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A computational scheme for the treatment of Coulomb sums in the Hartree-Fock approach to
periodic systems in one, two, and three dimensions is presented. The philosophy is as follows: (a)

The interaction of two charge distributions contributing to the total charge in cells 0 and m is treat-
ed exactly at short range; (b) when the reciprocal penetration of the distributions is sufficiently

small, the charge distribution at m is partitioned into "shell-charge distributions" which are then ex-

panded in a multipole series; {c) for
i
m

~

larger than a given threshold, a Madelung sum of atomic
charges is performed. Results are reported for the SN„polymer, the graphite, boron nitride, and
beryllium monolayers, for the beryllium monolayer with hydrogen chemisorbed thereon, and for
three-dimensional silicon, with a view to compare two charge-partitioning schemes, and the conver-

gence of the results with respect to the order of the multipole expansions. It is shown that the in-

clusion of all terms to hexadecapole confines the error in the Coulomb contribution to the total ener-

gy for all the systems considered to within 0.001 a.u./atom, with the exactly treated zone reduced to
a few neighbors, and that at this level the results are essentially independent of the particular
charge-partitioning scheme adopted.

I. INTRODUCTION

In linear combination of atomic orbitals (LCAO)
Hartree-Fock studies of periodic systems, infinite sums of
Coulomb and exchange integrals must be evaluated both
for the construction of the Fock matrix and for the calcu-
lation of the total energy. With few, though interesting
exceptions, ' exact formulas are not available for calculat-
ing these infinite summations, which run over several in-
dices and depend in a complicated way on the crystal
structure of the system and on the type and location of the
basis functions. Approximate procedures are therefore
adopted, based usually on the following two-step analysis:
(a) The series is first rearranged by grouping together sub-
sets that can be accurately summed, the purpose of which
is to improve the convergence properties of the rearranged
series, whose summation index corresponds as a rule to
the direct-lattice vectors m, ordered according to their
length; (b) in the summation of the new series, a decreas-
ing level of accuracy is adopted with increasing distance
from a given reference cell.

Extreme care must be used in this procedure because
convergence usually depends on a delicate balance of
terms of opposite sign. Also connection problems may
arise when passing from a zone of given accuracy to the
next less precise one. Much ingenuity has been spent on
devising effective ways to implement the above general
scheme; the quality of a computer program and possibly
its very structure depend critically on the kind of summa-
tion criteria adopted.

The problem of the exchange terms is a relatively minor
one. The short-range character of exchange forces leads

to a very rapid convergence if the series is appropriately
rearranged. Here we only consider the more difficult
problem of accelerating the convergence of the Coulomb
series. The importance of long-range Coulomb effects in
Hartree-Fock calculations of infinite polymers has been
discussed by Delhalle et al. Similar problems have
shown up in a study of beryllium films, where a reliable
estimate of the total energy required very large numbers
of two-electron Coulomb integrals to be taken into ac-
count, while the wave function was affected to a lesser ex-
tent. It is the primary purpose of the present work to
show how the use of multipole series expansions carried
out to sufficiently high order may be used to reduce the
computational burden to manageable proportions. Indeed
the use of an exact summation formula specially designed
for multipole expansions within one-dimensional periodic
systems makes the procedure of Delhalle et al. very ef-
fective in this context. The fact that it appears impossible
to generalize such formulas to two- and three-dimensional
structures is not the only, or even the main, reason why
the Delhalle et al. procedure is not applicable in these
cases. A given radius that fixes the range where whole
cells must be treated exactly can correspond to quite feasi-
ble computations with a simple polymer, while leading to
explosively high numbers of integrals with a thin film or a
three-dimensional crystal. More subtle criteria are there-
fore needed than those based on crystal-cell units. The
present work has been carried out using the philosophy
adopted in the CRYSTAL program that has been used for
the beryllium slab calculations and a number of other
Hartree-Fock studies, ' ' where the electronic charge is
partitioned among atomic shells; the Coulomb interaction
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between the charge distribution of a given shell and a
charge distribution associated with the reference cell was
treated exactly if the degree of penetration of the two dis-
tributions is sufficiently high, or else evaluated using a
multipole expansion of the shell about the corresponding
nuclear position. This procedure satisfies the charge con-
servation conditions discussed by a number of authors s, 8, 9

The present work may be regarded as an advance over
that in Ref. 3 on two counts.

(a) The criteria for an exact partition of the electronic
charge into partial contributions are discussed, with em-
phasis on the degrees of freedom in this essentially arbi-
trary process. It is demonstrated that the results obtained
with two partitioning schemes are in very close agreement.

(b) The evaluation of multipolar expansions truncated at
relatively high order (up to I=6) is discussed, then to be
compared with calculations carried out at the dipole level
(I =1) hitherto. The practical usefulness of such high-
order expansions is related to an efficient technique for
the evaluation of multipole and field integrals involving
products of Gaussian-type functions (GTF's) to be
described.

Results will be presented for the (SN)„polymer, boron
nitride, graphite, and beryllium monolayers, for a hydro-
gen monolayer chemisorbed on a beryllium monolayer,
and for silicon. %'e present these results to test the effi-
ciency of different charge-partitioning schemes and of the
truncation criteria, and to assess the importance of higher
than dipole terms in the multipole expansions.

As a by-product of the much enhanced precision ob-
tainable in the present work we have arrived at an ex-
planation for the puzzling fact that the wave function ap-
peared to be more stable than the total energy in previous
work, together with a suggestion for improvement of the
energy expression. The results indicate that a solution of
the Coulomb problem in the Hartree-Pock treatment of
periodic systems is well within reach.

