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Inelastic electron-electron scattering in silicon (1QQ) inversion layers
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In a weakly disordered system where kT~, /A-1, we find experimentally that the electron inelas-
tic scattering rate deduced from the magnetoconductance measurement is separable into a T term
and a T term, which agree with the theoretical calculations on the electron-electron interaction in
the ordered and diffusive limits. Since the scattering process formulated in the diffusive limit is
momentum nonconserving, it affects conductivity directly. This idea is supported by the data pub-
lished earlier by Cham and Wheeler.

I. INTRODUCTION

Among the different electron scattering mechanisms in
solids, electron-electron scattering has played an unimpor-
tant role in the transport properties in most materials.
Recently, electron-electron scattering has been invoked as
the principal mechanism to delocalize electrons in order to
explain the magnetoconductance measurements in silicon
inversion layers. The magnetoconductance effect in such
a system provides a probe for the first time to investigate
the characteristics of electron-electron interaction.

From the magnetoconductance measurements, the in-
elastic scattering time (r;) can be extracted. While the
magnitude w; is consistent among different experimental
groups, the explicit temperature dependences observed are
slightly different depending upon the experimental condi-
tions. In order to clarify this issue, more precise measure-
ments are desirable.

II. ELECTRON-ELECTRON SCATTERING

Electron-electron scattering has been known to be af-
fected by the amount of impurities or dislocations in the
medium. The effect of the impurities on the scattering
was investigated by Schrnid. He found that the rate of
such scattering is enhanced by the presence of impurities
in bulk metals. In addition to the normal T -dependent
term, there is an extra T term that depends on the dis-
order of the system. The scattering rate in three dimen-
sions can be expressed as
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where ~, is the electron-impurity scattering time. The
contribution from the second term increases as the
electron-impurity scattering time or Fermi energy de-
creases. On the other hand, when there are no impurities,
only the first term exists. Schmid attributed the second
term to the momentum-nonconserving processes, which
result from the loss of the translational invariance intro-
duced by the defects in an impure conductor.

Recently, electron-electron interaction has been reexam-
ined in the two-dimensional (2D) case. " In the ordered
limit (E~r, /A'&&kTr, /A'&& I) the inelastic scattering time

(r;) is found to be

(2)

Whereas in the diffusive case (EFr, /A»1 »kTr, /fi), r;
is given by

kT
ln

2EF&, T (3)

where kT& ——A D x /e in cgs units, D = —, V~&„
x=2mXe .

Equation (3) is the contribution from the momentum-
nonconserving processes. This can be seen from the for-
malism that the density-density correlation function is of
the diffusion type. Furthermore, this term vanishes in
the absence of impurities. So, in general, when
kTr, /fi- 1, both terms from Eqs. (2) and (3) should con-
tribute. Usually, in metallic systems, kF/-2EF~, /fi is
very large, due to the large Fermi energy, so that the
second term in Eq. (1) is negligible in comparison with the
momentum-conserving term. For instance, for potassium
at around 1 K, kzl is approximately equal to 8)&10 with
resistivity around 2.4)&10 ' Qm. So for normal un-
doped metals, the second term in Eq. (1) is less than the
leading term by 6 orders of magnitude. However, in sil-
icon inversion layers, the situation is very different from a
metal due to the small Fermi energy. From the device pa-
rameters used in this paper, ~, =7.4 Q 10 s at
E~ ——2&&10 ' J, %, =2&&10' rn, and k+i=28. This
makes the magnitude of I/rt given by Eqs. (2) and (3)
comparable. For instance, at N, =2 X 10' m, I /r;
given by Eq. (2) is 6. 1&& 10 T s ', and 1/r; given by Eq.
(3) is 1.2X10"T s '. So at low T the momentum-
nonconserving term can be dominant.

