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Rings in central-force network dynamics
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The central-force network dynamics model for glasses is extended to treat networks involving
small regular rings of bonds. In particular, band-limit formulas are obtained for an A2X3 glass con-
sisting of regular puckered six-membered A3X3 rings. The special case of planar rings is compared
with observations on vitreous 8203. This continuous random network of "boroxol" rings shows im-
proved agreement with experiment over a model not containing rings. The remaining discrepancies
illustrate the need to include noncentral forces in the network dynamics of v-B203.

I. INTRODUCTION

In this paper we illustrate methods for extending the
central-force dynamics of glasses from the relatively sim-
ple topologies used by Sen and Thorpe' and Thorpe and
Galeener to related topologies which contain regular
rings of bonds. Specifically, we present formulas for the
band limits of a homogeneous A2X3 continuous random
network of arbitrarily puckered regular six-membered
rings, and note the influence of the rings on the vibration-
al density of states. We emphasize some aspects of the
special case of planar rings, in order to compare with ex-
perimental data on vitreous (U-) 8203. In the case of u-

8203 we conclude that the rings lead to much improved
agreement with experiment, but that further extensions to
i.nclude noncentral forces are warranted.

A. Rings in amorphous solids

A small body of theoretical work has been developed
concerning the effects of rings of bonds on the electronic
properties of disordered or amorphous (a-) solids. It is
clear that completed rings of bonds must exist in a11 net-
work glasses, and the statistics of rings have been counted
for several ball-and-stick structure models, including the
Bell and Dean model for vitreous (U-) SiOz, the Polk
model for a-oe, and the Connell-Temkin model' for a-
Si. There have been few, if any, unambiguous observa-
tions of electronic properties of amorphous materials thai
are due to these rings. For example, the effect of fivefold
rings on the electronic structure of a-Si has been report-
ed, ' but the observed effect is small and the interpreta-
tion is ambiguous. It has also recently been suggested
that odd-membered rings are important in determining the
band gap in a-Si; however, it has not been possible to
detect the existence of such rings (e.g., fivefold) in the ra-
dial distribution function of a-Si." Completed rings also
must exist in crystalline materials, and it is easy to deter-
mine their statistics from the definitive structural data
available on a large variety of crystalline materials.

Part of the problem with assessing the role of rings in
the properties of amorphous solids is the general lack of
definitive structural data defining the statistics and
geometry of rings in real amorphous materials. Another
problem is that the rings are generally thought to be irreg-

ular, containing a wide variation of bond angles in any
group of n-fold rings. This situation is exemplified in Fig.
1, which shows schematically the continuous random net-
work model for a 3-2-connected glass, as first proposed by
Zachariasen. ' Here each 2 atom is surrounded trigonally
by three X atoms, and each X atom bridges between two A
atoms with an A —X—A angle 8 that varies over a large
range. This disordered system of corner sharing identical
AX3 "triangles" has exact 32X3 stoichiometry and has a
wide unspecified variation of ring sizes and configura-
tions.

B. Rings in v-B$03

One likely exception to this complex situation is found
in boric oxide glass, U-BzO3, for which there is increasing
evidence that the structure consists of a network of planar
BQ3 triangles, many of them grouped together in threes,
to form planar 8303 "boroxol" rings. The situation is il-
lustrated schematically in Fig. 2, where we have shown
three kinds of connections between the planar boroxol
rings. Here (i) represents a single oxygen atom connecting
two rings, with the B—0—B angle 8 generally different
from site (i) to another similar site. A "dihedral" angle 5
is also necessary to specify the relative orientation of the
two neighboring rings joined at (i), and 5 is assumed to
vary, perhaps randomly, from site to site. Site (ii) in Fig.

CONTINOUS RANDOM NETWOR K
OF AX3 TRIANGLES

FICx. 1. Schematic (planarized) Zachariasen continuous ran-
dom network model for the structure of v-8~03. Each boron
atom () is at the center of an equilateral triangle of oxygen
atoms (o), and the (planar) triangles share corners only (not
edges) with a large variation in the angles at the bridging oxygen
atoms.
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FIG. 2. Schematic (planarized) diagram of the likely network
connections in u-B203, based on B303 (boroxol) rings. The pla-
nar hexagonal units may be connected at their corners by means
of a single oxygen bridge {i),a single planar 803 triangle (ii), or
a pair of such triangles (iii). The angles at the oxygen atoms (O )

bridging between planar units (rings or triangles) are assumed to
be widely spread, whereas the oxygen angles within the rings are
identical at 120'. NMR and diffraction studies conclude that
there must be some boron atoms () in u-8203 which are not
members of boroxol rings.

2 represents the next most complicated connection be-
tween rings: three rings joined by a triangle with varying
values of 0 and 5 at the three bridging oxygen atoms in-
volved. Site (iii) represents four rings joined by two trian-
gle units having varying values of j9 and 5. Although even
larger numbers of rings might be joined by "randomly"
oriented triangles, it seems consistent to assume that when
three triangles unite they will become planar' ' leading
to a boroxol ring. The model containing many boroxol
rings was first proposed by Cxoubeau and Keller' and was
given much support by Krogh-Moe. ' Mozzi and War-
ren' found that their x-ray radial distribution function
(RDF) data on U-8203 could best be fit by a mixture of in-
dependently oriented rings and triangles, much like that
shown schematically in Fig. 2. Jellison et at'. ' have used
NMR studies to estimate that 82% of the B atoms are in
B303 rings. The earlier %MR work of' Silver and Bray '

established that a/l BO3 units are essentially planar.
Elliott has recently questioned the necessity of includ-

ing boroxyl rings to fit the x-ray RDF data; however,
there is a sizable body of other information which points
strongly to their existence. The situation up to 1978 is re-
viewed by Griscom. ' Very recent neutron-diffraction
studies are also best fit by a boroxol-ring model, in
which 60%%ui of the B atoms are in boroxol rings.