II. EVALUATIQN QF CQUI.QMB INTERACTIQNS

p„„,(r)= gp„"„,(r),
h

p„"„,(r)= gp~ (r)=——gz~5(r —h —f„),

(3a)

(3b)

h h
pelec g pv ( r ) ~

V

where p ~ ( r ) denotes a contribution to the electron-
ic charge of the cell identified by translation vector
h, p,~„(r), while the index V symbohzes, for example, all
the atomic orbitals (AO's) belonging to an atom within the
cell, or to a shell of AO's, or even perhaps a single AO.
To achieve our purpose, each of the terms on the right-
hand side (rhs) of Eq. (4) is partitioned among the

p~ ( r ) distributions. The criteria for the choice of the cor-
responding fractional weights, a(j j',g, g ', V, h), are to
some extent arbitrary, but the conditions of charge conser-
vation,

g &(J~J ~g~g
V, h

and translational invariance,

~Vj' g g' Vh)=~Vj'O g' —g Vh —g»
must be satisfied. It is also reasonable, if not absolutely
essential, to require that a component of the charge distri-
bution and its transpose be partitioned identically,

~ p

(r) g pjs, spR, s (r)
~ ~ ~ I +

J~g~J~g

where the symbols adopted here are as in previous work.
We now wish to rearrange the series implied by Eq. (4) so
as to make it possible to write

p,)„(r)=gp, ),„.(r), (5a)
h

Infinite summations of Coulomb terms appear within
two contexts in an LCAO Hartree-Fock program for
periodic systems. First, when evaluating the electrostatic
contribution to the elements of the Fock matrix,

~Vj' g g' Vh)=~V'j g' g Vh)

For the moment, to keep notation simple, we let V
denote a single AO, but ultimately it will denote an atom-
ic shell. One of the most simple partitionings is to have
all the fractional weights zero except when V, h is equal to
j, g or j', g '. We then have, using Eq. (4),

p~ (r)= X +tt' ptt' (9a)and second, when estimating the Coulomb contribution to
the total energy per cell,

(F)J )4,„)—— p. (r ')dr ' f p(r)
~

r r'
~

'dr, —

pjsj's (r)=XJs(r)Xs (r),

Ec,„&—— p r'dr' p r r —r' 'd'r1

2X r&r '

P h' —h 2
h' —hPh' —h

u' = O'u' u' (9b)

where p(r ) denotes the total charge density of the system,
the condition r+r ' in Eq. (2) prevents the self-interaction
of nuclear charges, and N denotes the number of cells tak-
en into account (the limit %~oo should be taken). To
simplify notation, real atomic orbitals are assumed in Eq.
(lb) and henceforth. The total charge density is composed
of the following electronic and nucleic contributions:

Equation (9) should be interpreted according to the con-
vention that u,, = —,', rather than Eq. (6).

In a practical application, it is necessary to truncate the
summations over t' and h ' in Eq. (9a), and our procedure
is as follows: We associate with each AO, X,"(r), an ad-
joined ls-type Gaussian, '

g, (r), in such a way that the
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orbital exponent of the adjoin at measures the size of
the corresponding AO. If the overlap integral between

h '

g, ( r ) and g, ( r ) is less than a preset threshold t l the
corresponding term in Eq. (9a) is discarded, thus reducing
the summation to a finite number of terms. A Mulliken
partition of the charge may be used, when att =at, = —,',
so that P« ——P«". A "weighted" Mulliken partition may
be adopted instead. In the present work we have made use
of the adjoined Gaussians to define such a weighted parti-
tion according to the formula

1

+Coul T +NN++NE+ X +jj +jj
~ t +JJtg

(13)

It is easy to show that

E~z ——EF. (14)

although this may not be true after approximations are in-
troduced. The energy may thus also be written in the
for m

n 0tztt'=tetr =&'t j(ttt+at )~' (10)
1

+Coul 2 +NN ++EN + P +jg'+ jj '

~ /JtJtg
(15)

(F,~& )c,„l f p,', '(r'——)dr ' f g gp~ (r)+ gp,"(r)
h

~ /r —r'f 'dr

The Coulomb contribution to the total energy per cell,
Eq. (2), may now be written as half the energy of interac-
tion of the total charge of the system with the reference-
cell distribution. We have

1

+Coul Y ( +NN ++NE ++EN ++EE ) ~

ENN ——fp„.(r')dr' f gp „(r)
~

r —r'~
h

(12a)

(12b)

&NE ——f p „,(r')dr' f +pl„(r) ~

r —r'~ 'dr, (12c)

FEN = f p,l„(r ')dr ' f gp„"„,(r)
~

r —r '
~

'dr, (12d)

EEE ——f p,l„(r ')dr ' f gp, l„(r)
~

r —r '
~

'dr . (12e)

By noting the definition of the partitioned electronic
charges, Eq. (9), and of the Fock matrix elements, Eq.
(11),we may rewrite Eq. (12) as

which again guarantees charge conservation, Eq. (6), while
correctly attributing a larger fraction of the overlap
charge to the more localized AO. As partial justification
for this weighted partition, consider the following. The
product of the two adjoined Gaussians associated with a
given overlap distribution may be considered to be a rough
approximation to the overlap distribution itself. If we
now replace the adjoined overlap distribution by two point
monopoles located at the centroids of Xt" (r) and X, (r)

h ' 0 h' —h 0with charges S«a«and S«a, „respectively, where
S«" " denotes the overlap integral between the AO's,
then it can be shown that the charge of the overlap distri-
bution and the dipole centroid of the adjoined overlap dis-
tribution are conserved. The simple and weighted Mullik-
en partitions will be used in the present work; however,
these are not the only possibilities, nor even perhaps the
most sensible ones.

The expression for the Coulomb contribution to the
Fock matrix elements, Eq. (1), may now be rewritten as

We stress here that while Ec,„~ is formally equa1 to
Ec,„~, the equality may not hold after approximation. In
the present work, as previously, we have evaluated E~,„~,
because computationally this is slightly simpler. Howev-
er, it turns out that it would be preferable to evaluate

Ec,„l, which is more stable to the effects of approxima-
tion, and this provides the explanation for the hitherto
puzzling observation that the energy, evaluated as Ec,„~,
is less stable than the wave function against approxima-
tion. We shall return to this point after a discussion of
our approximations.

