intensities, the hole population in the resonant region
of the heavy-hole band becomes depleted, which leads to a
decrease in the absorption coefficient with increasing in-
tensity. The intensity dependence of the absorption coeffi-
cient was found to be closely approximated by the expres-
sion for an inhomogeneously broadened two-level model,
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photon energy #iw, I is the light intensity, and I; is the sa-
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turation intensity. Values of the saturation intensity I
were reported for several of the group-IV and III-V com-
pound semiconductors.>® The values of I, for the dif-
ferent materials were found to vary over about 2 orders of
magnitude. This variation in the saturation intensities for
the different semiconductors is largely due to three fac-
tors: (1) the hole-phonon scattering rates, (2) the valence-
band structures, and (3) the momentum matrix elements.

The presence of a uniaxial stress in a cubic semicon-
ductor such as Ge reduces the degree of symmetry and
gives rise to significant changes in the band structure (and
momentum matrix elements), which leads to changes in
the linear and nonlinear absorption associated with the
intervalence-band transitions. In this paper we present
calculations of the dependence of the saturation intensity
for p-type Ge on a compressive uniaxial stress in order to
determine how the saturation behavior can be tuned by ap-
plying a stress. The directions of the applied stress and
polarization of the light are found to be important in
determining the saturation characteristics. Explicit results
are reported for a compressive stress along the [001] direc-
tion and light polarized along the [001] and [100] direc-
tions and for a compressive stress along the [111] direction
and light polarized along the [111] and [011] directions.
All results presented in this paper are for light having a
wavelength of 10.6 um. The paper is organized in the fol-
lowing way: In Sec. II we discuss the theoretical approach
which is used, in Sec. III we present the results for p-type
Ge subjected to compressive uniaxial stress, and in Sec. IV
we summarize our conclusions.

II. THEORETICAL APPROACH

In semiconductors with the diamond or zinc-blende
crystal structure, there are six bands (three sets of twofold-
degenerate bands) near the valence-band maximum. Four
of the bands are degenerate at k=0 and the other two de-
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generate bands are split to lower energy by the spin-orbit
interaction. Away for k=0, the four degenerate bands
split into two twofold-degenerate pairs called the heavy-
and light-hole bands. At CO,-laser frequencies, optical
transitions between the heavy- and light-hole bands dom-
inate the absorption in p-type Ge. The spin-orbit splitting
at k=0 is 295 meV, so one-photon transitions to the
split-off hole band are not energetically allowed for CO,-
laser light.

The presence of a uniaxial stress sphts the k=0 degen-
eracy of the heavy- and light-hole bands and also modifies
the valence-band structure away from k=0. As a result,
the density of states for both the optical transitions. and
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Here #w is the photon energy,

phonon scattering transitions are changed by the applica-
tion of uniaxial stress. In addition, the hole wave func-
tions and thus the intervalence-band optical matrix ele-
ments are modified. These changes in the density of states
and optical matrix elements lead to a stress-induced modi-
fication of both the low-intensity absorption coefficient
and the saturation characteristics of p-type Ge.

The basic theoretical formalism used to describe uniaxi-
ally stressed material is the same as that for unstressed
material (stress-modified wave functions and energy
dispersion relations are input into the formalism). The ab-
sorption coefficient is then given by
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€, is the high-frequency dielectric constant, N}, is the hole density, f3( K) and fil K) are the

intensity-dependent one-hole occupation probabilities for a state with wave vector K in the heavy- and light-hole bands,
respectively, 7Py, is the momentum matrix element between the bands b and ¢ which is summed over the twofold-
degenerate states in the heavy- and light-hole bands, 7 is the polarization of the light, 7Q(k ) is the energy difference be-

tween states with wave vector K in the heavy- and light-hole bands, and T',( K)is given by
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where R BT is the rate at which a hole in band a with wave vector K is scattered into a state with wave vector k' in
band b. The hole distribution functions f} ( K) and Su( K) are calculated from the rate equations
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Stress enters the problem by changing the hole dispersion
curves which modifies Q(k [and hence the integration
over wave vector in Eq. (2) and B(k) in Eq. (4c)] and the
scattering rates in Egs. (3), (4a), and (4b). The stress also
changes the optical matrix elements which appear in Eq.
(2) and in B(K)