Important evidence for the existence of boroxol rings in
v-8203 is found in the vibrational spectra. Galeener, Lu-
covsky, and Mikkelsen have pointed to the extraordinary
narrowness (15 cm ') of the dominant Raman line at 808
cm ' as a clear indicator that the B—O—B angles are
tightly controlled (+0.8 ), as would be the case in boroxol
rings. Bell and Carnevale have computer-calculated Ra-
man spectra from a ball-and-stick model containing
boroxol rings, and found the boroxol-ring model to better
account for the large polarization ratio (IH~/IH~) ob-
served for the dominant Raman line, viz. , IHH/IH& ——28

at 808 cm '. This latter argument suffers from the fact
that the much wider dominant Raman lines in v-Si02 and
v-Cxe02 show polarization ratios of -25 and —50, respec-

tively, yet there is little evidence that these two glasses are
composed of tightly regular rings. The bond polarizabili-
ty calculations of Martin and Galeener for v-GeO2
would seem to suggest that a large polarization ratio indi-
cates correlated motion over several neighboring structural
units in all the glasses mentioned here, including v-8203.

In summary, there is widespread agreement that v-8203
consists largely of a network of remarkably regular and
planar threefold rings, the so-called boroxol rings known
to occur in various alkali-borate crystals, but not ' in
crystalline 8203. Since the vibrational properties of
"molecular" rings in borate crystals have been modeled ex-
tensively, v-B2O3 is a good vehicle for exploring the role
of rings of network dynamics.

II. CENTRAL-FORCE NETWORK THEORY

A. Network of planar AX3 triangles

We first consider the simplest possible network model
that contains the most certain nearest-neighbor informa-
tion in v-8203. that each B atom is at the center of an
equilateral triangle of 0 atoms. (That is, the 803 trian-
gles are planar. ) We assume that each 0 atom (of mass
m) bridges between two B atoms (of mass M) and that the
planar triangles share corners only, not edges. This leads
to the idealized network model shown in Fig. 3(a). Here
all the 0—B—0 angles g are 120 (planar triangles) and all
the bridging oxygen angles are set at a common (most
probable) value 0.

To treat vibrations in this system, we use the nea=est-
neighbor centra1-force network model, originally intro-
duced by Sen and Thorpe, ' for A&2 tetrahedral glasses
such as v-SiO2. In this model, the only basic force acting
in the network is along the bond between two nearest
neighbors, and is denoted by a force constant a. Other

/
/ l

/
i

r

FIG. 3. Local order (a) of an A2X3 network of planar trian-
gles that is used to treat vibrations of the Zachariasen model
(Fig. 1) in central forces only. The X—A —X angles 0 are taken
to be the same everywhere, while there is no restriction on the
dihedral angle (6) that determines the relative orientation of two
neighbor triangles, given 0. The ring statistics of this network
are unspecified. The skeleton network for this structure shows
which A atoms interact with one another through a single X-
atom bridge, and is shown in (b). The skeleton network deter-
mines the connectivity matrix, and the latter plays a central role
in setting limits on the allowed vibrational frequencies.
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forces, such as intrinsic angle restoring forces, are referred
to as noncentral forces, denoted P, and set equal to zero.
Cxaleener has shown the approximate model to have
surprising quantitative accuracy (10%) for several AX&
glasses, and the method was generalized by Thorpe and
Galeener to treat several other topologies, including the
one now being discussed. In particular, the model was
found to explain both the high-frequency infrared modes
of AXz glasses and the lower-frequency dominant Raman
line. This indicated that the absence of noncentral
forces P was of secondary importance in v-SiOz, v-GeOz,
and U-BeFz. As we shall see, noncentral forces play a
more important role when uniform rings are introduced in
U-Bz03.

Thorpe and Galeener (TG) have shown that the
central-force eigenfrequencies of the network in Fig. 3(a)
are given by
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Using these limiting eigenvalues in Eq. (1) leads to four
limiting frequencies for the system of triangles, given by

col ——(a/m)(1+ cos8),

co@——(a/m )( 1 —cos8),

co3 —(a /rn )( 1 +cos8) + ( 3a /2M)

co4 ——(a/m)(1 —cos8)+(3a/2M) .

(3a)

(3b)

(3c)

(3d)

These equations are linear in a and coso, and are plot-
ted as the solid straight lines in Fig. 4(a), using
m /M =m(O)/M(B) = 16/11, as is appropriate for B03 tri-
angles. Note that all the variables (m/a)co, cos8, and
m/M are dimensionless. Since m &M, the band edges at
cop and c03 never cross for any value of 8 [just as was the
case' for the tetrahedral glass BeFz where
m(F) ~ M(Be)]. We have also labeled the limiting frequen-
cies in Fig. 4(a) according to their origin in Eq. (1); for ex-
ample, —3+ is obtained by using e= —3 in Eq. (1) and by
taking the + choice where + appears in Eq. (1). The
heavy lines in Fig. 4(a) indicate that 5 functions appear at
these frequencies in the vibrational density of states
(VDOS). The shaded areas indicate regions where states
may exist.

Figure 4(b) is a schematic representation of the VDOS
for the special case 0= 120'. The relative number of states
between the band limits and in each 6 function are shown

co =(a/m)+(3a/4M)+[(3a/4M) +(acos8/rn)
—(a cos8/2mM)e] '~~,

where the e are the eigenvalues of the connectivity matrix
of the "skeleton network" (discussed in TG). The skeleton
network is formed by drawing straight lines between bo-
ron atoms that are connected by a single bridging oxygen
atom, and is shown in Fig. 3(b). The skeleton network de-
fines the essential topology of the glass and is paramount
in determining the properties of models such as the one
discussed in this paper. In the absence of any information
about the skeleton network, other than its three-
coordinated nature, all we can say is that the eigenvalue
spectrum of the connectivity matrix is bounded by

FIG. 4. Allowed frequency bands (a) for central-force vibra-
tions of the network of planar AX3 triangles shown in Fig. 3(a).
States may exist in the shaded areas which are limited by the
frequencies col, co~, ~3, and ~4 that are determined by Eqs. (3).
The heavy lines (co3 and co4) represent 6 functions in the VDOS.
Plot (b) is a schematic diagram of the VDOS for the network
with 0=120', it shows the number of states in each band or 6
function, where X is the total number of 2 (i.e., boron) atoms in-
volved.

