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Vibrational modes of oxygen in GaP including nearest-neighbor interactions
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A theoretical treatment of the vibrational modes of substitutional defects in zinc-blende crystals is
presented. The dynamics of the perfect lattice are described with the use of a two-parameter model
including nearest-neighbor interactions only. The defect consists of an impurity atom with variable
strength nearest-neighbor force constants. For the case of oxygen in GaP, the theoretical defect vi-

brational modes are compared with experiment. Agreement between theory and experiment is ob-
tained for values of the defect force constants which are 15% of the bulk values for the 0 and 0+
defects, indicating that the oxygen impurity is quite weakly bonded in the lattice.

I. INTRODUCTION

An oxygen atom on a P site in GaP is a defect with
many interesting and controversial properties. The vibra-
tional states of the defect are observed in phonon-assisted
transitions appearing in a variety of optical spectra.
From the relatively low energy of those phonon modes
which involve oxygen motion, it seems that the oxygen
impurity is quite weakly bonded in the lattice, and recent
theoretical studies support this conclusion. In this paper,
we theoretically examine the vibrational modes of an oxy-
gen defect wi. th Td symmetry. We use a phenomenologi-
cal model for the lattice dynamics with the force con-
stants between the defect and neighboring atoms being
treated as parameters in the theory. We compare our re-
sults with experiment for the 0 and 0+ defects (with and
without the first donor electron present, respectively). We
find reasonable agreement between theory and experiment
for defect force constants which are about 15% of the
bulk values, thus supporting the current view that the 0
and 0+ defects are weakly bonded in a Td symmetric site.

In this paper the dynamics of the perfect lattice are
described using a two-parameter model which includes
nearest-neighbor interactions only. By symmetry, only
two parameters are required for the most general descrip-
tion of the bulk phonons in this model, and these param-
eters are chosen to fit known phonon dispersion curves. A
substitutional defect consists of an impurity atom of given
mass with variable-strength nearest-neighbor force con-
stants. The properties of a defect are thus determined by
only two parameters. Therefore, we are able to obtain
quite general results for defects within our very simplified
model for the bulk crystal. More complicated models are
available for the bulk phonons, and, in particular, the 15-
parameter deformable-dipole model of Kunc seems to
give a good description of many III-V compounds. How-
ever, within this model a substitutional defect is also
described by 15 (or more) par'ameters, and the results for
the defect vibrational modes may be somewhat dependent
on the choice of parameter values. Thus, the complicated
models yield specific results for a defect within a realistic
model for the bulk. Because of this phenomenological na-
ture of our calculations we feel that it is necessary to ex-

amine the results from both the simple and complicated
dynamical models. In this paper we present results from
the simple two-parameter model and results from the
deformable-dipole model are planned to be the topic of a
forthcoming publication.

Previous workers ' ' have considered the vibrational
states of the GaP:0 defect using molecular-type models of
the defect and its immediate neighbors. Here, we use the
Green's-function technique, "which allows us to compute
the vibrational states of the defect including the response
of the entire lattice. The advantage of this technique is
that it allows us to couple the vibrations of the defect into
the bulk crystal and see which types of vibrational modes
remain localized around the defect. The term "localized"
will be used here to refer to both strictly localized vibra-
tional modes and resonant vibrational modes in which the
vibrational amplitude is relatively peaked near the defect.
The quantity we will use to describe the vibrational modes
of a defect is the local density of states (LDOS). Strictly
localized modes show up as 5 functions in the LDOS and
resonant modes appear as peaks with some nonzero width.

In Sec. II we present the details of our computational
technique. Our method is quite similar to other vibration-
al Green's-function computations. ' The results of our
calculations are presented in Sec. III. We show the com-
puted dispersion curves and density of states (DOS) for
the bulk phonons in GaP. A model is used for the substi-
tutional 0 defect in which the nearest-neighbor 0-Ga
force constants are all varied by the same amount. For
various values of the defect force constant the LDOS for

and T2 defect vibrational modes are presented. We
find basically one 2

&
and one T2 vibrational mode of the

defect. In Sec. IV we compare our theoretical results with
experiment. For defect force constants which are 15% of
the bulk values, we identify our computed T2 mode with
the 24.7-meV resonance observed for the 0 defect. Our
computed 3

&
mode is identified with the 19-meV mode

observed, ' for the 0 and 0+ defects. We argue that
these phonons are the most localized models of the defect.
Other modes observed in the optical spectra are either
bulklike phonons or relatively delocalized defect modes.
The conclusions which can be drawn from this work are
presented in Sec. V.
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II. COMPUTATIONAL METHOD