The one-hole energies in the undeformed crystal are cal-
culated by second-order degenerate §~§ perturbation
theory.!® We apply the usual perturbation methods in the
strained crystal, including first-order terms in the stress
and second-order terms in k [there are no linear terms in k
for E(K) near the band edge]. Taking account of the spin
functions, the perturbation due to the uniaxial deforma-
tion can be represented by a 6X 6 matrix, which can be
described by introduction of the deformation potentials a,
b, and d.!' Numerically solving the secular equation gives
the one-hole energies as a function of K and the stress. In
the analysis we include the effect of the split-off hole band
in the manner of Ref. 12. The cyclotron resonance param-

eters used to describe the unstressed material are from
Ref. 13 and the elastic compliance constants and deforma-
tion potentials used to describe the effect of stress are list-
ed in Table L.

The optical transition rate from band i to band j is pro-
portional to the matrix element |(U;|A-B|U;)|? for
direct intervalence-band absorption, where A is the vector
potential of the light and P is the momentum operator.
The E-E perturbation introduces a first-order correction
to the wave function of parity opposite that of the band at
k=0. In the deformed crystal the periodic part of the
wave function correct to first order in the perturbation is
given by

# Uy |(K-B+D)| U,
U Uo,+2 OJ' E p E | Ol UOJ’ (5)
i — &g

where D is the perturbation describing the uniaxial stress.
The matrix element of AP between bands i and j is
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TABLE 1. Values for the nonzero elastic compliance constants in units of cm?/dyn® and the defor-
mation potentials in units of eV.? For cubic crystals, S1,=S83=2S;.

Sn S12

Sas a b d

9.79x 10713 —2.68x 10713

1.47x 1012 2.0

—2.2 —4.4

2H. B. Huntington, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academ-

ic, New York, 1958), Vol. 7, p. 213.
5J. D. Wiley, Solid State Commun. 8, 1865 (1970).
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The valence-band wave functions at k=0 transform ac-
cording to the representation I'f;, and the momentum
operator P transforms according to I'js. Only those bands
appearing in the decomposition of the direct product can
have i(’-f)’ interactions with the valence band:

IAXT =T +I+5p+T5s . vl

The stress components transform like I'j; and ', and the
bands which have D interactions with the valence band are
given by

FAX(Ph4+TR)=CL+TE+TH 4+ . (8)

We see that the bands which interact with the valence
band at k=0 through the stress perturbation have vanish-
ing A-P matrix elements, so that the products

<U0i‘D | U01><UOJ|K‘§| U0j>

are zero. Thus the K-f)' matrix elements can be obtained
by using the kP part of the Hamiltonian matrix (with
A=0), and substituting k;A,, +A4;k,, for k;k,,."° The re-
sulting matrix F must then be transformed to U ~!FU by
the unitary matrix U that diagonalizes the Hamiltonian,
which includes the uniaxial stress. Here the effect of
stress enters in the determination of the transformation
matrix U.

The hole-phonon scattering rates are calculated on the
basis of the deformation-potential theory, where the defor-
mation parameters are taken from the mobility fits of
Brown and Bray.'* In the calculation we assume that the
matrix elements for hole-phonon scattering are indepen-
dent of stress. The probability of scattering per unit time
from a state Kk to a state k' also depends on the density of
final states to which the hole can be scattered.'>!'® Thus
the scattering rate for a hole with wave vector K will de-
pend on the magnitude and direction of the uniaxial stress
due to the changes in the density of states. The density of
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states in the heavy- and light-hole bands are found from
the energy dispersion relations, and the scattering rates are
calculated as a function of the hole energy and uniaxial
stress.