in the figure, and are calculated as follows. If the number
of 8 atoms is %, then there is a total integrated weight of
N in the density of states of the connectivity matrix, i.e.,
between the two limits of e. The + choice in Eq. (1) leads
to two bands, each of weight N, as shown in Fig. 4(b). Of
course, this is not all of the states: Some are in the 6 func-
tions at co3 and co4, while others are in the 5 function at
~=0, having been driven to zero frequency by the as-
sumption that P=O. For N boron atoms, there are 3N/2
oxygen atoms, giving a total of 5N/2 atoms and 15N/2 vi-
brational modes to be accounted for. In a central-force
model, the total number of non-zero-frequency modes
equals the number of bonds, 3X. Since 2% modes are in
the bonds, each of the 5 functions must have N/2 states,
as shown in Fig. 4(b). This leaves (15/2)N —3N=(9/2)N
modes at zero frequency, there being no restoring force for
them in a central-forces-only model. These states actually
occur at low but nonzero frequencies, as illustrated for U-

SiQz, U-GeOz, and U-BeFq in R.ef. 29, but they will not be
further discussed in this paper.

The band limits in Fig. 4(b) for 8= 120 and
m /M = 16/11 are given in dimensionless units by
(m/a)co =0.5 and 1.5 2.688 and 3.688. We shall look at
these limits later to see how they are modified by the in-
clusion of boroxol rings.

The fitting of Eqs. (3) to v-BzO3 data was discussed in
detail in Ref. 23, which should be consulted. In short, the
positions of the 5 functions (co3 and co4) were equated with
the observed high-frequency longitudinal-optical (LO)
modes, and this allowed inversion of Eqs. 3(c) and 3(d) to
yield experimental values of a and 0. These values were
used to calculate the col and co& using Eqs. 3(a) and 3(b).
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TABLE I. Fit of Eqs. (3) to the v-8203 data, as described in the text and in Ref. 23. Here co3 and A@4

are experimental frequencies (cm '), while a, 0, co2, and co& are derived from them using Eqs. (3). Note
that the predicted position of the uniform symmetric-stretch mode (co& ——567 cm ) is in poor agreement
with the observed dominant Raman-line frequency (~~ ——808 cm '). Reference 23 concluded that such
a model without regular rings cannot fit the data.

1325 1550 120 984 567 (808)

The results are restated in Table I. That the calculated
frequency of the only "symmetric-stretch" motion (at
co~ ——567 cm ') was far removed from the dominant Ra-
man line (at co+ ——808 cm ') indicated that the model was
inadequate.

Also the Raman spectrum contained several more
features than are suggested by Fig. 4(b). The failure of
this simple model to account for most of the features of
the spectrum is in stark contrast to the success of the
same procedure when applied to several AX2 tetrahedral
glasses. ' As we shall show, the principal problem is
the absence of the boroxol rings from the assumed struc-
ture. It is perhaps encouraging that the best fit for co3 and
~4 produces (9=120, which is precisely the value in a
boroxol ring.

B. Network of threefold rings of planar AX3 triangles

In this section we shall illustrate a particular method
for creating a network of rings, for relating the eigenvalue
spectrum of its connectivity matrix to a parent network
not containing rings, and for calculating the band-
frequency limits for central-force vibrations. While this
will be done for the case of a network of boroxol-like
rings, it should be clear how to use the methods to treat
networks containing other kinds of rings.

Look carefully at the network of BO3 triangles shown
in Fig. 3(a). The replacement of each B atom by a more
complex structure with the same trigonal bonding to the
"outside" would obviously result in a network of the new
structures. If each planar-connected 8 is replaced by a

B303 planar ring, one obtains the network of boroxol-like
rings shown in Fig. 5(a). The skeleton network of this sys-
tem is shown in Fig. 5(b). It is a network of triangles,
which could have been constructed directly from the
skeleton network of Fig. 3(b) by replacing each three-
connected vertex with a triangle, or threefold ring of ver-
tices. This latter operation suggests that one might relate
the connectivity matrix of Fig. 5(b) to that of Fig. 3(b).
In fact, one can easily relate the eigenUQlues e' of the con-
nectivity matrix for Fig. 5(b) to those e of the connectivity
matrix For Fig. 3(b), as follows.

Consider the two skeleton networks, redrawn in Fig. 6.
The symbols A;, a;, and b; represent the amplitudes of en-

ergy eigenfunctions in the appropriate network. With the
use of the notation of Weaire and Thorpe and Fig. 6(a),
Schrodinger s equation for single-nearest-neighbor interac-
tions lead to the algebraic relation

That is, for single-nearest-neighbor interactions the energy
E of any collective excitation times its amplitude at one
site Ao is given by the sum of the amplitudes at the
nearest-neighbor interacting sites.

A similar relation can be written for each eigenvalue e'
of the network of threefold rings in Fig. 6(b). Thus at site
a&

E' Q ) =Q2+Q3+6]

or

(e'+ l la )
——2o+ b ),

(b) / 1

/

~+/ I+ ~

/

i+r (a) (b)

where we have used the fact that the total s-like part of
the amplitude on a triangle in Fig. 6(b) is the same as the
amplitude on the corresponding point in Fig. 6(a), i.e.,

FIG. 5. Schematic (planarized) drawing of an idealized A2X3
network consisting of regular threefold-ring-like A3X6 units
which share corners only. The A —X—A angle 8 is the same
everywhere. There is no restriction on the dihedral angle (5) at
the X atoms which bridge between the A3X3 rings. Beyond the
clearly defined A3X3 threefold rings the ring statistics are un-
specified. The skeleton network for this structure is shown in
(b), and is clearly based on triangles of A atoms. These triangles
are the cause of new gaps and 5 functions in the VDOS. Net-
work (a) can be obtained from that of Fig. 3 by expanding each
three-connected A atom in Fig. 3(a) into a three-connected A3X3
unit.