The first approximation is effected by defining a
"Madelung zone. " If p" (r) is such that

~

h
~
&I, where

M is a preset Madelung radius, it is assigned to the
Madelung zone. A typical Coulomb contribution to the
total energy is of the form

where X and F may denote either nucleic or electronic
charge. If p& belongs to the Madelung zone, we make a
bicentric expansion of the interaction operator, with ori-
gins located at the centroids of pJ (r ) and pl ( r ') for r
and r ', respectively. " The expansion is terminated at the
l=O term, and it is assumed that the Madelung radius is
sufficiently large that the charge distributions are non-
penetrating. Clearly the partitioning criteria adopted for
the electronic charge has some bearing on the accuracy of
this approach. The lattice summations over the Madelung
zone are performed by the Ewald method. ' The
Madelung contributions to the Fock operator are neglect-
ed entirely in the present work, as previously. This ap-
proximation can be defined only if the Madelung radius is
sufficiently large that the potential generated by the
Madelung cells is constant within the reference cell, and
this requirement presents no real difficulty in the case of
one- and two-dimensional systems. However, in three-
dimensional systems, the practical difficulties associated
with a large Madelung radius are such that we now believe
that it would be wise to incorporate the effects of the
Madelung potential into the Fock operator. Work in this
direction is now in progress, which it is hoped will greatly
increase the accuracy of the method for three-dimensional
ionic crystals, but meanwhile we refrain from a considera-
tion of such systems.

Consider now the contributions of p
"

( r ) when

~

h
~

&M, that is, where the cells belong to the "quantum
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zone. " The quantum-zone contribution to the nuclear
repulsion energy —,E&& is easily evaluated without ap-
proximation. The quantum-zone contribution of the nu-
cleic charges to the Fock operator,

~h~(M

X, (C;r)=[X;~ ~(C;r)

+(sgnm)I't ~ ~(C;r)]/(4sgnm)'~
(21)

The potential created at a point r ', external to the dis-
tribution, p,", is given by

(16)

can also be evaluated without approximation. This also
permits the exact evaluation of the quantum-zone contri-
bution to the term EE& which appears in &c,„&, Eq. (15).
Thus after combining Eqs. (9a), (12d), and (16), we find

EN g lJ'~JJ'
JJ~g

The Fock operator also requires the evaluation of terms
such as

G(j j', g;t, h)= f pj~ s(r ')dr ' f p,"(r)
I

r —r 'I 'dr

V,
" (r ')= g y(, @t (h+ f, ;r '),

l, m

yr, f &——P( f„r)p, (r)dr,

@P(C;r)=At I I (C;r),
I P(C;r)=Xt (C;r)/rc'+',

Xi =(2—5,)[(l —m)!]/(1+m)! .

Here, and in the following,

(22a)

(22b)

(22c)

(22d)

(22e)

where
I

h
I

& M. These are evaluated by one of two
methods, according to the "degree of penetration" of pj's
and p,

" where the measure of the degree of penetration
used in the present work is the same as that of Ref. 3. If
the degree of penetration is greater than a preset threshold
t2, the integral, Eq. (18), is evaluated exactly as a linear
combination of two-electron repulsion integrals. Thus us-
ing Eq. (9a), we find

G(j j', g;t, h)= g P«(j, O;j', g I
t, h;t', h') (19)

t', h '

and we shall say that the density p, is within the "bielect-
ronic zone" with respect to pzz

However, if the degree of penetratio~ of the two charge
distributions is less than the given threshold, then Eq. (18)
is evaluated by a multipole expansion of pP (r ) truncated
at some given L value, and pP ( r ) is said to belong to the
"monoelectronic zone" with respect to pj~' . Thus let us
indicate by p,

" (r) a multipole expansion of p,"(r) trun-
cated at the L,th order. It is expedient and natural to
make the origin of the expansion h+ f„where the frac-
tional vector identifies the centroid of g, (r). We define
un-normalized complex solid harmonics by means of

Yt (C;r) =rcPI' (cos9)e'

where 8 and P denote the angular coordinates of a
spherical-polar system whose origin is C and where
rc=

I
r —C I. Un-normalized real solid harmonics may

be defined through

denotes the double summation

Thus a monoelectronic-zone contribution to Eq. (18) is
of the form

G(j j ', g;t, h)= g yI, f p,,'''(r')C&I (h+ f„r')dr'.

(23)

It may be wondered why a bicentric expansion of the
interaction operator is not used to evaluate the
monoelectronic-zone contribution to the Fock operator.
The reason is that the charge partitions are actually allo-
cated to atomic shells rather than individual atomic orbi-
tals in the present work. The resultant shell-charge distri-
butions are normally reasonably close to spherical symme-
try. However the density pjj's in Eq. (23) is often far
from spherically symmetric, and the use of the monocen-
tric expansion of the interaction operator allows account
to be taken of all the multipole moments of this density.
The criteria for assigning orbitals to the monoelectronic or
bielectronic zone is then a function only of the shell to
which the orbital belongs, and similar remarks apply also
to the weighted partitioning criterion, Eq. (10), as well as
to the truncation procedure associated with the summa-
tions over t' and h ' in Eq. (9a). It may be useful to sum-
marize our formula for the Coulomb contribution to the
Fock matrix elements, after the various summations are
organized by shells, the latter bei.ng denoted by T. We
write

11 InOnO

(+» )c.«=~&f'+g g g & ~ii "(j o'j' g lt" t' "')+ g & @IT f pj's' '(r')C'I ("+fT r')"r'
T tETh t'h' lmh

XtT —g ) lt ~

t ET

(24a)