This argument is consistent with the experimental ob-
servation' thai I/r; —T~, where p is within the range
1—2 at the temperature range 1—20 K, depending on the
electron density and the device quality. In this tempera-
ture range kT~, /A is in the range 0.1—1.6, where ~, is of
order 6&10 ' s for our devices. When T is below 1 K,
1/~; is linearly dependent upon temperature. '

Owing to the small Fermi energy associated with silicon
inversion layers as compared with that of metals, the
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electron-electron scattering rate is greatly enhanced. In
fact, in silicon inversion layers, the electron-electron
scattering rate is believed to be larger than the phonon
scattering rate below 4.2 K (Ref. 10); this provides us with
the opportunity of observing electron-electron scattering
directly from the conductivity measurement. In metals
this interaction is often obscured by the phonon scatter-
ing. "' But unlike some metals in which the Fermi sur-
faces are anisotropic or extend beyond half of the Bril-
louin zone, the momentum-conserving part of the interac-
tion in silicon (100) inversion layers cannot contribute to
the resistivity. The reason for this is that for the usual
range of electron density, the Fermi surface is isotropic
with a very small Fermi wave vector (less than 5)&10
m ') compared to the reciprocal-lattice vector. Thus the
total velocity vector is conserved and umklapp processes
are not allowed. In this case, only the scattering rate
given in Eq. (3) is able to relax an electron current in the
silicon (100) case. For silicon (100) inversion layers, it is
known that the temperature-dependent part of the scatter-
ing deduced from the resistivity measurement is linearly
proportional to T below 4.2 K and depends on the impuri-
ty concentration' and hence is consistent with the argu-
ment. There has been an alternative explanation to the
linear temperature dependence of the resistivity. The
change of resistivity may be due to the temperature depen-
dence of the screening effect on the electron-impurity po-
tential. Therefore, in order to study this issue in greater
detail, in this paper we try to see if the inelastic scattering
rate deduced from the magnetoconductance measurement
is indeed separable into two parts which are consistent
with Eqs. (2) and (3), in the kTr, /fi-1 region. The
momentum-nonconserving part of the inelastic scattering
can then be compared with the resistivity data. ' An at-
tempt to separate 1/~; into two parts can also be found in
the work by Uren et al. for a single electron density.

III. EXPERIMENTAL CONSIDERATION
AND RESULT

The object of the present work is to try to verify the in-
elastic scattering rate expressions given in the preceding
section. In this way, more evidence can be provided for
the theoretical calculation of the electron-electron scatter-
ing rate, and hence confirm whether this interaction is
indeed the relevant process to delomlize the electrons.

At the outset, some preliminary remarks on the param-
eters of the experimental samples should be made. The
first one is the quality of the samples. Intuitively, one
may think that the localization effect is stronger when the
system is more disordered. The effect should then be
more easily observable in lower quality devices. However,
this is only true in the strong-localization region. In the
weak-localization region where perturbation theory can be
applied, the correction to the conductivity is in fact ap-
proximately independent of the device quality. This is be-
cause such a correction is also dependent on the lifetime
of the electrons. The longer the lifetime, the larger is the
correction. However, in the disordered system, the life-
time gets shorter as the concentration of the impurity in-
creases. It turns out that the correction is approximately
the same for devices with different impurity concentra-

tion, but increases with the electron density N, .
When a magnetic field is applied, the critical field (H, ),

above which the lomlization effect is quenched, turns out
to be very sensitive to the disorder of the material. Here,
we provide some estimate of this field.

In the localization theory, the change of dc conductivity
at H=0 is given by'

(2m ) 2rrN l r, fi Dq + I/r;
(4)

where &(n) is the number of states in the level n In-.
creasing the magnetic field causes Landau levels to move
away from the origin in q space. As the divergence of 6o
co~es from the states near the origin, the effect of the
magnetic field is to reduce the effect of localization.
When the first Landau level is beyond q,„, most of the
localization should have been canceled out. The critical
field (H, ) corresponds to the radius of the first Landau
level in the q space equal to q,„. Hence from Eq. (5),
2eH, /Pi=1/D~, or H, =A'/el, . Here, I, =vF~, is the elas-
tic scattering length. For a sample with mobility p =2000
cm /Vs, l, =2.5&&10 m, H, corresponds to 5.4 kG.
But for samples with lM=10000 cm /Vs, I, =1.2)&10
m, H, can be as low as 200 G. Hence, while working with
high-mobility samples, one can apply a much weaker
magnetic field to get the desired signal. In this way, one
can avoid the complication arising from another quantum
effect, namely the electron-electron interaction. This is
important in extracting the parameter ~;.