I
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~S+r b 2

b3

FIG. 6. Comparison of the skeleton networks of the two
structural models introduced in Figs. 3 and 5, showing the label-
ing of the state amplitudes A;, a;, and b; used in Eqs. (4)—(9).
The skeleton network for the A3X3 ring model (b) can be derived
directly from that for the AX3 triangle model (a) by expanding
each vertex in (a) into a triangle of vertices.
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a )+a2+a3 ——Ao, b) ~b2-I-b3 ——A ),
and so on. Similarly, we find that

(e'~ l)bi ——Ai ~ai .

When we eliminate bi from Eqs. (6) and (8), we have

e'( e'+ 2)a, = (e' ~ 1)A o ~A, .

By inspection,

(7)
0.0 ~

-0.4—

3 1 0 -2

Ol ~2
2
I

4
I

16
11

I 120-3+-2+ 0+1+ 3+

e'(e' ~2)a z ——(e' ~ 1)A o ~A 2,
e'(e'+2)a3 ——(e'+ 1)HO+33

When Eqs. (9) are added, and combined with Eqs. (7) and
(4), it follows that

e'(e'+ 2) =3(e' ~ 1)+e

From the bounds on e [Eq. (2)], it follows that e' is bound-
ed by

—2&@ &0,
1(e &3.

(12)

Thus there are two bands of eigenvalues for the connec-
tivity matrix of the skeleton lattice in Fig. 5(b). The limit-
ing values e'= —2, 0, 1, and 3 apply to any network of
rings (planar or puckered) whose connectivity matrix cor-
responds to the topology of Fig. 5(b).

Thus we consider the ring network in Fig. 5(a) for the
case that 8 is the same inside and outside of the rings.
This gives a network of puckered threefold rings. The
special case 0=120' corresponds to a network of planar
boroxol rings connected together by bridging oxygen
atoms also having 8=120 (and unspecified values of 5).
Since 0 is thought to be —130 between the rings in U-

8203, ' the special case 8=120' is a useful approximate
model.

%"hen we assume that 0 is the same inside and outside
of the rings in Fig. 5(a), the central-force vibrational
eigenfrequencies are still given by Eq. (1). This is because
the central-force result is independent of any specific
choice of dihedral angles, including the one that groups
the triangles into rings as in Fig. 5(a). The band limits of
the vibrational eigenfrequencies are found by substituting
e' into Eq. (1), whose quadratic nature doubles the number
of limits to eight values, which we denote as —2+, —2
0+, 0, 1+, 1, 3+, and 3 . As before, the superscripts
indicate the choice + where it appears in Eq. (10). The
band limits are plotted versus cos8 in Fig. 7(a). The only
straight lines versus cos(9 are the 3, —3+„and 3+ solu-
tions of Eq. (1), and these are equal to co&, co3, and co4,
respectively, as given in Eqs. (3).

The analysis thus far treats only the limiting values of
the bands [shaded in Fig. 7(a)]. Note that the 5 functions
at frequencies labeled by —3+ and ~3+ in the original
network of triangles problem must be retained, and they
behave with cosO just as before. That is, the effect of in-
troducing threefold rings into the original network is to

(b) 0=1209N
2

N N N
6N6
ii, 3 iL

N N
N 6 N

FIG. 7. Allowed frequency bands (a) for central-force vibra-
tions of the network of A3Xq rings shown in Fig. 5(a). The fre-
quency limits are labeled 3, 1, etc., as described in the text
and as given by Eqs. (16)—(27) for the special case of 49=120'.
The schematic VI3QS for 0= 120 is shown in (b), where N is the
number of A atoms in the structure. This VDQS is used to dis-
cuss isotope-shift data obtained on U-8203.

further limit the ranges of frequencies where there can be
vibrational response. The original bands are broken up
into subbands within the original limits. This means that
the original 5 functions survive. In addition, new 5 func-
tions Inay be created by the introduction of new order, and
this is the case for our network of rings, as indicated by
the heavy lines in Fig. 7(a) and by the schematic density of
states for 8=120', shown in Fig. 7(b). Alternatively, we
can say that the effect of introducing rings is to define
new gags and create new 5 functions in the VDOS.

The counting of states is more difficult when the rings
are introduced. We have arrived at the weights shown in
Fig. 7(b) as follows. When we assume X boron atoms in
the network of rings, there are still 3X/2 oxygen atoms, a
total of 5%/2 atoms and 15%/2 vibrational modes. The
latter must still consist of X/2 states in each of the 5
functions at e= —3+ and e= + 3+, X states in the region
between them, % states in the region between the limits at
e=3 and —3 and 9X/2 states at zero frequency.
[Compare Figs. 4(b) and 7(b).] The focus of the problem
therefore is the redistribution of the X states within each
of the two original allowed frequency ranges or "bands. "

We first note that X boron atoms in the network of
rings actually correspond to only X/3 boron atoms in the
original network. This means that the number of states in
the single band of the original skeleton network [Fig. 6(a)]
leading to the present one [Fig. 6(b)] should be taken as
iii/3 states over the range given by Eq. (2). The quadratic
nature of Eq. (11) means that X/3 states will lie in each of
the two bands [defined by Eqs. (11) and (12)] for the con-
nectivity matrix of the network of rings. Thus the bands
in the connectivity matrix of the network of rings account
for only 2N/3 states, leaving X/3 states still to be ac-
counted for. These are found in new 5 functions whose
origin is motion inside a ring (which has no analog in the
motion of the single 8 atom of the original network whose
expansion gave rise to the ring).