A. Bulk phonons

The lattice dynamics of the perfect crystal are described
using a two-parameter model consisting of nearest-
neighbor interactions only. As shown by Grimm et al. ,
in the harmonic approximation, invariance of potential
energy with respect to rigid-body translations, rotations,
and symmetry operations of the crystal lattice result in
only two parameters required to describe the bulk pho-
nons. In this model the matrix of second derivatives of
the potential energy with respect to atomic positions has
diagonal Cartesian blocks of the form

4A 0 0
C&(Ga;Ga) =@(P;P)= 0 4A 0

0 0 4A

and off-diagonal blocks typically of the form

For convenience we decompose the parameters 3 and B
into bond-stretching and bond-bending components. '

The contribution to the potential energy of the system
from a bond (spring) connecting atoms i and j is written
as

V= ,' f, ~

(—u,—u, ) e;, ~

'+ ,
' f, ~

(—u;—u, ) Xe,j ~

',
with

(2a)

e,
&

——
R; —RJ.

iR; —RJ
/

(2b)

B. Green's functions

where u; is the displacement of the ith atom from its
equilibrium position R;. The parameters f) and f2 are
defined as bond-stretching and bond-bending force con-
stants, respectively, and are related to A and B by
& =(f) +2f2)/»nd & =(f) —f2)/3.

B B
@(Ga;P)=C&(P;Ga) = —8 3 B

BBA

From the eigenvalues and eigenvectors of the dynamical
matrix we compute the perfect crystal Green's function
G . Maradudin" has shown that the matrix elements of
G can be expressed as

P(n, k )gb (n, k )exp[ik (R(, —R b)]
lim

X+m, mb, 0+ CO +l E —Cg)
n, k n, k

where I and m label the X unit cells, a and b label atomic
types, and a and /3 label Cartesian coordinates. co - are

n, k

the eigenvalues and g,*(n, k) are the eigenvectors of the

(n, k)th normal mode. The equilibrium position of an

atom is denoted by R~„and I, is the mass of the ath
atom.

To evaluate the LDOS of a crystal containing a defect it
is necessary to compute that portion of the Green's func-
tion which is in the space of the defect. The defects we
consider here consist of a substitutional impurity atom in
a zinc-blende crystal with bonds of variable strength con-
necting the impurity atom to its neighboring atoms. This
defect consists of a five-atom cluster with Td symmetry.
The positions of the five atoms are specified by 15 Carte-
sian coordinates, which form a 15-dimensional representa-
tion of the T~ group. This reducible representation I can
be decomposed into the irreducible representation of the

Td group according to

I =Ai+E+Ti+3T2 .

E and T& coordinates involve motion of the outer atoms
with the inner atom stationary. The definition of all the
collective coordinates is given in Appendix A.

To produce a Green's function suitable for computation
we apply two coordinate transformations. The first
transformation is quite trivial and its effect is to drop the
masses m, and mb from Eq. (3) and to absorb them into
the defect perturbation matrix 5L. This corresponds to
expressing G with respect to the reduced coordinates
q;=+m; u; where u; are Cartesian coordinates. Second-
ly, we transform to the collective coordinates Q; defined
in Appendix A. In this coordinate system (s) and (r) label
the irreducible representation, o. and p label the occurrence
of the representation, and p and v label the row or column
of the representation. The Green's function in the space
of the defect can now be expressed as

Q~(, ) (n, k )Q(,*)p(n, k )
6(,")(„) p(co )=—lim

Xp~o+ ~ Q) +le —('0
n, k n, k

This equation classifies the collective coordinates of the
five-atom cluster. The A i coordinate consists of a
"breathing" type of motion in which the central atom is
stationary and the outer atoms move radially. The motion
of the central impurity atom forms a basis for a T2 repre-
sentation of the Td group. The other two sets of T2 coor-
dinates involve motion of the outer atoms. Similarly, the

The summation on k extends over the entire first Bril-
louin zone. This can be divided into a sum over the ir-
reducible wedge 8' of the zone and a sum over the group
elements R which define the star of k. Since the Q coor-
dinates form bases for irreducible representations of the
Td group, they are orthogonal when summed over R, and
we find that
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6-
k