In a disordered system, besides the effect of localiza-
tion, there is another quantum correction in the conduc-
tivity due to the electron-electron interaction. The
electron-electron interaction reduces the density of states
at the Fermi level and hence decreases the conductivity.
At zero magnetic field 6o. is given by'

e 16o=- (gl +g2 2g3 2g4)ln
& 2m' 4~~,kT '

where gI ——1 and 2g3 ——E-0.8 in Ref. 5.
When magnetic field is applied, only g2 and g4 process-

es give strong orbital magnetic effect. The change of con-
ductivity b,o(H) at constant temperature is given by'

e 1ho(H, T„„„)= (g2
. —2g4)p(h, y),

& 2~'

where

2m~;kT
'

2ae~, Hh=

The limit of integration is from q;„=0 to
q,„=(Dr,)' . However, in a magnetic field, the
electron-pair states condense into Landau levels,

&(n)
„=o 2rrN, r, R[(4DeH/fi)(n+ —,

' )+ I/r;]
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and 4'"' is the polygamma function.
The functional dependence of P(h, y) is very different

from that obtained in the localization theory. If the mag-
nitudes of the two effects are comparable in size, one will
not be able to separate out the individual contributions
and extract ~;. Fortunately, when one works with high-
mobility samples, the variables y and h are small, hence
P(h, y) is small. For example, for our device parameter,
r;=4&&10 "s and H=100 G, we obtain y=0.03/T and
h =20. When T ~ 1 K, the contribution of the interaction
effect to the magnetoconductance is only 4% of that due
to localization effect. Here, we have assumed the cou-
pling constants g2-g4-F/4 suggested by Fukuyama. '

It is pointed out by Lee and Ramakrishnan' that the cou-
pling constants g2 and g4 should be replaced by an effec-
tive coupling

1 A'
2

B'T'+ T (10)

(9)

where 1t is the digamma function.
Since data from the three devices are qualitatively the

same, we will only present data from device ABTI05. In
analyzing the data, since the range of the temperature is
small, the factor ln(E~/kT) in Eq. (2) varies within the
range 4.7+0.7, which is much less sensitive than the T
factor in the front. So, we treat the factor In(E+/kT)
as a function of EF. Including the EF dependence in the
prefactor, we make a further simplification by assuming
r; from Eq. (2) pmportional to EF for some constant A, .
%'e expect A, is approximately equal to 1. Since EF is
directly proportional to N, in 2D, ~; is expected to be pro-
portional to X, in the ordered regime. For Eq. (3), since
the constant T& is a constant of order 4.6~10' K for
D=87 cm /s and ~=1.45&&10 cm ', lnT/T& is effec-
tively a constant of order 25. Here, K is equal to 2~We .
Using Matthiessen's rule, we express the total 1/~; as

1+g; 1n(EF /kTp)

wherei =2,4 and Tp ——max(T, DeH/k).
So, the contribution is reduced further by a factor of 2.

One notices that if a magnetic field of 5.4 kG is applied,
the interaction effect will not be negligible.

In addition to the orbital effect, there is also a magne-
toresistance effect due to the addition of the Hartree in-
teraction of up- and down-spin electrons. ' lt is much
smaller than the magnetoconductance effect due to locali-
zation by a factor of 10 at fields below 100 G. Hence,
we can attribute all the effect at low field to the effect of
localization. In the following experiment, the maximum
mobilities of the devices used at 4.2 K is between 13000
and 18000 cm /Vs. For magnetic fields up to 100 G, lo-
calization theory can be safely applied. Also, in this work
z; is assumed to be independent of small magnetic fields.

Magnetoconductance measurements have been done on
silicon inversion layers in (100) orientation for three sam-
ples between 1 and 4.2 K. In this temperature range, we
expect the two electron-electron scattering rates given by
Eqs. (2) and (3) to be comparable. The maximum applied
magnetic field is 100 G. The experimental procedure and
the way to extract ~; are based on previous work. The
devices used are of long bar structure, so that we are actu-
ally measuring p„ instead of o. „. When T~4.2 K the
electrons are highly degenerate, o. „can be assumed to be
1/p „with error in determining Ag much less than 1% at
magnetic fields up to 100 G. A satisfactory fit to the ex-
perimental curves are obtained by varying a single param-
eter (r;) in the following expression with X,a= 1 (Ref.
16):

where A ' and B' are independent of X„w„and T.
The first term of this expression is for the momentum-

conserving part and the second term is for the norcon-
serving part of the electron-electron interaction. We can
also express Eq. (10) as

—=AT +BT,1

7
g

where A and B are coefficients independent of T and are
functions of 1V, and ~, only.