These new 6 functions are understood as follows. We
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FIG. 8. Schematic (planarized) drawing of a more general
A2X3 network consisting of regular A3X6 units which share
corners only. This model is more general than that shown in

Fig. 5(a) because the angles f around an A atom (~ ) are allowed
to differ from 120', and the central-force constants and A —X—A

angles within the ring (a', 8') are allowed to differ from those
between the rings (a, 8). Again there is no restriction on the
dihedral angles (5) at the X atoms which bridge between the
A 3X3 rings.

first note that Eqs. (10) and (11) do not cover the case
when all of the A;=0 in Eqs. (9). The condition that
A; =0 corresonds to zero amplitude on aII the boron atoms
in the origina/ network, and this occurs once each at co&

and cu2. It also corresponds to zero total amplitude
around each ring in the new network, i.e., a&+a2+a3 —0,
etc. In Eqs. (9) we see that even for A; =0, it is possible to
have nonzero values of a;, b;, etc., at either of the two
band limits, e'=0 and e'= —2. Equation (8) shows that
when A; =-0 and e'=0 we have

b;=a;, (14)

indicating that the amplitude on adjacent boron atoms in
adjacent rings is the same [see Fig. 6(b)]. Similarly, Eq.
(8) reveals that when A; =0 and e'= —2 we have

b;= —a;, (15)

indicating equal amplitudes of opposite phase on adjacent
boron atoms in adjacent rings. We loosely refer to the
states where a; =b; as "bonding" states (with e'=0) and
those where a; = b; as "antib—onding" states (with
e'= —2). There are N/6 of each, the two new 6 functions
thus accounting for the X/3 states not found in the bands
delimited by Eqs. (12) and (13). This count can be verified

by the following argument. There are N-independent
amplitudes, a;, b;, etc., in the new network of rings; N/3
constraints are required to make all 3;=0 and another
N/2 constraints to make the state entirely bonding (or an-
tibonding). This leaves N —(N/3) —(N/2)=N/6 degrees
of freedom in the form of bonding (or antibonding) states.
Thus there are X/6 states in each 6 function at e'=0 and
at e'= —2.

We emphasize that the new skeleton network contains
triangles and it is this fact that leads to the dramatic
changes in the eigenvalue spectrum of the connectivity
matrix. The states near e'= —3 cannot be formed, as they
would alternate + 1, —1, + 1, etc. , from site to adjacent
site and cannot be fit around the triangles. This also hap-
pens, although less dramatically, with any odd rings (e.g.,
fivefold rings). The 5 functions at e'=0 and e'= —2 do
not occur for squares, pentagons, etc. The eigenvectors
consist of chains in Fig. 6(b) where the amplitude is

. . . , +1, +1, —1, —1, +1, +1, —1, —1, . . . for
bonding states and . . . , + 1, —1, + 1, —1, + 1, —1,
+ 1, —1, . . . for antibonding states, and zero away from

the chain. Since U-BzQ3 is believed to be based on three-
fold rings, it should show the above effects more dramati-
cally than any other known glass.

We also comment that the transformation from e to e'

could be repeated to e" by again replacing a 8 atom with a
B303 ring. This could go on indefinitely in a hierarchical
model until eventually the spectrum would consist only of
5 functions and gaps. This is just a mathematical curiosi-

ty, of course, and would correspond to a fractal spectrum.
It is useful to evaluate the band-limit frequencies for

the special case of 8=120' in Fig. 5(a). These are the
baseline intercepts for cosO= ——, in Fig. 7(a). We shall

first define

y = (m la)co

A =—(3m/4M)+1,

(16)

(17)

and

8=(3m/4M) + —,

It follows from Eq. (1) that

y'(3 ) = —, ,

y (1 )=A —[8+(m/4M)]'
'(0-) =A —8'"

y 2( —2 ) =A —[8—(m /2M)]'

y ( —3+ ) = —, + ( 3m /2M),

y ( —2+) =A +[8—(m/2M)]'

y (0+)=A +8'
y (1+) =A + [8 + (m /4M) ]'

y (3+)=—, +(3m/2M) .

(19)

(20)

(21)

(22)

(23)

(25)

(26)

(27)

These equations are relatively simple functions of the two
masses involved, and will be used in Sec. III to compare
with 8 and Q isotopic substitution experiments on U-B2Q3.

C. Network of threefold rings of puckered AX3 triangles

We found it instructive to consider a more general
central-force network problem where the force constants
a' and angles 0' within the rings are allowed to be dif-
ferent than those (a, O) between the rings. The variables
are defined in Fig. 8 where for greater generality we have
also allowed the 0—B—0 angle g to be different than
120. When /&120' the rings will necessarily be puck-
ered' ' whatever the value of O'. Of course, it is certain
that /=120' in u-B203, ' while a' may be smaller than a
by as much as 30%%uo.

In order to provide an independent check of the preced-
ing section (which is a special case of the present prob-
lem), we did the derivation by the slightly different
methods described in Ref. 2. Thus the problem was treat-
ed directly as a three-connected network of large vibra-
tional units (puckered rings) whose connectivity matrix
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has a single band of eigenvalues e with the bounds +3
given in Eq. (2). For brevity we simply present the results
without derivation.

We define dimensionless quantities as follows:

Similarly, the limits associated with e= + 3 are given by
the frequencies that solve

(3&)

x—:(m /a)cu

x;—:(m/a)co; (i =1,2, 3,4),
where

x
&

—=1 —cos8'+ (m /M)(1 —cos1(),

x 2
= 1+cos8'+ (m /M)( 1 —cosP),

x 3
= (a'/a) [1—cos8+ (m /M)(1 —cosQ)],

x4 =(a'/a)[1+cos8+(m/M)(1 —
cosset )] .

g8a)

(30)

(31)

(39)

In general, Eqs. (36)—(39) reduce to quartic polynomials
in m . Except for very limited cases, we have not been
able to factor them, so they have been solved numerically
for the roots of the polynomials involved. The solutions
for (m/M) =(16/11), a'=a, and 8'=/=120, are shown
in Fig. 9(a), where as before, the heavy lines indicate the
presence of 5 functions in the VDOS. The only straight
line is the 5 function at 3.682, given by

We next use these to define the following functions of ~-. (m/a)cu =(3/2)[l+(m/M)] . (40)
L—:(costtt) ' —(2m /M)(x —x, )

(a'm /a—M) (x —x q )

M =cos8'(m/M) (x —x
~ ) '(x —x2)

N—=cos8(a'm/aM) (x —x3) (x —x4)

The frequency limits associated with e= —3 are then
given by the frequencies that solve

(36)

and also those that solve

L =4M+2% .

Figure 9 constitutes the central-force results for a network
of planar boroxol rings bridged by oxygen atoms at the
common angle 0, and having identical B-O force con-
stants a inside and outside the rings.