G(g)(p)~p(co ) = llm g 5@~5(g)(p)
Ã& o+

n, k&W S
e 2

CO +lE' —N
n, k

where h is the number of points in the star of k and d,
k

is the dimension of the representation (s) [compare with
Eq. (41) of Ref. 14]. We see that the Green's function is
zero unless (s) =(r) and (M =v, in which case it is indepen-
dent of )((, . Thus the Green's function has been block-
diagonalized by the transformation to the collective coor-
dinates. The transformed matrix consists of 1X1, 2X2,
3)&3, and 9&9 blocks for the A~, E, T], and 3T2 repre-
sentations, respectively. Furthermore, these matrix ele-
ments do not depend on the row or column of the repre-
sentation, so that these blocks can be further reduced to
1&1, 1)&1, 1&1, and 3X3 symmetric blocks, respective-
ly, for a total of nine independent matrix elements. Keep-
ing the zero elements in mind we can simplify the nota-
tion by dropping the subscripts p, v, and (r). Further-
more, the Green's function can be explicitly divided into
its real and imaginary parts by defining the partial DOS
("spectral density"),

D(, )
(~2) =—g Re QQ(, ) (n, k )Q( )p(n, k )X d,

n, k E ))'

X 6(co —co ~),
n, k

from which Eq. (6) can be expressed as'"'

where P signifies a principle-value integral. Equations (7)
and (8) are in a form suitable for computation. The sum

over k (in the first Brillouin zone) was reduced to a sum
over the irreducible wedge ( —,', th of the Brillouin zone for
the zinc-blende structure) and was performed using the
silat-Raubenheimer method. ' ' The principal-value in-
tegral was then computed following Bernholc and Pan-
telides. ' The results presented here were computed using
5950 points in the irreducible wedge corresponding to
256000 points in the entire zone. The computations were
all performed as a function of co, using an interval size of
4.12 meV2. This corresponds to an accuracy of about 0.05
meV in the optical branches and 0.5 meV near the bottom
of the acoustic branch. The number of points used in the
k-space summation was consistent with this ~ interval
size. For plotting purposes the Green's functions were
converted to a linear energy scale by

G(co)de =6(co )dao

where 6 are the functions which will be shown here.
The Careen's function for the imperfect crystal in the

space of the defect is computed from"

G =(1—GOAL, )-'G',
where 6 and 5I are, respectively, the Green's-function
and defect-perturbation matrices in the 15X15 space of
the defect. The diagonal elements of —ImG/m. give the
LDOS of the imperfect crystal. For representations which
have multiple occurrences in the space of the defect, the
LDOS for each occurrence provides a measure of the frac-
tion of total kinetic energy in that particular type of
motion, and this quantity is used in the following sections
to describe the composition of the T2 defect modes.

C. Defect-perturbation matrix

The defect-perturbation matrix 6L, is defined by"

61 = —cu AM+AN,

where AM and AN are, respectively, the mass-defect and
force-constant-defect matrices. As discussed by Maradu-
din, "AN must be invariant under rigid-body translations,
rotations, and the symmetry operations of the imperfect
crystal. In the present model, assuming the same value of
the force constants change ~ and ~ for each of the
four bonds surrounding the mass defect, the defect-
perturbation matrix has the form given by Talwar, Vande-
vyver, and Zigone (Table 2 of Ref. 12). The b,4 com-
ponent of this matrix explicitly satisfies invariance with
respect to translations and crystal symmetry operations.
To further satisfy rotational invariance it is necessary to
assign ~=~ (At =Bt in the notation of Ref. 12), or
equivalently the change in bond bending must be zero,
hf2 ——0. The physical origin of such a constraint is as fol-
lows: Bond bending clearly violates rotational invariance
for an isolated XY'4 molecule in space since a rotation of
the molecule produces a nonzero energy change, and the
invariance constraints for such an isolated molecule are
identical with those for the "defect molecule" considered
here. However, in considering very weakly bonded defects
one would like to uniformly reduce both the bond-
stretching and bond-bending force constants to zero to
produce a defect which experiences zero restoring force
(i e, ~f(If(=~fpIf2~ 1«equivalently —~IA
=b,BIB + —1). In order to a—rbitrarily vary the bond-
bending force constant it is necessary to introduce an ad-
ditional defect force constant which has the form of a
second-nearest-neighbor bond-bending interaction [as de-
fined in Eq. (2a)] among the four atoms surrounding the
mass defect. Denoting this force constant by p, rotational
invariance is satisfied by the condition p= bfzI4. The-
final form of the defect perturbation matrix is given in
Appendix B. We note that the constraint of rotational in-
variance affects our results only through bond-bending in-
teractions which are relatively small for the GaP lattice.
In a preliminary report' of our results we neglected rota-
tional invariance, and a comparison between those results
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and the results to be presented here reveals that the effects
of rotational invariance condition are indeed negligible.
Nevertheless, rotational invariance is a fundamental prop-
erty of the system, and in this paper we completely in-
clude its effects.