In order to extract coefficients A and B as a function of
electron density, magnetoconductance, . effect is measured
at a fixed value of electron density at different tempera-
tures. The values of ~; at different temperatures can be
deduced from the magnetoconductance expression Eq. (9).
Since at fixed X„A and B are constants, we can fit the ex-
perimentally determined 1/~; as a function of T to the
form of Eq. (11) and obtain the values of A and B. This
procedure is repeated for different electron densities, and
hence we can obtain the values of A and B at different
electron densities. The result of the N, dependence of A
and the X,~, dependence of B can be compared with Eq.
(10). Figure 1 shows some typical r; vs I/T plots for dif---
ferent electron densities for device ABT105. The range of
electron density is from 0.8)& 10' m to 4.8X10' m
If 1/r; is depicted a combination of power laws, then
curves in Fig. 1 should not be straight lines. However,
from the plot, since the data show only slight deviation
from the straight lines in this temperature range, we can
characterize ~; by a single power law. So if we write

1~.=C (12)T
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FIG. 1. Graph of ~; vs 1/T in the log-log scale for different
N, . The data are almost linear and the slope decreases as N, in-
creases ( V,„b———1.5 V).

where C and p are constants, then we can extract the
power p from the slope of the curves. Again, the power p
is plotted against N, in Fig. 2. The range of p lies be-
tween 1 and 2 as expected. In the same graph, we also
plot ~, vs X„where w, is based on conductivity measure-
ment at 4.2 K. The curves show there is a strong correla-
tion between ~, and p. This can be understood if we as-
sume Eq. (10). When r, gets smaller as N, increases, the
linear term is more dominant. Hence, p gets closer to 1 as
the experimental results in Fig. 2 shows.

In order to extract the coefficient A and 8 from the
data, A and B are chosen such that r; from Eq. (11) coin-
cides with that obtained by Eq. (12) from 1 to 4 K. We
can verify this gives a good estimation of A and 8 by re-
plotting the curves based on A and 8 chosen along with
the experimental data. Figure 3 shows two typical plots.

Next, to verify the second term of Eq. (10), we plot Br,
vs 1/X, in Fig. 4 with two different substrate biases. The

FIG. 3. Graph of ~; vs 1/T for N, =0.850)& 10' and.
1.495)& 10' m . The dotted points are experimental data. The
curves are based on 3 and B chosen.

substrate bias can change ~, slightly for a fixed N, . For
substrate bias voltage V,„b ———1.5 V, we obtain from the
curves 8= 1.65 && 10' /%, ~„and for V,„b———9 V,
8=1.525&10' /X, ~, . The curves show that the func-
tional dependence of 8 on X,~, agrees with the inelastic
scattering in the diffusive region. However, the magni-
tude is smaller than the prediction from Eq. (3). Namely,
at N, =2X10' m, ~, is 7.4&(10 ' s with D equal to
8.7 & 10 m /s; the experimental value is
1/~; =1.1&(10' T s ' in comparison with the theoretical
value 1.2&10"T s '. This discrepancy has been ex-
plained by arguing that the strength of the Coulomb in-
teraction in silicon substrate should be weakened due to
the dielectric polarization of the material. However, if
the dielectric property is considered, the inverse screening
length is also reduced by the same factor, so that in the
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FIG. 2. Graph of p and ~, vs N, for V,„b———1.5 V. p and r,
show a strong correlation.

FIG. 4. Graph of Bv, vs 1/N„with the square points for
V,„b———1.5V and the dotted points for V,„b———9 V.
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small-q approximation the scattering rate is in fact in-
dependent of the dielectric constant of silicon. This mse
also applies to the scattering rate in the ordered limit. So,
in fact, the discrepancy arises from the approximation
taken in Eq. (3) since it only applies to the case in which
the frequency of the external excitation (co) is much less
than kT/A. However, for a system in thermal equilibrium
without external excitation, the electron-density fluctua-
tion is due to the thermal excitation, which has the
characteristic frequency kT/A'. So, the above criterion is
not met and the theoretical magnitude should be reduced.
This can be seen in the other limit of the formalism that
when T approaches zero with co finite, the smttering rate
is given by Eq. (3) without the logarithmic term and the
rate is greatly reduced.