The schematic VDOS for this model of U-8203 with
8=130' is shown in Fig. 9(b), with the weights appropri-
ate for X boron atoms. This should be compared with the
result for 8=-120', shown earlier in Fig. 7(b). Apart from

t I I
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l I I I
I

I l I l
I l
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FIG. 9. Allowed frequency bands (a) for central-force vibra-
tions of the more general network of AX3 rings shown in Fig.
8(a). The frequency limits are shown for the special case
/=8'= 120 and a'=a; they are the solutions of Eqs. (28)—(40).
The schematic VDOS for 6=130' (between the rings) is shown
in (b), where X is the number of 2 (boron) atoms in the struc-
ture. This VDOS is used to compare with the Raman data on
v-B2O3, shown in Fig. 10(c).
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FIG. 10. Comparison of the Raman spectra of v-82O3 (c)
with a schematic representation (a) of the VDOS previously
shown in Fig. 9(b) and calculated assuming the structural model
shown in Fig. 8. The highly polarized Raman features marked
1 and 6 in (c) were fit to the high and low limits of the lower-
frequency group of bands in (a) yielding a =470%/m and
0=130 . In panel (b) an ad hoc shift of the high-frequency por-
tion of (a) has been introduced, to help the reader to see the simi-
larity of features with the corresponding part of the Raman
spectra.
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small shifts in band limits, the major change from 0= 120'
to 0=130' is the breakup of the two former 6 functions
having weight X/2. One of these becomes a 6 function
with weight X/6 and an accompanying band near 2.63;
the other becomes a 6 function with weight X/6 and an
accompanying 8 function (at 3.682) having weight X/3.

We note that the 8 function at 3.682 has weight X/3,
which is precisely the number of rings for X boron atoms.
These states correspond to individually excited rings
where the boron atoms "rotate" in one direction about the
center of the ring and are perpendicular to the bonds con-
necting the ring to the rest of the network. For central
forces only, this perpendicularity decouples the ring mode
from the rest of the network. The oxygen atoms rotate in
the opposite direction so that bonds around the ring are
alternately stretched and compressed identically. With the
use of arguments, developed elsewhere, ' ' this means
that the Raman activity of the mode will be unpolarized.
%'e will therefore not further consider the mode.

The solutions of Eqs. (28)—(39) for the conditions of the
earlier model in Sec. IIB have been shown by numerical
calculation to produce precisely the results shown in Fig.
7(a). This includes the results for 8=120' which are also
given by Eqs. (16)—(27). In the latter case we understand
the motions involved in one mode, the lowest-frequency
band limit, 3 in Fig. 7(a). This is a mode in which all B
atoms remain at rest and all 0 atoms move in phase along
the bisector of 8. As mentioned in Sec. II A this
symmetric-stretch motion will give highly polarized
Raman scattering with IHH &~IHz. Unfortunately, we
have not been able to clearly understand the motions for
any other mode. This failure points to one of the
shortcomings of the present method of determining band
limits: There is no systematic machinery for calculating
in an orderly fashion the vibrational eigenvectors corre-
sponding to the band limits once the latter have been
determined.

III. COMPARISON OF CENTRAL-FORCE THEORY
WITH RAMAN SCATTERING IN v-B203

A. Spectral features

The richness of features in the VDOS due to rings [Fig.
9(b)] is in much better comparison with experiment than
is that in the VDOS due to triangles [Fig. 4(b)]. We show
this by direct comparison of the ring VDOS with the Ra-
man spectra shown in Fig. 10(c). The features in Fig.
10(c) are labeled 1—11 for easy reference. Only two pa-
rameters, a and 8, can be adjusted in order to fit the
boroxol-ring theory of Fig. 9 to the data. This requires
that any two features in the theoretical VDOS be identi-
fied with a correct pair of corresponding features in the
Raman spectrum. Note that both theory and experiment
consist of two groups of bands separated by a wide fre-
quency gap.

We have chosen to fit to the two highly polarized bands
labeled 1 and 6 in the lower-frequency portion of the Ra-
man spectrum, as follows. As mentioned earlier, the
lowest-frequency band edge in the theory is a symmetric
stretch, so it was made to coincide with the broad highly
polarized line labeled 1 at -470 cm ' in the Raman spec-
trum. ' ' The highest-frequency band edge below the
wide gap in the theory coincides with a 5 function and
therefore was made to fit the sharp highly polarized line
labeled 6 just below the band gap in the Raman spectrum.
These conditions determine that 8= 130' and a =470n/m;
the boroxol-ring model VIBES for these parameters is
plotted in Fig. 10(a).

In Fig. 10(b) we introduce an ad hoc expansion of the
gap, in order to emphasize the favorable comparison of
the theoretical features with corresponding peaks in the
Raman spectra of Fig. 10(c). Much of this gap expansion
would be accounted for by allowing a to be appreciably
larger than o,". We have not carried out this additional

TABLE II. Theoretical boron and oxygen isotope shifts for v-8203, according to the simplified
planar-ring model with all 8—Q—8 angles 0=120. The features are labeled as in Fig. 7(a). The frac-
tional shifts Ace/u given below were calculated using Eqs. (19)—(27) for two cases: (a) boron substitu-
tion, ' B~"B (with Mo ——16); {b) oxygen substitution, ' O~' 0 (with M~ ——11). Note that the predict-
ed fractional shifts tend to group into two values for each substitution, one below the frequency gap and
another above the gap. It is these nearly constant values that are compared with experiment in Tables
III and IV.