The rest of the calculation proceeds as in Ref. 8. The
absorption coefficient is calculated as a function of inten-
sity and the numerical results are compared with Eq. (1).
The numerical results satisfy Eq. (1) very closely. Values
of the saturation intensity which are reported are deter-
mined by fitting Eq. (1) to the numerical results. The cal-
culations are done for 10.6-um light and room-
temperature conditions. Only hole-phonon scattering is
included in the calculation of scattering rates. This pro-
cedure is appropriate for doping levels less than or equal
to about 3 10> cm—3.17

III. RESULTS AND DISCUSSION

Although our numerical results for the intensity depen-
dence of the absorption coefficient are quite close to the
simple expression given by Eq. (1), they do not take exact-
ly this functional form. Thus one cannot write an analytic
expression for the saturation intensity that exactly de-
scribes our results. However, to qualitatively discuss the
effect of uniaxial stress on the saturation intensity, it is
highly desirable to have a reasonably simple expression for
I, which, although not exact, is capable of showing the
important qualitative features of the stress dependence.
Such an expression can be attained using the “first ap-
proximation for [f(K)—f;(kK)]” discussed in Ref. 7.
Comparing the result for the intensity dependence of the
absorption coefficient in this approximation [see in partic-
ular Eq. (18) of Ref. 7] with Eq. (1), and taking the low-
intensity limit so that the square root in Eq. (1) can be ex-
panded [and the analogous square root in Eq. (18) of Ref.
7 can be expanded], one finds
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Here f£(K) and ff(K) are the equilibrium values of the
distribution functions, the surface integral is over a sur-
face of constant (k) (=w) and

Ll _SrR. . (102)
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The factor /(K) corresponds to a contribution to the sa-
turation intensity from states at wave vector k and the
contributions from the various states are weighted as
described by Eq. (9a). Equation (9a) is written down for
the purpose of qualitative discussion and was not actually
used in the calculations. The calculations were performed
as described in the preceding section.

The most important effect of stress on I, is from the
modification of the energy dispersion relations. This
modification changes both the density of states which
enter into the scattering times (T}, 7}, and T,) and the lo-
cation of the resonant region [i.e., where the condition
QX)=ow is satisfied]. The effect of stress on T}, which
describes scattering in the resonant region of the heavy-
hole band, is particularly important. T}, is significantly
greater than 7; and thus dominates in the expression
(T +T)), and the stress-induced changes in T, are signifi-
cantly greater than the changes in T,, which is dominated
by scattering from the resonant region in the light-hole
band to relatively high-energy states in the heavy-hole
band. The optical matrix elements, | 7Py (k)| enter
both in the expression for /( K) and in the weighting in Eq.
(9a). Small optical matrix elements tend to increase I, but
if the optical matrix element is small for a particular
direction of E., this direction is weakly weighted. Thus an
important effect of the optical matrix elements is to
weight the various directions in the integration over k
space. This weighting depends on the polarization and
leads to a fairly strong polarization dependence of I
under uniaxial stress.

For a qualitative discussion, it is useful to have a simple
form for the effect of stress on the heavy- and light-hole
energy dispersion curves. A simple analytic form for
these dispersion curves results if the split-off hole band is
neglected and the 4 X4 Hamiltonian describing the heavy-
and light-hole bands (and neglecting coupling to the split-
off hole band) is diagonalized.!! In this approximation

E) (K@) =Ak?+a 1@ +(E} +EL +EX)?,  (lla)
where
E(K)=Bk*+ CX K2k + k22 +k2k2) (11b)

E2.(€)=(1/2b?)[(ex, —€, )2+c.p.]+d2(e,2,y +c.p.),
(11c)
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r
and

E%(K;®)=Bb[3(k2ey +c.p.)—k71%]

+2Dd (kyky€,, +c.p.) . (11d)

Here A4, B, C, and D are taken from cyclotron resonance
experiments,13 a, b, and d are the deformation potentials, €
is the second-rank strain tensor which describes the stress
magnitude and direction, and c.p. stands for cyclic permu-
tation with respect to the indices x, y, and z. The splitting
of the heavy- and light-hole bands at k=0 is contained in
E?,. The strain components are written in terms of the
elastic compliance constants and stress components.'® For
the actual calculations, the dispersion curves were calcu-
lated from the 6 X6 Hamiltonian which includes coupling
to the split-off hole band. Equation (11a) is written only
for the purpose of discussion.