III. RESULTS

A. Bu1k phonons

Shown in Fig. 1 are phonon dispersion curves and DOS
computed from the two-parameter model described in Sec.
II A. The values of the model parameters f, and f2 have
been chosen to produce a reasonable fit to the actual pho-
non energies of GaP, by matching the TA~ and TO& ener-
gies. From the dynamical matrix given by Grimm et al.
these energies are found to be

and

co (TOr)= 4A

M
(12a)

4A 1 1
co (TAX)= ~

———1—
M, 2 2

g2 1/2

(12b)

where 3 and 8 are specified in Eq. (1) and
M=m, m~/(I, +mb) with a denoting Ga and b denoting
P. For GaP the actual energies are known to be'
E(TA~) = 13.1 meV and E (TOr ) =45.4 meV, from
which the values for the force constants are determined to
be f&

——6.87 eV/A and f2 ——0.525 eV/A . Our dispersion
curves can be compared with the shell-model results of
Yarnell et al. and the deformable-dipole model results of
Kunc. The major deficiency of the present computation
is that the LO branch (near 40 meV) should actually be
higher in energy due to electrostatic interactions which
have been neglected in our model. This may affect our re-
sults for defect modes in this branch, but it should have
little effect on the defect modes at other energies.

TrG =[6(A ))+26(E)~36(T))+3G(T2)
+36(&',)+36(&;)] . (13b)

The factor of 5 on the right-hand side of Eq. (13a) arises
from the presence of five atoms in the defect cluster. The

ALL

I

GaP

B. Perfect-crystal Green's functions

Shown in Fig. 2 are the elements of the Green's-
function matrix for the perfect crystal as computed from
Eqs. (6) and (8). These functions are computed using a P
site as the origin. We plot —Imo /m for the 2&, E, T&,
and the diagonal elements of the T2 representations.
Shown on the top of Fig. 2 is the bulk DOS. The
Green's-function elements give the partial DOS for each
representation. The appearance of the Green's-function
elements may be understood by considering the type of
atomic motion they represent. For example, the 2

&

Green's function is a breathing motion which is made up
entirely from longitudinal phonons. With our P-site ori-
gin, the A~ Green s function is very small in the optical
branch because the optical modes involve very little
motion of the Ga atoms due to the mass difference be-
tween Ga and P. The Ga-site Green's function elements
can be obtained from the P-site elements by reflecting the
6 (co ) functions through a mirror plane located at co,„/2,
where co,„occurs at the top of the optical branch (e.g.,
the 3

&
Ga-site partial DOS has a small peak in the acous-

tic branch and a large peak in the optical branch). By
summing the partial densities for both a P-site origin and
a Ga-site origin we obtain the entire DOS,

——Im(TrGp) ——Im(TrGG, )=5D(co ),1 0
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E ao-

bJ~no
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FIG. 1. Phonon dispersion curves and DOS X(E) of GaP
computed using the two-parameter valence-force model
described in the text. Acoustic (2) and optical (0) branches are
labeled according to the polarization of the phonons (T is trans-
verse and I. is longitudinal). Some branches may have mixed
polarization.

A(
I

IO0 20 30 40 50
ENERGY (meV)

FIG. 2. Imaginary part of the Green's function for the per-
fect crystal using a P site for the origin in space. At the top is
shown the bulk DOS. Elements of the Green's-function matrix
shown here are the partial DQS in each of' theA&, E, Tl, Tz, T&,
and T2 CC's.
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DOS obtained from Eq. (13) can be compared with that
directly computed from

I 1

GaP: Op

MODES

D(co )=—g 5(co —co -„) .
n, k

(14)

In our calculations, the D(co ) computed in these two ways
agree to an absolute accuracy of 0.004 (for an energy scale
corresponding to co,„=1), which provides an important
check on the computation of the Green's functions.

a

I—
CA

LLI
C)

—O. I

-0.3

C. Defect vibrational modes

mp
= —0.4834 .