Feature
label

0

3+
—2+

0+
1+
3+

Type of
feature

Raman edge
band edge
5 function
5 function

5 function
5 function
5 function
band edge
6 function

(a)
Boron

8 o. ~"8 o2 3 2 3

M]OB o2 3

0
—0.004
—0.005
—0.004

Frequency gap
—0.038
—0.034
—0.030
—0.030
—0.028

(b)

Oxygen
B'0 s'0

2 3 2 3

2 3

—0.057
—0.052
—0.051
—0.053

—0.010
—0.016
—0.020
—0.022
—0.023
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TABLE III. Experimental ' B~"Bisotope shifts in high-purity U-8203. The features are as labeled in Fig. 10(c). The frequen-
cies (cm '} in columns {a) and (b) were reported by Galeener and Geissberger (Ref. 32), as were the shifts 4 (=co]]Bo —~&OB o ) in

23 23
column (c). The shifts in column {d) were reported by Windisch and Risen (WR) (Ref. 33). The average of columns (c) and (d) is AB
[= z (6+k~a)] given in column (e). The uncertainties in As given in column (f) are derived from those given in Ref. 32, on the as-

sumption that the uncertainties in AwR are the same as reported for A. The observed fractional change in Az is given in column (g),
where those values which compare well with the central-force theoretical results in Table II are enclosed in square brackets. We con-
clude that features 4—8 require the addition of noncentral forces to the theory.

Feature

7
8
9

10
11

co)&B o2 3

470
502
602
660
732
809

1212
1261
1327
1467
1510

~[OH o2 3

470
506
606
681
7SO
808

1236
1288
1371
1510
15S5

(d)

~WR

—2
0

—1
—18
—28

0
Frequency gap

—30
—24
—44
—49

(e)

—1

—2

—20
—23

0

—27
—26

44
—46
—45

(f)
Uncertainty

(+3)
(+3)
(+3)
(+3)
(+4)
(~i}

(+6)
(+3)
(+6)
(+6)
(+8)

(g)
Ag/co)o

2 3

[—0.002]
[—0.004]
[—0.005]
—0.029
—0.031

0

—0.022
—0.020

[—0.032]
[—0.030]
[—0.029]

complication because the fitting procedure would be tedi-
ous, and because we will shortly show that errors due to
the omission of noncentral forces (P) may be just as im-
portant.

B. Isotope shifts

Galeener and Cxeissberger have reported measurements
of the ' B~"8 isotope shifts in U-8203, and have found
shifts of zero (+1 cm ') for the lines marked 1 and 6 in
Fig. 10(c). Similar results have been reported by Windisch

and Risen who also measured the ' O~' 0 isotope
shifts. We can test some aspects of our central-force ring
model by comparing calculated isotope shifts with the
above measurements.

We shall use the simplified planar-ring model derived in
Sec. IEB, in which the 8—0—8 angle 0 is 120' every-
where. The schematic density of states shown in Fig. 7(b)
is similar to that for the more general model with 0=130'
outside the rings, seen in Fig. 9(b). We use the simpler
model because the isotope shifts of the band limits can be
easily calculated using Eqs. (19)—(27). The results are

TABLE IV. Experimental ' 0—+' 0 isotope shifts in high-purity v-8203. The features are as labeled
in Fig. 10(c). The frequencies (cm ') in columns (a) and (b) were reported by Windisch and Risen (Ref.
33), as were the shifts Ao ( =~ ]8 —~ ~6 ) in column (c). The feature-by-feature uncertainties were

2 3 2 3

not given in Ref. 33, and are here taken to be the same as listed in Table III. The observed fractional
change in Ao is given in column (d), where those values which compare well with the central-force
theoretical results in Table II are enclosed in square brackets. As in Table III, we conclude that features
4—8 require the addition of noncentral forces to the theory. We are unable to explain why features 9
and 10 disagree with theory here, but not in Table III.

Feature

7
8
9

10
11

Q)
2 3

445
472
570
657

760

1176
1235
1320
1445

63
2 3

470
500
605
661
732
808

Frequency gap
1208
1260
1329
1460

—25
—28
—35
—4

(d)

o/mB ]6o
2 3

[—0.053]
[—0.056]
[ —0.058]
—0.006

—0.059

—0.026
—0.020
—0.007
—0.010
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given in Table II, where the features are labeled as in Fig.
7(a). We have calculated the percent change in frequency
going from the lighter to the heavier mass for both boron
substitution [column (a)] and oxygen substitution [column
(b)]. The percent change hro/co facilitates comparison
with experiment.

Table II shows that b,co/r0 for boron substitution varies
from zero to about —0.005 for the low-frequency group
(3, 1, 0, 2 ) and is near —0.032 for the high-
frequency group ( —3+, —2+, 0+, 1+, 3+). For oxygen
substitution, b,co/co is near —0.053 over the low frequen-
cies, and increases from —0.010 to —0.023 over the high
frequencies. We shall compare these numbers against per-
cent frequency shifts measured in the low- and high-
frequency regions of the observed spectra.

The experimental ' 8—+"8 isotope shift data are
presented in Table III, with details discussed in the table
heading. The experimental features are labeled 1—11 as
was defined in Fig. 10(c), and the frequency gap is be-
tween features 6 and 7. The average observed shifts hB
are given in column (e), and the percent shifts
(hB/co&o ) in column (g). Those features in the low-

2 3
frequency region (1—6) whose percent shifts compare well

with the range of theoretical values in the low-frequency
region of column (a) in Table II are enclosed in square
brackets in column (g) of Table III. That is, the square
brackets indicate that the observed shift is of the size

predicted by the central force netwo-rk of rings.
The shifts in features 4 and 5 of Table III are much too

large to be explained by our present theory. This suggests
the involvement of more boron motion than exists in any
low-frequency mode of the theory. We propose that
features 4 and 5 are modes of the ring in which 8 and O
atoms move out of the plane of the ring. Since restoring
forces for such motions can be obtained only by including
noncentral forces, these motions are completely absent
from our model. Also, since at least these two of the six
low-frequency features cannot be predicted by the
central-force theory it is clearly premature to attempt an
optimum fit to the data by using a'&a, 0'&8, etc. , as al-

lowed by the more general central-force ring results

presented in Sec. II C.
The shifts in features 7 and 8 are too small to be ex-

plained by our present theory. This suggests the involve-

ment of more oxygen motion than exists in any high-

frequency mode of the theory. In this case, we suspect
that the modes already exist in our calculations but that
their frequencies, and the extent of involvement of oxygen
motion, are substantially altered by the inclusion of non-

central forces. Again, the corrected modes may involve
motion out of the plane of the ring.