(24b)
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It is convenient to rearrange the summations over the bielectronic zone as follows (let k = h —h):
bi ~ bi

"(j,o;j', g ~

&, h;&', h')= g g g P„g(j,Oj', g ~t, h;t', h+k) . (25)
T tETh t'h' T tETt' k7

It is now appropriate to discuss the differences between
Ec,„~ and Ec,„&, Eqs. (13) and (15), respectively. The dif-
ficulty with Ec,„~ is that the interaction of electrons asso-
ciated with the reference cell and those belonging to the
monoelectronic zone is evaluated approximately through a
multipolar expansion of the monoelectronic-zone shell
charges. However, no such approximation is made when
one considers the interaction of the nuclei of the reference
cell with the electrons of the more remote cells, because
this term is evaluated exactly, using Eq. (14) to convert
E~E to EE~. It is our opinion that a direct but approxi-
mate evaluation of E&E, involving first a classification of
the shell charges into those which are and are not penetra-
tion by the nuclei of the reference cell, would be prefer-
able. In the nonpenetrating case, the interaction should
then be evaluated by means of a multipole expansion of
the shell charge (to the same order as used in the
electron-electron interaction); the interaction is evaluated
exactly in the penetrating case. In this way errors intro-
duced in the evaluation of EFE would be approximately
counterbalanced by those in E&E, and work is in hand to
implement the evaluation of Ec,„& by this method.

III. EVALUATION OF FIELD
AND MULTIPOLE INTEGRALS

The field and multipole integrals involving products of
GTF's that arise in the present work are evaluated using
the method of McMurchie and Davidson' suitably gen-
eralized so that poles of arbitrarily high order can be
evaluated. The first step in the McMurchie-Davidson
procedure is to expand the overlap distributions of two
GTF's with exponents a and b located at A and B, respec-
tively, as a linear combination of Hermite GTF's located
at Q and with exponent q,

q =a+b,
Q=(aA+bB)iq,

(27a)

(27b)

In this way the summation over h may be performed
prior to commencing the Hartree-Fock iterations, with a
considerable saving in both computer time and backing
store. For similar reasons the field integrals are summed

over the h vectors of the monoelectronic zone for use in
Eq. (24a),

mono

M(j j ', g;T)= g f p;, (s r')CI (h+ fT, r')dr'. (26)

the Hermite GTF's denoted by A have the definition

a
exp( qr~ ),—Apk(r)= a

ljk gg

with r& ——
~

r —Q ~. A common set of Hermite GTF's is
used to expand all possible overlap distributions arising
from a given shell-shell overlap, a feature which may be
exploited to considerably accelerate the rate at which the
integrals may be computed. '

JI (Q, C, ij,k)=Np f Apjk(r)I p(C;r)dr, (31)

where NP and I
~ (C;r) were defined in Eq. (22).

The solid harmonic, Eq. (21), is a homogeneous polyno-
mial in xc,yc, zc of order l,

X( (C;r)= g DI (p, v, r)xfyczc,
p&v, v

(32)

where the D coefficients are easily generated from the re-
cursion relationships for the solid harmonics [see Eq.
(45)].

The spherical gradient operator W~ (C) may be formal-
ly related' to the solid harmonic by the substitution
xc ~8/Bc„(similarly for the y and z coordinate),

a a
ac„ac,W~ (C)= g D~ (p, v, r) ac.

It can be shown (see pp. 124—127 of Ref. 16) that

(33)

K (C)rc =[(2l —1)!!]II (C;r),
so that

(34)

JP(Q C i j k)=IN/I[(21 —1)"]I

X f APk(r)W~ (C)rc 'dr . (35}

A. Field integra, ls

We are here interested in integrals of the form

f Xz(r)X&(r)C&~ (C;r)dr= g E,jkJI (Q, C, i j,k), (30)
i,j,k

where NP(C;r) has been defined in Eq. (22). We have
used Eq. (28},and

so that

xg ( r )xg( r ) = y E,Jk A;,J, ( r ),
t,j,k

(28)

The integrals in Eq. (31) may be shown to be uniformly
convergent (in contrast to the case where Cartesian gra-
dient tensor components are used, where Dirac 6 functions
may be involved). Thus after noting

where E denotes the expansion coefficients to be generated
according to the methods of Refs. 13 and 14, and where ac„ax (36a}



5786 R. DOVESI, C. PISANI, C. ROETTI, AND V. R. SAUNDERS 28

Apk(r ) = — Apk(r), SP(Q, C,ij,k)= f A~~kr)X~ (C;r)dr, (40b)

and after successive integrations by parts, we find

J( (Q, C, i,j,k) = [(—1)'%P/[(2i —1)"] I

A~Jk r rc d (37)

where we have used Eq. (28). Actually, only the case
A=C arises in the present work, but the slightly more
general form of Eq. (40) causes no additional complica-
tions. The Hermite GTF's have two important proper-
ties, ' ' the definite integral,

After noting the definition of the Hermite GTF's [Eq.
(29)] and the spherical gradient operator [Eq. (33)], we ar-
rive at the result

JI (Q, c,i,j,k)= I( —1) N/ /[(2l —1)!!]I

f A~k(r)dr =5;05 O5ko(~/q) =S (Q, C,i j,k),
and the recurrence relation,

xgA. J(kr) =A;+$ J k(r)/(2q)+iA;. , J I, (r),

(41)

(42)

X g D( (p, &, &)
P, v, 1"

so that the general field integral has been reduced to a
linear combination of nuclear attraction integrals, whose
recursive evaluation has been given previously. ' '

Two practical points concerning the implementation of
the above scheme are worth noting.

(i) The D coefficients are comparatively few in number
even if high i values are used (for example, there are less
than 200 finite coefficients for all i values less than seven),
so that it is feasible to compute and store them at the
outset. The factors ( —1) X~ /[(2l —1)!!]can be usefully
incorporated into these tabulated coefficients.