The term EZ in Eq. (11) produces a splitting of the
heavy- and light-hole bands at k=0. The splitting of the
heavy- and light-hole bands at the zone center( including
the split-off hole band) is shown in Fig. 1 for compressive
stresses in the range of 5.0Xx10% to 1.8 10'° dyn/cm?.
The solid line is for a stress in the [001] direction, and the
dashed line is for a stress in the [111] direction. At a
wavelength of 10.6 um, the photon energy is 117 meV,
thus at the highest stresses shown in Fig. 1, the zone-
center splitting almost equals the photon energy. The
stress at which this occurs is somewhat larger for the
[111] direction than for the [001] direction.
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Ge T=300K
{00 t— —
80 |— |
60 (— STRESS || [001] —

————— STRESS || [111]

* STRAIN SPLITTING (meV)
Iy
o

20

-

o
5x 108 10 2 5 10
T (dyn /7 cm?)

FIG. 1. Strain splitting of the heavy- and light-hole bands at
k=0 vs compressive stress for germanium at room temperature.
The solid line shows the splitting in meV for stress in the [001]
direction, and the dashed line shows the splitting for stress in the
[111] direction.
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FIG. 2. Calculated values for the density of hole states vs
compressive uniaxial stress for stress in the [001] direction. (a)
shows the density of hole states for the heavy-hole band in units
of 10" meV~!cm™—3, and (b) shows the density of states for the
light-hole band. The different curves are for the following
values of the stress: , T=0; — — —, T=2.0x10% ——,
T=3.5X10%; —-—, T'=0.7x10% and —e—, T=1.5%10"
dyncm™2,

The term EZ in Eq. (11) depends on both the stress and
the value of k. It can be much smaller, comparable, or
much larger than EZ for states in the resonant region fo_x:
10.6-um light, depending on the particular direction in k
space and the applied stress. For example, for compres-
sive uniaxial stress in the [001] direction (in the two-band
approximation), EZ is given by

EY =Bb(ey, —e, (k2 —3k}) . (12)

The sign of E%, depends on the particular direction in k
space through the (k*—3k2) term for T|| [001] direction.
Thus it has a maximum value for k, =0, a minimum value
for K= |k |2, and vanishes for k2=3k,. As a conse-
quence, both E ﬁs and Egk are important in determining
the region in K space at which the intervalence-band reso-
nance occurs.

The positive term E 2_ tends to increase the splitting be-
tween heavy- and light-hole bands and thus to push the
resonance region to smaller values of |k |. The term E 2
can take on either sign; if it is positive, it also tends to
push the resonance region toward the zone center, if it is
negative, it tends to push the resonant region toward
larger values of k.

The terms E2. and E%, affect the density of hole states
in the heavy- and light-hole bands, which in turn affects
the effective density of states in calculating the occupation

probabilities,!” the joint density of states at the

intervalence-band resonance, and the hole-phonon scatter-
ing rates. In Fig. 2 the calculated density of hole states
(including the split-off hole band) is shown for several
values of stress applied in the [001] direction. Figure 2(a)
is the density of states in the heavy-hole band (p;) in units
of 10'® meV~!cm™3, and the bottom illustration shows
the density of states in the light-hole band (p;) in units of
10" meV~'cm~3. The different curves in the figure are
for zero stress and compressive stresses of 2.0% 10°,
3.5X10% 7.0x 10% and 1.5x 10" dyncm~2. The appli-
cation of a compressive uniaxial stress causes significant
deviation from the €'/ dependence in pr and p; which fol-
lows from a parabolic band approximation. This devia-
tion is greatest for hole energies (€) comparable or less
than the strain splitting. For small hole energies in the
heavy-hole band, pj(€,7) decreases by almost an order of
magnitude at T'=1.5X10"° dyncm~2 from the corre-
sponding values of p, in the unstressed material. For hole
energies less than the strain splitting of the heavy- and
light-hole bands, there are no allowed states in the light-
hole band as noted in Fig. 2(b). For hole energies some-
what greater than the strain splitting, the density of states
is approximately given by the unstressed value.