The experimental ' O~ ' O isotope-shift data are
presented in Table IV. As before we conclude that the
shifts of features 4, 5, 7, and 8 are not consistent with the
simple central-force ring theory, and that they are likely
to be explained upon introduction of noncentral forces
into the theory. Table IV also shows that the oxygen
shifts of features 9 and 10 do not agree with the central-
force ring theory. This is puzzling since their boron shifts
are well predicted and since the central-force theories have
previously predicted isotope shifts especially well at the

We have derived the band limits in the central-force ap-
proximation for a network of planar or puckered threefold
AqXz rings, suitable for discussion of the vibrational fre-
quencies of v-8203 (in the boroxol-ring model). The
schematic diagram of the VDOS for a network of planar
AX3 units containing no rings is reproduced in Fig. 11(a).
The effect of expanding each B-atom vertex into a (planar)
threefold A3X3 ring is shown by the schematic diagram
reproduced in Fig. 11(b). Comparison of these diagrams
shows that the introduction of rings (triangles in the
skeleton network) is to produce new gaps in the possible
regions of vibrational frequencies, and to introduce addi-
tional 6 functions in the VDOS. Thus the connectivity as-
sociated with threefold rings is alone capable of increasing
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FICx. 11. Comparison of the schematic VDOS for a network
of planar AX3 units with no ring specification (a) and those for a
similar network of planar A3X3 (boroxol) rings (b). The qualita-
tive effect of introducing threefold rings is profound, giving rise
to an increase in the main band gap, the introduction of new

gaps, and the introduction of new 5 functions.

highest frequencies.
The B and 0 isotope shifts of feature 6 are also outside

of theoretical predictions, but the discrepancies are small.
On the other hand, the discrepancies are completely re-
moved if we simply assume that there is oxygen motion
only, for which b.B ——0 and b,o ———46 cm '. This sug-
gests that the central face theory includes too much 8
motion ln feature 6.

In general, it appears that the inclusion of noncentral
forces in the ring-network model for U-82O3 will alter
several frequencies by amounts which are not necessarily
small compared to the separation of neighboring features
in Figs. 7(b) or 9(b). We think it unlikely that the identifi-
cation of experimental feature 1 in Fig. 10(c) with the uni-

form symmetric stretch [solution 3 in Fig. 7(a)] will

change, especially because the observed boron isotope shift
is very near the predicted zero value. That the dominant
Raman line (feature 6) shows a boron isotope shift (0+1
cm ') that is definitely smaller than predicted
( —0.004X808= —3 cm ') may indicate that the mode
order will be changed when P&0 are introduced. Present-

ly, we speculate that P&0 will "stiffen" the ring, leading
to less 8 motion and a smaller predicted isotope shift.

IV. SUMMARY AND CONCLUDING COMMENTS
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the gap between low- and high-frequency regions, as illus-
trated in Fig. 11. This increased gap and the new richness
of spectral structure enable the network of rings model to
compare qualitatively quite well with the observed Raman
spectra, as was illustrated in Fig. 10. This lends support
to the boroxol-ring model as an explanation of the struc-
ture and vibrations of U-8203.

The boron and oxygen isotope shifts of the band limits
in the network of rings model were calculated (Table II)
and compared with experimental observations (Tables III
and IV). For most observed lines the agreement was good.
However, the features marked 4, 5, 7, and 8 in Fig. 10(c)
were poorly fit to the theory, and we believe that their
correct explanation requires introduction of noncentral
force, not used in the present ring theory. In particular,
features 4 and 5 may be out-of-plane motions of the atoms
in the ring, and these have no restoring force in the
central-forces-only model.

We concluded that the broad highly polarized. line at
470 cm ' [feature 1 in Fig. 10(c)] is associated with
symmetric-stretch motions of the oxygen atoms that
bridge between the rings in v-82O3. The breadth of the
line is due to the spread in this bridging oxygen angle. In
Fig. 10 (Sec. IIIA) the fit to our ring theory determined
that the most probable value for this 8—O—8 angle is
130, the same value that has been deduced from diffrac-
tion experiments.

We also conclude that the sharp highly polarized line at
808 cm ' [feature 6 in Fig. 10(c)] is associated with
symmetric-stretch motions of the oxygen atoms inside the
rings in u-82O3. These motions have been described as a
breathing mode of the boroxol ring by several previous au-
thors. ' ' The complete absence of a 8 isotope shift in-
dicates that there is very little 8 motion in this breathing
mode. The sharpness of the line is due to the lack of
spread in the angle at the moving oxygen, which is uni-
formly 120 in the ring.

We were able to understand the motions in only one
other mode of the model, the high-frequency 5 function
with weight N/3 in Fig. 9(b), or Fig. 10(b). This is the

counter-rotating ring mode described near the end of Sec.
IIC. In central forces only, each of these modes is com-
pletely localized to a different one of the %/3 rings. Since
the mode is not expected to be highly polarized it may be
associated with the feature labeled 11 (rather than 10) in
the Raman spectrum of Fig. 10(c).

Qn the whole, the inclusion of planar boroxol rings in
the central-force model for vibrations in U-8203 produces
much better agreement with the Raman experiments. A
similar qualitative conclusion was reached using large
cluster calculations by Bell and Carnevale. Our isotope-
shift study provides strong indications that the inclusion
of noncentral forces will lead to an improved quantitative
description. %'e thus recommend several improvements
for future work: (1) the inclusion of noncentral forces, (2)
the development of a method for deducing the atomic
motions involved, and (3) a treatment of the relatively
small, but nonzero TO-LO splittings ' reported in Ref.
23. It appears that a homogeneous model of rings bridged
by oxygen atoms, not 803 triangles or more complicated
units, will suffice. This suggests the use of a Bethe lat-
tice ' of boroxol rings with central and noncentral
forces, since such calculations on an "infinite structure"
can easily give the resolution needed to check isotope-shift
data.

This work has demonstrated, for the first time, how in-
creased structure arises in the vibrational spectra of
glasses as the order is extended beyond the range of im-
mediate nearest neighbors to include rings. This is a very
general result.
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