The springs which connect the impurity to its nearest
neighbors are described by bond-stretching f'& and bond-
bending f2 interactions. These interactions are allowed to
differ from those of the bulk and they are varied by the
same fractional amount. Thus the defect-perturbation
matrix depends on only one parameter, b,f/f, the frac-
tional change in spring constants for the defect relative to
the bulk material,

The vibrational modes of a defect are characterized by a
peak in the LDOS. This peak is the center of a band of
vibrational modes in which the defect vibrates with signi-
ficantly greater amplitude than those atoms far removed
from it. The defect we are considering consists of an im-
purity atom substitutional for the P atom. Our results are
for oxygen with a mass-defect parameter of

a

IO

-0.6
—0.7

-0.8
-0.9

resonance, becoming strictly localized in the acoustic-
optical gap, and finally entering the acoustic branch as a
rather sharp resonance. As bfIf~—1, the T2 mode ap-
proaches a 6 function at zero energy corresponding to
motion of the oxygen atom alone in the absence of any

-I.O
II

0 I 0 20 30 40 50 60
ENERGY (meV)

FIG. 3. LDOS of 3& modes for an 0 atom on a P site in
CraP Defect. force constants hf!f are varied from hf/f =0
(defect springs identical to bulk springs) to b f/f = —1 (defect
springs to zero strength). Resonance in the acoustic branch ap-
pears as a peak in the LDOS. This resonance moves to lower
energies as the defect force constant is reduced.

af fi fi f2 f2- —
f fi f2

(16)

where f &
and f2 are the bulk spring constants. Negative

values of bfIf refer to a weakly bonded defect and posi-
tive values refer to a strongly bonded defect. By defini-
tion b,fIf) —1. It seems physically unlikely that a sub-
stitutional impurity will form bonds which are very much
stronger than those of the bulk material. Therefore, we
will concentrate our attention on the range —1&elf/( 1.

For given values of defect spring constants, we compute
the LDOS for each type of vibrational mode (A ~, E, T~,
and T2). The LDOS reflects some details of the bulk vi-
brational modes and also has peaks for each of the defect
modes. For defect-perturbation values in the range
—1 & bfIf & 1 we find defect modes of 3

&
and T2 sym-

metry only. The A
&

(breathing) mode shown in Fig. 3 is a
resonance in the acoustic branch. For bf/f =0 the A~

LDOS curve at the top of the figure is identical to the A
&

Green's function for the perfect crystal. As hf/f is re-
duced a resonance mode appears and moves to lower ener-
gies. This resonance is rather broad, with a width of
about 5 meV. The sum of LDOS for the T2, T2 and T2
modes is shown in Fig. 4. These modes consist of vibra-
tions of the oxygen atom itself along with some response
of the rest of the lattice. For bfIf=0 we obtain a strict-
ly localized mode at 56.3 meV. As bf/f is reduced this
T2 mode falls in energy, entering the optical branch as a

GaP: Op

T~ MODES

I -o,z

I -o.~

-0.4

LLI
C)

C)

I oo-

.o-

-o.e

-0.7
-0.8

-0.95

-0.99
I I

0 I 0 20 30 40 50 60
ENERGY (meV)

FIG. 4. LDOS of T2 modes for an 0 atom on a P site in
CxaP. For a defect force constant of b,f/f =0 a strictly local-
ized mode at 56 meV is shown as a 5 function in the LDOS. As
b,f/f is reduced this mode moves to lower energies, entering the
optical branch as a resonance, becoming strictly localized in the
acoustic-optical gap, and entering the acoustic branch as a sharp
resonance.
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restoring force. The T2 resonances in optical and acoustic
branches are relatively sharp with a width of less than 2
meV. The T2-defect modes generally consist of at least
80% 0 (T2) motion. An exception to this is the strictly
localized mode in the energy range 25—30 meV which is
typically 0.90T2 +0.08 T2 +0.02T2 (presumably this
mode is comprised largely of bulk phonons from the very
top of the LA branch which include very little P-atom
motion).