(ii) In the evaluation of the Coulomb sums one actually
requires sums over potentially large numbers of lattice
vectors [see, for example, Eq. (26)]. Because the D and E
coefficients are independent of these lattice vectors, it is
convenient and extremely time saving (particularly if shell
structure is exploited) to compute the quantities

I(Q, C,ij,k)= g Jo(Q, C+ g, ij,k) (39)

before effecting the contractions with the D or E coeffi-
cients. If the McMurchie and Davidson' algorithm is
used for the evaluation of the two-electron repulsion in-
tegrals, a similar technique may also be used for the
evaluation of Eq. (25).

B. Multipole iategrals

These intregals are of the form

f &~(r)Xa(r)&P(C r)dr= g'&(jk&P(Q C E'j k)
i,j,k

Sl (Q Q ij k)=Dl (ij k)(i!)(j ')(k l)(n/q (43)

It should be carefully noted that it is unnecessary to
consider the first term in the rhs of Eq. (42) in the deriva-
tion of Eq. (43), because this term will always give a null
contribution after integration. This simplification does
not apply if Cartesian multipole tensor components are
considered, and represents an advantage of the spherical
tensor system.

Consider now the more general case where the origin of
the multipole operator is C. The operator at C may be ex-
panded (see pp. 137—140 of Ref. 16) as a linear combina-
tion of multipole operators at Q,

I'

XI (C;r)= g g Vg (Q —C)X( (Q;r), (44a)
I'=0 m'= —I'

so that the multipole integrals can be evaluated from

SI (Q, Q, i,j,k) =(i!)(j!)(k!)(vr/q)

I'=i +j+k,
m'= —I'

(44b)

(44c)

and is zero unless l) l'. An alternative strategy used in
the present work is based on the recursion formulas for
the complex solid harmonics,

with similar results for multiplication by y& and z&. First
consider the case that the origin of the multipole operator
is Q. It is then obvious that S~ (Q, g, i,j,k) is zero if
i +j +k & I, because of the orthogonality properties of the
spherical harmonics. SI (Q,g, i j,k) is also zero if
i+j+k &I; this becomes obvious after noting that the
solid harmonic is a polynomial in x~,y!2,z& of degree l,
and using the recurrence relation, Eq. (42), and the defin-
ite integral, Eq. (41). Thus the only finite cases arise when
i +j +k = l. By using the expansion of the solid harmon-
ic, Eq. (32), and Eqs. (41) and (42), we can show that

I I++&'(C& r ) = (2l + 1)(xc+V' —lyc) Fr(C; r ),
Il+i(C r)=[(»+1)zcri(C;r) —rc(i+

I

m
I
»P-i(C r)]/(i —

I
m

I
+1) .

(45a)

(45b)

It is only necessary to consider the positive-I complex operators explicitly; integrals over negative-m counterparts are
complex conjugates. Now

xc=xg+(Q —C ) (46)



TREATMENT OF COULOMB INTERACTIONS IN HARTREE-POCK. . . 5787

so that we may derive from Eq. (42) a recursion relationship

xcAPj/, (r)=Ay~, //, (r)/(2q)+(Q„—C„)APjk(r)+iAP i J/, (r) . (47)

Now the first term of the rhs of Eq. (47) may be neglected in the present context, because it will always give a null
contribution after integration, a result which we have already seen to be true for each term on the rhs of Eq. (42), and
hence for the whole.

To increment i and m simultaneously (when m = i) use a combination of Eqs. (45a) and (47) to yield

S/+ i (Q, C, i,j,k) =(21+ 1) I (Q„—C„)S/(Q, C, i,j,k)+ iS/'(Q, C, i —l,j,k)

+v' —1 [(Q» C»)S—/(Q, C, /',j,k)+jS/'(Q, C, /' —l,j, k)] J .

To increment I alone, use a combination of Eqs. (4Sb) and (47) to yield

S/+/(Q C /'j k)=[(2i+1)/(i —
I
m

I
+1)][(Q C—)S/ (Q C /j k)+kS/ (Q C /j k —1)]

—[(l+
~

m
~

)/(i —
~

m
~
+1)][[(Q —C ) +(Q» —C») +(Q, —C, ) ]S/ i(Q, C, ij,k)

(48)

+2i(Q„—C„)S/ ~ (Q, C, i —1j,k)+2j(Q» C„)S/ —i(Q, C, ij —l, k)

+2k(Q, —C, )S/, (Q, C,ij,k —1)+i(i —l)S/ &(Q, C, i 2j,k)—

+j(j—1)S/, (Q, C, ij —2,k)+k(k —1)S/ i(Q, C,ij,k —2)I .

(49)

Equations (48) and (49) define a recursive scheme for
the evaluation of the multipole integrals commencing
from So as given by Eq. (41). The implementation of the
above scheme is facilitated by noting the following.

(i) S/ (Q, C,ij,k)=0 fori +j+k ) l.
(ii) The E coefficients, Eq. (28), are finite only for

i+j+k (p, where p is the sum of the polynomial de-
grees of the nonexponential portions of Xz (r ) and X//( r ).
Therefore, at any stage in the recursive process it is only

+

necessary to generate the S/ (Q, C,i,j,k) for i +j+k less
than or equal to p or I, whichever is the smaller. This is
because the sum of i, j, and k quantum numbers of the
terms on the rhs's of Eqs. (48) and (49) are always less
than or equal to those on the lhs's.

(iii) To convert to real solid harmonic expectation
values, it is necessary to use Eq. (21). The result is that
the real and imaginary parts of S/ (Q, C, ij,k), with m )0,
give the corresponding real solid harmonic expectation
values for positive and negative m, respectively.