The scattering time 7}, results primarily from holes in
the resonant region of the heavy-hole band being scattered
by phonons to another heavy-hole band state. Neglecting
for the moment the fact that the resonant regions shift
with stress (these shifts are actually quite important), the
decrease in the heavy-hole density of states shown in Fig.
2 tends to lead to reduced scattering rates and hence a
larger T) and a smaller I,. The hole-phonon scattering
rates which dominate T} and T, are from scattering events
where a hole in the resonant region of the light-hole band
scatters to rather high-energy states in the heavy-hoie
band. The density of heavy-hole band states in this high-
energy region is not much affected by stress; thus the
scattering times 7; and T, are not significantly changed
except at the highest stress values. Finally, note that mov-

FTTT] I T TTTTT]
4l UNIAXIAL STRESS IN [001] DIRECTION |
p—Ge A=10.6 um T=300K
3 = p—
. N
:
; \
s 5 AN
o
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————— [100] POLARIZATION
{ +—
oLl 1l [
5 x40° 10° 2 5 10'° 2

T (dyn/ cm?)

FIG. 3. Calculated values of the saturation intensity I, in p-
type Ge as a function of an applied uniaxial compressive stress
for stress in the [001] direction at T=300 K. The solid (dashed)
line is for 10.6 um radiation and light polarized along the [001]
([100]) direction.
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ing the resonant region to larger k vectors (and higher hole
energy states) leads to a larger density of final hole states
and reduces T}, (and T; and T, to a lesser extent), whereas
moving the resonant region to smaller k vectors (and lower
hole energy states) increases T}.

In Fig. 3 we present the calculated values for I; as a
function of uniaxial stress for stress in the [001] direction.
The solid curve is for light polarized in the [001] direc-
tion, and the dashed curve is for light polarized in the
[100] direction. All values shown are for room-
temperature germanium and light having a wavelength of
10.6 um. In Fig. 4 the calculated values are presented for
I, for stress along the [111] direction and light polarized
along the [111] and [011] directions.

For both stress directions, I; decreases with increasing
stress for the polarization parallel to the direction of the
stress. At the highest stress values, where the zone-center
stress splitting becomes nearly equal to the photon energy,
I, begins to increase for [001] stress. A similar effect
occurs for [111] stress at somewhat higher stress values
than are shown in Fig. 4.

For the polarization orthogonal to the stress direction,
the effect of stress on I is less than for the parallel case.
For [001] stress, I, decreases somewhat with increasing
stress until the zone-center stress splitting becomes nearly
equal to the photon energy and then it increases. For
[111] stress, I, first increases slightly and then decreases
somewhat.

The polarization dependence of the stress effect on I
results from the optical matrix elements which weight the
various K directions. Notice first that for zero stress the
optical matrix element does not couple through the I'; in-
termediate  state (the lowest-energy  zone-center
conduction-band state in Ge) for k parallel to the polari-
zation vector [see Eq. (6)]. Thus the optical matrix ele-
ments for kK parallel to the polarization vector are very
small and the contribution to I; from this direction in K

space is weakly weighted. On the other hand, for k and 9

TTTT] T T T TTTT]

UNIAXIAL STRESS IN [111] DIRECTION
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ol Lill] | R

5x10® 10° 2 5 10'° 2
T(dyn/ em?)

FIG. 4. Calculated values of I, in p-type Ge as a function of
uniaxial compressive stress for stress in the [111] direction. The
solid (dashed) line is for light with a wavelength of 10.6 um and
light polarized in the [111] ([011]) direction.

far from parallel, there is strong coupling of the optical
matrix element through the I'; intermediate state and the
optical matrix elements are large. Thus the contribution
to I, from these directions in k space are strongly weight-
ed.

For those directions in k space nearly parallel to the
stress direction, E% in Eq. (11) is negative and the
resonant region tends to move to larger values of |k |.
The increase in magnitude of the wave vector at the
resonant region in these directions tends to increase the
magnitude of the contribution to I; from these states. For
those directions in k space nearly orthogonal to the stress
direction, E%, in Eq. (11) is positive and the resonant re-
gion moves in toward the zone center. The decrease in the
magnitude of the wave vector at the resonant region in
these directions tends to decrease the magnitude of the
contribution to I from these states.