The results from the LDQS calculations are surnma-
rized in Fig. 5. Here we plot the energies of the defect
modes versus the defect-spring-constant parameter. Qn
the left-hand side of the figure a bulk DOS is shown for
reference. The solid lines in the figure are the Green's-
function results. These energies are defined as the loca-
tion of zeros in the real part of the eigenvalues of the ma-
trix (1—605L) [Eq. (10)]. For bf jf&0 we see the 3,
and T2 modes discussed above. For Af lf & 0 another Tq
mode consisting of about 70% T2 Inotion appears as a
resonance in the acoustic branch. For —1 & Af If & 1, no
defect modes of E or T& symmetry occur. Physically, this
means that E and T& vibrations of the defect are strongly
coupled to the bulk crystal so that these types of motion
are not localized around the defect. The defect perturba-
tion for E modes contains only bond-bending interactions
which are relatively weak and produce defect modes only
for Aflf »1. The defect perturbation for T~ modes is
identically zero as a result of rotational invariance and
consequently no T& defect modes exist. The defect pertur-
bation for 3 and T2 modes contains bond-stretching and
mass-defect terms which are relatively large and produce
the modes shown here.

SOP:0

20

I I

-1.0 -0.5 0
h.f/f

FIG. 5. Defect vibrational modes of oxygen on a P site in
GaP. Energy of the modes is plotted vs the defect force con-
stant Af/f. Heavy solid lines show the solutions from the
Green's-function calculations. Dashed and dotted lines give the
vibrational modes of an OGa4 molecule embedded in an immov-
able lattice. E and T~ molecular modes are split by an amount
too small to show in the figure. Bulk phonon DOS is shown on
the left-hand side of the figure.

The energy of some Green's-function modes are quite
close to those calculated from a simple molecular model.
In Fig. 5 we show the modes for a OGa4 molecule imbed-
ded in an immovable lattice according to the formulas
given in Appendix C. From the figure it is apparent that
the 2

&
molecular mode agrees very roughly with the A

&

Green's-function mode. Three T2 molecular modes exist.
Those modes near 25 meV are mainly T2-type (bending
motion of the Ga atoms perpendicular to the Q—Ga
bonds), those modes near 15 meV are mainly T2 type
(stretching motion of the Ga atoms parallel to the 0—Ga
bonds), and the modes which vary quadratically with
Aflf are mainly T2 type (0-atom motion). The modes
have mixed nature near the crossing points of the
branches. Some of the molecular results agree closely
with the Green's-function modes, but other molecular
modes appear where there are no Green's-function modes.
In the latter case the vibration of the defect is strongly
coupled to the bulk modes so that a peak in the LDQS
does not appear. This illustrates the major deficiency of
the molecular-model results —the number of modes is
determined by the size of the cluster. The Green's-
function method allows us to couple these modes to the
rest of the crystal in order to see if they remain somewhat
localized around the defect. The real importance of the
molecular-model calculations is that they provide a good
check on the Green s function results, since in certain lim-
its the results from both methods agree quite well.

IV. DISCUSSION

The vibrational states of the neutral oxygen defect O
are seen in the electron-capture luminescence of' Dean and
Henry. In this spectrum the zero-phonon line is forbid-
den so that the strong one-phonon replicas must involve
T2 phonons. ' As shown in Fig. 2 of Dean and Henry' s
work vibrational modes involving oxygen motion are seen
at 24.7 and 28.4 meV (resonances in the acoustic branch)
and various phonon replicas are also seen in the optical
branch. Since oxygen has a smaller mass than phos-
phorous, it is necessary to considerably reduce the O—Ga
force constants relative to the bulk Ga—P force constants
to produce such low-energy modes. ' Comparing the ex-
perimental results with the theoretical T2 modes shown in
Fig. 4 we see that it is necessary to reduce the strength of
the defect force constants to bfIf & —0.8 to produce the
resonance in the acoustic branch. In Fig. 6 we show the
LDOS for T2 modes using bfif = —0.85, and mass de-
fects corresponding to O and O. The theory predicts
one T2 resonant mode centered at 21.9 meV for ' Q.
Dean and Henry report a value of —1.6 meV for the' O~' O isotope shift of the 24.7 meV peak. As shown
in Fig. 6 we calculate a shift of —1.14 meV for this reso-
nance peak, which we consider to be within experimental
uncertainty of the observed —1.6 meV considering the
limited resolution of the Q~, peak in the data. Thus we
identify our computed 21.9-meV resonance with the ob-
served 24.7-meV mode. Our computed isotope shift is
83% of what would be expected for motion of the Q atom
alone. Alternatively, the LDOS gives the composition of
the T2 resonance mode to be 0.05T2+0.87T2+0.87T2.
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FKx. 6. LDOS for T2 modes of ' 0 (solid line) and ' 0
(dashed line) defects using a defect force constant of
hf/f = —0.85.