IV. RESULTS AND DISCUSSION

The computational scheme discussed above will now be
illustrated by the results of calculations of the (SN)„poly-
mer, the graphite, boron nitride, and beryllium mono-
layers, for hydrogen chemisorbed on a beryllium mono-
layer, and for silicon. The geometries and basis sets
adopted are shown in Table I. To completely define the
conditions under which the data were collected, we briefly
mention the following computational parameters not ex-
plicitly under investigation in the present work.

(i) The overlap threshold t~ defined after Eq. (9) is set to
10

(ii) The number of stars of direct lattice vectors includ-
ed in the exchange summations is set to 3.

(iii) The irreducible part of the Brillouin zone has been
sampled using a shrinking factor equal to 12 for the one-
and two-dimensional systems; 8 has been used for the
three-dimensional system silicon.

(iv) The self-consistent procedure was terminated when
the total energy was stable to 10 a.u./cell in successive
cycles.

We now summarize the parameters under explicit con-
sideration in the present work as follows.

(i) The "bielectronic" zone is characterized by a param-
eter, t2. The interaction between an overlap distribution
in the reference cell and a shell charge in cell h is treated

Graphite
Boron nitride
Beryllium
BeH

Silicon

Geometry

rsN ——1.7
sNs = &05'

d =2.45
d =2.45
d =2.29
d =2.29
ZH ——1.00
d =5.42

Basis set

STO-3G

STO-3G
STO-3G
Extended (Ref. 6)
Be: Extended (Ref. 6)
H: STO-3G
STO-3G

TABLE I. Geometries and basis sets, d is the lattice parame-
ter, rsN is the S—N distance (A) for the symmetric zigzag struc-
ture; STO-3G is the Gaussian-type orbital basis set of Hehre
et aI. (Ref. 17). The monolayers are the (0001) planes of the
corresponding hexagonal crystals with space groups P63me (gra-
phite and BN) and P63/mme (Be). BeH is a two-layer system
with the H atoms in "open" positions with respect to the Be
atoms, and ZH is the interlayer distance (A).
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0

TABLE II. Radius (A) of the bielectronic zone for the beryllium monolayer as a function of t]he

penetration parameter T2. b is the number of cells included in the bielectronic zone.

T2 ——12
0 0 (~i)

core-core
core-core
valence-valence
valence-valence

p (r')

core
valence
core
valence

0.0
4.3
4.3
7.5

1

7
7

13

0.0
4.3
4.3
8.7

1

7
7

19

0.0
8.7
8.7

15.0

1

19
19
43

exactly if the degree of penetration of the two distribu-
tions is greater than t2. Results will be quoted in terms of
T2 ———log&ot2. The size of the bielectronic zone is a func-
tion of the characteristics of both pJJ

g ( r ') and p, ( r ). To
show how the T2 parameter is selective, typical dimen-
sions of the bielectronic zone for the beryllium monolayer
are reported in Table II. Note that interactions involving
core orbitals are treated exactly in only a rather small re-
gion when compared with the region associated with
valence orbitals. This selectivity of T2 allows the study of
systems containing atoms of the second and third row
without large increases in computing time, and permits an
economic treatment of inner shells without recourse to
pseudopotential techniques. For example, the number of
integrals to be computed in an all-electron calculation of
silicon with a minimal basis set is approximately twice
that of a corresponding valence-only calculation.

(ii) For
~

h
~

)M (Madelung radius) the interactions are
treated classically in the energy expression and ignored in
the Fock operator.

(iii) For
~

h
~

& M, and given negligible penetration, the
contribution of a shell charge pT (r ) is evaluated using a
multipole expansion truncated at the Lth order (L param-
etev)

(iv) The shell charges are assigned using one of two pos-
sible charge-partitioning criteria (P parameter), the "un-
weighted" and weighted Mulliken schemes.

Thus we must discuss the influence of four computa-
tional parameters (T2,M,L,P) on the wave function and
total energy. With hindsight, we can say that satisfactory
results may be obtained with T2 ——4, I,=4, M -30 A, and
using the unweighted Mulliken partition. Therefore, these
parameters will be discussed separately one at a time, the
other parameters being kept at the "standard" values, un-
less otherwise noted.

A. I' parameter

The most pragmatic measure of success of a given par-
titioning technique is the rapidity of convergence of the
multipole expansion of the total energy. In Table III we
quote E'", the contribution to the total energy (here and
hereafter we use a.u./cell) from all poles of a given l value,
for all the systems under consideration in the present
work, and for 1=1—6. The unweighted and weighted par-
tition results are designated U and 8' respectively. It is
seen that the rate of convergence of the expansion is little
affected by the partitioning criteria, and therefore we will

TABLE III. Influence of the charge-partitioning criteria on the convergence of the multipole expansion of the total energy
(a.u./cell).

System

SN
Polymer

Total energy

—446.807 05
—446.807 06

—0.028 63
—0.016 32

—0.036 23
—0.03040

0.000 74
0.001 20

E(4)

—0.000 62
—0.000 69

0.00000
0.00002

0.00001
0.000 01

BN
Monolayer

—78.284 10
—78.279 21

—0.018 76
—0.002 07

—0.001 59
—0.003 11

—0.006 89
—0.006 24

0.000 24
0.000 24

—0.000 53
—0.000 50

Be
Monolayer

U
W

—14.573 93
—14.573 93

0.097 82
0.10040

0.001 03
0.001 20

0.00003
0.00001

BeH
Monolayer

—15.077 83
—15.078 17

0.009 54
0.011 43

0.032 62
0.040 02

—0.000 73
—0.000 75

—0.00009
0.000 35

0.00002
0.00003

0.000 01
0.000 00

Graphite
Mon olayer

—74.842 57
—74.842 57

—0.01302
0.001 30

0.000 30
0.00040

—0.005 92
—0.005 61

—0.000 14
—0.000 12

—0.00025
0.000 26

Silicon —571.318 84
—571.318 85

—0.018 98
—0.023 91

0.000 31
—0.00045

0.000 52
0.000 71
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TABLE IV. Influence of the "Madelung radius" on the properties of the SN polymer. S and N denote the number of stars of cells
and the number of cells, respectively, that are included in the quantum zone. yo{N) is the valence shell charge of the nitrogen atom.
e& denotes the lowest valence eigenvalue at the I point and eF is the Fermi energy.