For polarization in the stress direction, the directions of
K nearly parallel to the stress direction (that is, those
states whose contribution to I; increases with stress) are
weakly weighted by the small optical matrix elements,
whereas the directions of K nearly orthogonal to the stress
(those states whose contribution to I; decreases with
stress) is strongly weighted by large optical matrix ele-
ments. Thus for polarization parallel to the stress direc-
tion, I, decreases with stress until the k=0 stress splitting
becomes nearly equal to the photon energy. At this point
the resonant region in most directions is much closer to
the zone center and the optical matrix elements begin to
get very small (they vanish at the zone center), which
pushes I up rapidly.

For polarization orthogonal to the stress direction, the
directions of K nearly parallel to the stress direction (and
thus nearly orthogonal to the polarization) are strongly
weighted by the large optical matrix elements. Some of

2 T T T T T TTTT]
DICROISM IN STRESSED p - Ge
o |- A=106 um T=300K I, N
&
£ 8
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©
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E—d
1
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2x10° 5 10° 2 5 10'° 2
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FIG. 5. Calculated dichroism of p-type Ge at 300 K as a
function of compressive uniaxial stress for light with a wave-
length of 10.6 um and an intensity much less than the saturation
intensity. The solid line shows (o —o) for stress in the [001]
direction and the dashed line shows the results for stress in the
[111] direction.
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the directions in K space which are nearly orthogonal to
the stress (those nearly parallel to the polarization) are
weakly weighted by small optical matrix elements, and
other K directions which are nearly orthogonal to the
stress (those which are also nearly orthogonal to the polar-
ization) are strongly weighted by large optical matrix ele-
ments. As a result, there is significant cancellation among
the contributions from the various k directions to the
stress-induced changes in I;. Thus the effect of stress on
I, is less for polarization orthogonal to stress than for po-
larization parallel to stress. For [001] stress, the cancella-
tion works out in such a way that I; decreases slightly
with increasing stress until the zone-center stress splitting
nearly equals the photon energy. At this point I; begins to
increase because of the very small optical matrix elements
for states near the zone center. For [111] stress, the can-
cellation works out in such a way that I; first increases
slightly and then decreases somewhat with increasing
stress.

As discussed above, the effect of the compressive stress
reduces the cubic symmetry, and a measurable low-
intensity dichroism is predicted.'®?° For the various com-
binations of stress and light polarizations examined, we
find that when the small-signal absorption increases with
increasing stress, the saturation intensity decreases. This
should be expected since an increase in the excitation
rates, which leads to a smaller I, also leads to a larger
low-intensity absorption cross section (o). Explicit values
for the calculated dichroism are shown in Fig. 5 as a func-
tion of the stress. Here o is the small-signal cross section
for light polarized parallel to the stress axis and o, is the
small-signal cross section for light polarized perpendicular
to the uniaxial stress direction. The dichroism is mea-
sured in units of 107'® cm? The solid (dashed) curve
shows the dichroism for compressive uniaxial stress in the
[001] ([111]) direction. For stress parallel to the [001]
direction, both 0| and o, decrease significantly at stresses
greater than about 1.5 10'° dyncm~2. This drop is what

causes the saturation intensity to begin to increase at the
corresponding values of stress (see Fig. 4).

IV. CONCLUSION

We have calculated the linear and nonlinear absorption
coefficient in p-type Ge at 10.6 um as a function of uniax-
ial stress. Explicit values for the saturation intensity are
presented as a function of applied compressive stress for
room temperature conditions. Changes in the valence-
band structure, momentum matrix elements, and hole-
phonon scattering rates are included in the analysis. We
find that the absorption saturation behavior depends on
the direction of the light polarization, the direction of the
stress, and the magnitude of the stress. For most com-
binations of stress and directions of light polarization, the
values of I; remain approximately unchanged or tend to
decrease with increasing compressive stress. For the cases
where the small-signal absorption increases with increas-
ing stress, the saturation intensity monotonically decreases
with stress, and for the cases where the small-signal ab-
sorption decreases with increasing stress, the saturation in-
tensity is approximately unchanged except at the highest
stresses considered.
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