In Fig. 5, the value of 3 is plotted against 1/X, for
V,„b———1.5 V and V,„b———9 V, respectively. We ob-
tained from the curves 3 =7.405 X 10 /X,' for
V,„b

———1.5 V and 2 =9.045X10 /N, for V,„b
———9

V. The magnitude of this term is in good agreement with
the prediction given by Eq. (2). For instance, the experi-
mental value at %, =2X10' m is 1/~;=5.9X10 T
s ', as compared with that given by Eq. (2),
1/r; =6.1X10 T s '. On the other hand, the experi

2.0

:1~ 5X10
& 3 +2 3X10

T7 iV, ' N, ~,

which shows the consistency of the experimental result.

IV. FURTHER DISCUSSION

Summing up the result from the last section for
ABT105 at V,„b———1.5 V, we get

—=7.41X 10 — +1.65 X 101 30 T ]4 T
T7 ~ 1.298 (13)

(in units of s '). As mentioned before, the second term
does not conserve total momentum of the electron gas.
Thus we expect this term to affect an electric current.
With this in mind we can write, from Eq. (10), the resis-
tivity (p), before the localization effect is important, as

mental dependence of 1/~; on X, is slightly higher than
the prediction. This may be due to the fact that in the
formalism, the interaction potential is approximated by
using the small-q and -co limits. Nevertheless, on the
whole, we find good agreement between theory and experi-
ment with the estimated experimental error around 10%.

In addition to the above result, for another device of
similar quality, we also find at V,„b

——0 V,

1.8 P=
X,e

1 1+ (14)
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FIG. S. Cxraph of 2 vs 1/X, for (a) V,„b———1.5 V, and (b)
V,„b———9 V.

(the latter in units of s '), where 17 is a constant with the
same magnitude as 8'. Here, the first term is from the
elastic electron-impurity scattering. The second term is
from the inelastic smttering event between electrons
without conserving momentum. Hence, the resistivity has
an explicit linear temperature dependence, even assuming
the electron-impurity interaction is independent of tem-
perature. The temperature dependence is weak bemuse
the typical experimental value of I/r; is only 3% of 1/r, .

Before, there were theoretical works on the temperature
dependence of 1/r, . 1/r, is found to have negligible tem-
perature dependence by using the q~ 0 approximation'
on the static screening or a linear dependence by using q-
dependent screening. ' However, in the q-dependent for-
malism, the temperature-dependent part has a (X,r, )

dependence for Coulomb scattering and a X,' dependence
for surface roughness scattering instead of a (X,r, )

dependence proposed above. Therefore, the X, and ~,
dependences may distinguish the two models. Here, we
find the experimental report from Cham and Wheeler' is
suitable for our discussion.

If we follow Eq. (14) and assume r, is temperature in-
dependent, we get (5p/p)/5T =P/N, . Here, the condition
that I /rr « 1/r, has been used. So the quantity
(5p/p)/5T should be independent on the device quality
for fixed X,. In Fig. 6, the variation of p with T is shown
for two devices of very different quality by a factor of 5.
The quantity (5p/p)/5T can be extracted in the linear re-
gion. For 5T=1, 5p/p=0. 017 for device Al(80) and
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FIG. 6. Resistivity vs T. : Al (80), &,=1-2~10' cm
V-b= —9.4&. +: R3L, ~.=1.3X10"cm-, V,„,=

5p/p=0. 011 for device R3L. The result is indeed almost
independent of the device quality. If we use P=B' from
ABT105, we get 5p/p =0.014 for the former, and
5p/p=0. 013 for the latter, which is in good agreement
with the experimental result. One notices that if other w,
dependence for the temperature-dependent term of p had
been used, the quantity (op/p)/5T would be dependent
upon the device quality.

Further evidence is provided in Fig. 7. This figure
shows the relationship of 1/~T and the maximum mobili-
ty (p ) at fixed N, =1.5&&10' m and at T=4.5 K for
10 different devices. 1/~T is deduced from the

temperature-dependent part of the resistivity measure-
ment. If we assume Eq. (15), for fixed N„ 1/rT should be
proportional to 1/r„which in turn is proportional to
1/p. For most devices in the figure, the mobility (p) as a
function of %, has a plateau region around X,=1.S&10'
m . So that, at this N„ 1/p is approximately equal to
1/p . So, we expect 1/~T to be approximately propor-
tional to 1/p . From the figure, we obtain the slope of
the best straight line to be —1. So we can again deduce
that 1/~T is linearly proportional to 1/r, . Furthermore,
the data is consistent with the value of ~T given by
1/rz ——10' T/N, r„universal to the silicon inversion
layers.