Madelung
radius (A)

36

N
Total

energy

—446.807 10

—446.807 10

—446.807 10

Kinetic
energy

441.661 17

441.660 80

441.660 74

Madelung
energy

—0.000 04

—0.00001

—0.00001

yo{N)

5.36 47

5.36 51

5.36 52

—1.180 87

—0.18098

—1.181 00

6F

—0.024 82

—0.024 86

—0.024 87

use the unweighted scheme henceforth, in view of its
greater simplicity. This result is extremely encouraging
for it means that our results are essentially invariant to
criteria which must to some extent be arbitrary. Note,
however, that this invariance to partioning technique is
only achieved by carrying out the multipole expansions to
at least the hexadecapole terms.

B. Madelung radius

Systems with null atomic charges have been found to be
rather insensitive to variations in the M parameter for M
values larger than 15—20 A. The hypothesis that the
Madelung zone does not affect the Fock operator is of
course satisfied in the limit of large quantum zone (the
complement of the Madelung zone, the union of the
bielectronic plus monoelectronic zones); also the effects
will certainly be much smaller in the polymer than in a
chemically similar three-dimensional crystal. For one-
and two-dimensional systems it is quite practical to use M
values at which our hypothesis is satisfied. Thus in
Tables IV and V the influence of the M parameter is re-
ported for SN and BN, respectively. In both cases the to-
tal energy is stable to the fifth decimal figure for
M) 35—40 A. The kinetic energy is considerably more
sensitive, particularly in the case of the BN monolayer,
and small but not completely negligible changes are ob-
served in the valence shell charges of BN, again pointing
to the conclusion that the neglect of Madelung terms in
the Fock operator is affecting the wave function. The
Madelung-zone contribution to the total energy is of the
order of 0.00001 a.u./cell in the case of SN, but 2 orders
of magnitude larger in BN, giving an indication of the

scaling of the importance of this factor with the dimen-
sionality of the system. For three-dimensional ionic crys-
tals we have results which indicate rather large Madelung
effects on the wave function; work now in progress to in-
corporate Madelung effects into the Fock operator is con-
sidered vital if such systems are to be studied accurately,
and should be of some benefit in the case of two-
dimensional systems.

C. L and T~ parameters

When a shell-charge distribution pr (r ) is attributed to
the monoelectric zone, the associated bielectronic integrals
are approximated by field integrals, and two errors are in-
troduced.

(i) A certain degree of penetration of the two charge dis-
tributions is inevitable. In practice, because of the ex-
ponential decay of penetration with the square of the dis-
tance, it is very easy to make this factor completely negli-
gible.

(ii) The multipole expansion is truncated after L terms.
This gives rise to errors which vary as l lr +, consistent-
ly more slowly decaying than an exponential. The error
depends on the size and shape of the shell-charge distribu-
tions. The latter are nearly spherical in ionic or metallic
systems, whereas in covalent systems the contribution of
high multipoles is non-negligible, and for this reason we
have chosen the graphite monolayer and silicon as critical
systems for testing the effects of T2 and L

Judicious values for the T2 and L parameters are obvi-
ously linked, for the higher the I. value the lower the T2
value that can be tolerated, at least when penetration ef-
fects are negligible. One should choose Tz and I. so as to

TABLE V. Influence of the "Madelung radius" on the properties of the BN monolayer. Notation is the same as in Table IV.

Madelung
radius (A)

23

36

45

12

36

223

361

Total
energy

—78.283 82

—78.284 10

—78.284 09

Kinetic
energy

77.726 20

77.750 94

77.761 18

Madelung
energy

—0.001 31

—0.001 03

—0.002 07

yo(B)

2.51 99

2.49 41

2.48 40

—1.211 63

—1.212 12

—1.212 39

—0.23 91

—0.24 04

—0.2409
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TABLE VI. Influence of the L parameter on the properties of the graphite monolayer. e& and 6 denote the lowest valence eigen-
value and the valence-band width, respectively, at the I point. y2(C) is the quadrupole moment of the carbon valence shell charge,
while COST(1) gives the cost of computing the monoelectric integrals in Cray-1 seconds.

—0.013023

0.000 301

—0.005 924

—0.000 138

—0.000 249

—0.013 160

0.000 301

—0.005 925

—0.000 138

—0.000 249

Kinetic
energy

74.13046

74.13007

74.13021

74. 129 84

74.129 82

74.129 78

—1.216 37

—1.218 27

—1.219 17

—1.219 14

—1.219 16

0.875 02

0.875 07

0.875 09

0.875 13

0.875 12

0.875 14

0.062 23

0.062 42

0.062 05

0.062 02

0.061 97

COST(1)

11.9

15.7

20.6

27.0

34.6

minimize the overall cost of achieving a given accuracy.
The cost is a rapidly increasing function of T2, since it
controls the number of two-electron integrals to be
evaluated. A detailed analysis of the performance of the
present version of cRYS+cL, our code for Hartree-Fock
calculations on periodic systems, reveals that if one re-
quires an accuracy of 0.0001 a.u./cell in the kinetic energy
of graphite, this may economically be achieved by using
T2 ——4 and L=4. If an order-of-magnitude increase in
precision is required, the T2 ——6,L, =6 values will econom-
ically provide this. These conclusions remain valid if one
uses other measures of convergence (for example, eigen-
values, multipole moments of the shell charges, or total
energy), and for other systems.