According to our calculations the first-shell Ga atoms al-
ways make a significant contribution to the resonance.
Motion of the 0 atom alone is not a normal mode of the
system (except for Af If= —1).

The vibrational mode observed at 28.4 meV is not well
described by the present theory. However, we suggest that
this feature is partly due to a peak in the bulk T2 DOS
(LA phonons) which adds structure to the LDOS. This
feature does not appear in Fig. 6 because of the simplified
model used for the bulk phonons, but better models ' do
indeed show a strong peak near 27 meV. In the optical
branch the experiments observe a number of vibrational
modes. In Fig. 6 we see some small features in the optical
branch, but these are associated only with the bulk DOS
and are not localized near the defect. However, as dis-
cussed above, the LO branch of our theoretical phonon
dispersion curves is quite crude and more sophisticated
models may produce additional defect modes there.

Phonons of energy 19.5 and 47 meV have been observed
for the 0+ defect in the donor-acceptor —pair (DAP)
luminescence of Dean, Henry, and Frosch. ' Morgan' ar-
gues that these phonons are Aj-type modes since the
zero-phonon transition is allowed. We note that phonons
involving colinear motion of the oxygen and acceptor
atoms are in fact allowed in the DAP spectra (these modes
are Tq type with respect to the Td symmetry of the isolat-
ed 0 atom). This fact led us originally to conclude that
the 47-meV phonon was a T2 mode involving resonant 0
motion. ' However, calculations show that the intensity
of a strictly localized T2 phonon replica in a DAP spec-
trum is very weak for distant DAP's. This probably is
true for localized resonant modes also. We conclude that
the 47-meV mode does not involve localized 0 motion.

In photoluminescence excitation experiments on the 0
defect, Monemar and Samuelson observed phonons of en-
ergy 19 and 48 meV. These energies equal those for the
0+ defect within an experimental uncertainty of about
5%%uo. Alternatively, Henry and Lang ' propose a shift of
22go in the phonon energies of the different charge states
in order to explain observed nonradiative capture cross
sections. These two results are not necessarily inconsistent
since the 19- and 48-meV modes may be relatively insensi-
tive to force-constant changes, whereas the

capture —cross-section data include the T2 modes which
are quite dependent on the defect force constants. A good
method to determine the difference between O+ and 0
force constants would be the observation of the O+ T2
mode, predicted by Baraff et al. to lie at 32.4 meV. In
any case, considering the accuracy of the computations
present here, the difference between 0+ and 0 force con-
stants is relatively small and we will henceforth use the
same force constants (hf If= —0.85 as determined
above) for both charge states.

Turning now to the calculation, for bf If= —0.85 we
find an A i resonance at 12.2 meV, which we identify with
the observed 19-meV phonon. In the present model the
computed energy of this mode is somewhat low, but re-
sults from more complicated models yield an A

&
phonon

energy much closer to that observed. The computed reso-
nance has a width of about 5 meV, which is comparable to
the 3-meV lifetime broadening estimated by Monemar and
Samuelson. The breadth of this resonance indicates that
it is not too strongly localized around the defect, so that
the mode involves breathing motion of the first Ga shell
along with significant contributions from further shells.
In the optical branch we find no Ai resonances for
b,flf = —0.85. There are no 3 i modes here because opti-
cal phonons involve mainly P-atom motion (see Sec.
III B), and in the present calculation it is very difficult to
localize this type of motion since the P atoms are in the
second shell around the 0 atom but the defect force con-
stants extend only to the first shell. Possibly an 2 i mode
in the optical branch could be produced by adjusting
second-nearest-neighbor 0—P bonds or Ga—P back bonds.
However, from the present model we conclude that the
47-meV mode does not involve localized breathing motion
of the first Ga shell.

In summary, for a defect force constant of
bflf = —0.85 our theory finds an Ai resonance at 12.2
meV and a T2 resonance at 21.9 meV, which we identify
with the observed 19.5- (Ref. 1) and 24.7-meV (Ref. 2)
modes, respectively. No other defect modes are predicted
by the theory and we conclude that other observed modes
are not localized at the O impurity or in the first Ga shell.
As discussed above, the identification by Morgan' of the
observed 47-meV (Refs. 1 and 3) phonon as an Ai mode
localized on P atoms is consistent with our results. Also
we argue that the observed 28.4-meV peak (Ref. 2) may be
partly due to a peak in the LA-phonon bulk DOS. Simi-
larly, the phonons labeled 3 —C in the capture lumines-
cence (Ref. 2) may also be due to peaks in the bulk DOS
or they may be some type of delocalized vibrational modes
of the defect.