Now, we turn to examine the relationship between 1/rz-
and X,. Since ~, is usually a function of X„we cannot
keep ~, constant and vary N, conveniently; so the compar-
ison is not as simple. In Fig. g, the experimental 1/rz
data of two devices A13 and TA1S are plotted and are la-
beled as (1) and (3), respectively. Again, we compute 1/rT
based on Eq. (15) with P=1.65X10' and obtain curves
(2) and (4) for A13 and TA15, respectively. Both are in
good agreement with the experiment.

Therefore, indeed, from the experimental results, ~T is
given by 1/rz PT/N, r—,—.with P of order 10' for silicon
inversion layers. The above data does not support the q-
dependent screening theory. One explanation is that,
when the temperature is less than 4 K, the parameter
kT&, /A is less than O.S for all N, larger than 1X10'
m . The smearing of the Fermi surface in this tempera-
ture range is hence mainly due to disorder rather than
temperature. As the q-dependent screening theory de-
pends on the increase of the thermal spreading of the Fer-
mi surface with the temperature, the effect is small for
usual devices at low temperature.

)0"
8

4
I

2

«1 10

I

4 6 810
(em2/Vs)

FIG. 7. 1/~T at 4.5 K and X,=1.5&(jLO' cm . Our data
have been interpolated to a fixed X, and T whenever necessary
to simplify discussions. Device label and V,„b (V) are (1) TA15,
—9.41; (2) Al(80), —9.42; (3) M72-31H, —6.27; (4) M72-31,
—6.27; {5) A13, —6.29; (6) M72-14, —1.25; (7) Thl, —9.41; (8)
R3L, —9.42; (9) B15,0; (10) A(2500), —9.41.
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FIG. 8. {1) A13 data; (2) with the use of the equation
1/&T ——1.65X10' T/%, w, ; (3) TA15 data; (4) with the use of
equation 1AT ——1.65 &(10' T/X, ~, .
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V. CONCLUSION

In this work, we have shown that the result of the dif-
fusive limit alone is not adequate in describing a system in
the kTv;/A- I regime, but must be implemented by the
momentum-conserving part. The experimental result
shows the measured inelastic scattering rate separable into
a T term and a T term which agree with the theoretical
prediction in both limits. In this way, we have given more
evidence to support the idea that the electron-electron in-
teraction is indeed the physical mechanism to delocalize
an electron.

As the inelastic scattering formulated in the diffusive
regime does not conserve total momentum, it is able to af-
fect an electric current. The part of I/r; that depends
linearly on T deduced from the magnetoconductance mea-
surements is in good agreement with 1/~z obtained from
the temperature variation of resistivity and hence con-
sistent with the idea.

But in order to confirm the above model, more experi-
mental and theoretical work is needed. In the formalism
of the electron-electron interaction in the diffusive regime,
the impurities are certainly involved in the mutual interac-
tion among the electrons, although the role is not very ap-
parent. The missing momentum during the interaction of
the electrons must be transfered to the impurities. In or-
der to have a better understanding of the electron-electron
interaction in this regime, the exact role of the impurities
in the electron-electron interaction deserves a further in-
vestigation. This poses an interesting theoretical problem
in this subject.

Experimentally, it is interesting to note that if the sur-
face of the silicon substrate is other than (100) surface, the
momentum-conserving part of the electron-electron in-
teraction should also contribute to the resistivity. This is
because the velocity vector is not conserved due to the dif-
ferent effective mass in different directions. In this case,
the temperature dependence of the resistivity at low tem-
perature should deviate from the linear relationship.

Another possible way of testing the model is to investi-
gate the temperature dependence of the resistivity of very
narrow channels. In this case, the momentum-
nonconserving electron-electron interaction is proportional
to T' instead of T. At present, the author is not aware
of any definite experimental result showing such varia-
tion.

Mote added. While revising this paper, the author no-
ticed a similar analysis of ~; done by Davies and Pepper.
Although some of the interpretations of the results are not
the same, the experimental data agrees with the result of
this work. For example, at %, -2&10' m, they found
I/v; =5.1X10 T +3.0X10' T s ' for k~i= 11. Here,
we found I/r;=5. 9X10 T +1.1X10' T s ' for
k+i=28. The fact that K,a=0.76 in their analysis for
higher magnetic field and lower mobility samples is con-
sistent with the argument given in this work. The interac-
tion effect is significant in their case.
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