Let EL denote the total energy computed using mul-
tipole expansions of order L. Now if the wave function
were independent of the order of the expansion, we would
have

E =EL —EL —1 . (50)

Table VI gives a comparison of the E' ' with
EL EL &

values f—or graphite, and shows that Eq. (50) is
obeyed to a remarkable degree of accuracy, indicating that
the variation in EL with L is not primally due to varia-

tions in the wave function. This lends strong support to
our argument concerning the superiority of the energy ex-
pression E [Eq. (13)] over E' [Eq. (15)], the former dealing
with the interaction of the reference-cell electrons and nu-
clei with the electrons in the monoelectronic zone in a
more balanced way. Table VI also documents the conver-
gence of kinetic energy, the lowest eigenvalue e& (in a.u. ),
the valence-band width 6 at the I point, and the quadru-
pole moment yz(Q of the carbon valence shell as a func-
tion of L,. The final column of Table VI gives an idea of
how the cost of the calculation of the one-electron in-
tegrals rises with L, cost being measured in seconds of
computing time on a Cray-1 computer.

Table VII documents the convergence of the above
properties of graphite with respect to T2 (in the range
3—24). The column labeled Nc gives the number of two-
electron repulsion integrals calculated (scaled by 10 ),
and the column labeled b gives the number of cells includ-
ed partially or completely in the bielectronic zone for
valence-valence interactions.

Table VIII documents the convergence of silicon data
with respect to T2 (notation as in Table VII). The three-
dimensional character of the silicon lattice makes high T2
values very expensive, as can be seen from the last column

COST(2)

42.374.129 776 —0.015 85 —0.001 80—0.009 99

TABLE VII. Influence of the T2 parameter on the properties of the graphite monolayer. X~ is the total number of two-electron
Coulomb integrals computed, b denotes the number of cells involved in the bielectronic zone for valence-valence interaction, and
COST(2) gives the cost of computing all the two-electron integrals (Coulomb and exchange) measured in Cray-1 seconds.

T2 10 X~ b Total energy Kinetic energy

3 085 19 —74.842 914

1.36

4.62

—74.842 570

—74.842 552

—74.842 557

—74.842 556

74.129 775

74.129 768

74.129 760

74.129 751

—0.031 02

—0.01026

—0.006 29

—0.003 50

—0.005 92

—0.003 45

—0.001 22

—0.00042

—0.00021

—0.00003

47.3

54.3

79.0

127.3
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TABLE VIII. Influence of the T2 parameter on the properties of silicon. Notation is the same in Table VII.

T2 10 Nc

1.88

3.14

7.21

42

55

129

Total energy

—571.317 89

—571.318 84

—571.31987

Kinetic energy

563.380 73

563.380 83

563.381 03

E(3)

—0.01796

—0.018 98

0.002 11

E(4)

0.000 57

0.000 31

0.000 26

E(6)

0.003 87

0.000 52

—0.000 12

COST(2)

72.6

83.2

113.1

of Table VIII, giving the cost of evaluating the two-
electron repulsion integrals, which rises more rapidly than
the corresponding monolayer case (Table VII). Again we
see that at T2 ——4 the kinetic energy is in error by less than
0.0001 a.u./cell, while the total energy error is 1 order of
magnitude larger.

In order to check if the T2 convergence shown by gra-
phite and silicon is confirmed by other systems, we have
carried out calculations on systems with finite-atomic
charges (SN, BN, and BeH) or with high quadrupoles
(Be). The results are shown in Table IX. We first com-
ment on the Be monolayer, which when treated at the
I =0 level showed a very slow convergence of the total
energy with respect to T2, requiring a very high T2 value
(25) and a very large number of electron-repulsion in-
tegrals to get a reasonable total energy. On the contrary,
when one explicitly takes account of the very large quad-
rupole moment (higher poles are rather unimportant in
this case) the energy becomes almost invariant with
respect to T2, and calculations at T2 ——4 are reliable to
0.0001 a.u. /cell.

When a hydrogen monolayer is chemisorbed onto the
beryllium plane, atomic charges and dipoles are created as
a consequence of bond formation, and all those effects are
correctly allowed for by the multipole expansion, as evi-
denced by the stability of the total and kinetic energy with
respect to T2 (see Table IX). Similar comments hold true
for SN and BN, and in all cases, comparing the T2 ——4
and 6 results, the total energy is stable to the fifth decimal
place. This result is rather promising, in particular with
regard to systems where large polarization effects occur,
as in regular chemisorption.

V. CONCLUSIONS

Our findings are summarized below.
(i) By means of high-order multipole expansions it is

possible to compute Coulomb series in periodic systems of
one, two, or three dimensions to high precision and re-
duced cost, the bielectronic interactions being computed
exactly in only a relatively small region. An efficient
technique for evaluating the necessary field integrals has
been given.

(ii) The results are essentially invariant to the details of
the charge-partioning scheme if the multipolar analysis is
carried out to sufficiently high order (L =4).

(iii) An improved version of the total-energy expression
has been given; work is currently in progress to implement
it.

(iv) Given the greatly increased precision of the treat-
ment of the quantum zone made possible by the present
work, it has been possible to identify deficiencies in the
treatment of the Madelung zone. In particular, the
neglect of the effects of the Madelung zone on the Pock
operator is now considered inadvisable in the case of
three-dimensional ionic systems; work is in progress to in-
corporate Madelung zone terms into the Fock operator.
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TABLE IX. Convergence of the total kinetic energies of SN, Be, BN, and BeH with respect to T2.

System T2=3
Total energy

T2 ——4 T2 ——6 T2=3
Kinetic energy

Tp ——4 T2 ——6

—446.807 57 —446.807 10 —446.807 15 441.661 01 441.660 80 441.660 82

Be

BeH

—14.573 91

—78.283 44

—15.077 83

—14.573 93

—78.284 10

—15.077 83

—14.573 90

—78.28406

—15.077 74

14.802 16

77.75043

15.433 57

14.802 11

77.750 94

15.433 39

14.802 38

77.750 73

15.433 55
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