V. CONCLUSIONS

In this paper we theoretically analyze the vibrational
modes of substitutional oxygen in GaP using nearest-
neighbor interactions only. Our theory predicts the pres-
ence of basically one mode of A ~ symmetry and one mode
of Tz symmetry which are localized (strictly localized or
resonant) around the 0 impurity. We identify these local-
ized modes with phonons observed in the optical spectra
of the 0 and 0+ defects, and we argue that other pho-
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nons observed in these spectra are relatively delocalized.
By the term delocalized, we mean a bulk phonon or a de-
fect mode which is not significantly localized at the 0 im-
purity or in the first shell of Ga atoms. We should em-
phasize that the number of localized modes predicted by
the present theory is largely determined by the model used
for the defect perturbation, i.e., relaxation of nearest-
neighbor 0—Ga force constants only. More sophisticated
defect models do produce additional localized modes, and
these modes will be discussed in a forthcoming publica-
tion. However, since the defect perturbation is basically
unknown, we feel that even the simple results presented

here provide new insight concerning the nature of the vi-
brational modes of oxygen in GaP.
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APPENDIX A: COLLECTIVE COORDINATES FOR A FIVE-ATOM TETRAHEDRAL CLUSTER

The collective coordinates Q are expressed in terms of the Cartesian coordinates (x,y, z) of each atom. The atoms are
numbered 0—4 located along lattice directions (0,0,0), (1,1,1), ( —1,—1, 1), ( —1, 1 —1), and (1,—1, —1), respectively.
The collective coordinates form bases for the irreducible representation of the Td group as indicated. NF denotes the
normalization factor.

Qi Q2 Q3

T$

Q4 Q5 Q6

Tc

Q7 Q8 Q9

Tb

Qio Qii Qi2

Tc

Q13 Q14 Q15

Xp
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Zp
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APPENDIX B: ELEMENTS OF THE DEFECT-PERTURBATION MATRIX 5L USED
FOR THE GREEN'S-FUNCTION COMPUTATIONS

The defect consists of a central 0 atom surrounded by four identical Ga atoms. The difference between the 0—Ga
force constants and those of the bulk is denoted 4f ~

for bond-stretching and b f2 for bond-bending interactions. The
mass difference is denoted by Am =mo —mp. Bond-bending interaction of strength p are introduced between the Ga
atoms and p= bf2l4 by rotational invarian—ce. The subscripts a —c in the T2 matrix refer to the collective coordi-
nates listed in Appendix A. We write

5L(Ai)=-
Pl +g

1 bf), 5L(E)= 1 (&f2+3p), 5L(Tf) — (+f2+4p) y 5Lgg(T2)=
1

rn oa Ul G~
(&f2+ —', p),

5Lbb(T2)= (Af)+ —,p), 5L„(T2)= ( —,bf)+ 3 bfp —™),5L,b(T2)=5L,b(T2)= — p,1

P7t G~ mp 3fPz +g

4
5Lb, (T2)=5L,b(T2) =

3777 ~am p

1/2

Af, , 5L„(T2)=5L„(Tp)=
3m~~mp

1/2
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APPENDIX C: VIBRATION FREQUENCIES co OF AN OGa4 CLUSTER
EMBEDDED IN AN IMMOVABLE LATTICE

Nearest-neighbor bond-stretching and bond-bending force constants f1 and f2, respectively, refer to 0—Ga bonds and

f1 and f2 refer to those bonds connecting the Ga atoms to the immovable lattice. Second-nearest-neighbor bond-
bending interactions of strength p are introduced between the Ga atoms and p = —(f2 f2)/—4 by rotational invariance.
The subscripts a —c in matrix C refer to the collective coordinates listed in Appendix A. We have

(f1+T~f1+ T~f2), n1 (E)= (f2+3@+ , f1 + —,f2), c—o (T1)= (fr+41M+ —', f, + ,
' f2), —

mg~ mGa m~,

co (T2)= eigenvalues of matrix C, C» —— (f2+ —', p+ ', f, + ,'—f2), —C22— (f1+ 3m+ 3f1+ 3f2),

s, VS(3f1+Tf2)r C12 C21 P y +23 C32 ——
mo 3m G~ 3m G~mo

f1t C13 C31
8

3mo, mo

1/2

f2.
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