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Phenomenological Lagrangian for the amorphous solid state
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We construct a model which in a simple way takes into account the influence of the long-range
correlations in an amorphous solid. With the Lagrangian which we propose, we are able to explain
the existence of local minima which do not correspond to the crystalline state. A two-dimensional
lattice is considered in some detail. Some relations with the experimental data are briefly discussed.

There is a common opinion' that in order to describe
and understand the amorphous solid state such as silicates
and glasses we have to take into account the long-range
correlations, i.e., the influence of atoms placed beyond the
closest neighbors of a given atom. As a matter of fact, if
we consider atoms with valence m, and if the contribution
to the energy comes only from their bonds with their m
closest neighbors, it is difficult to conceive how a single
atom would "know" whether it is placed in a regular crys-
talline lattice, or in a random m-coordinated lattice. If
there is any significant difference, it comes from the struc-
ture of the neighborhood containing more than that
atom's immediate neighbors.

We shall construct a single phenomenological model
and apply it to the simplest case of a tricoordinated lattice
in two dimensions. As we shall see, the model displays
quite interesting properties, and enables us to explain why
in some cases a random lattice is energetically preferable
as compared with the regular one.

There exist only four regular tricoordinated lattices on
the plane containing only perfect equilateral polygons
(Fig. 1); we shall denote them by respective symbols
(6,6,6), (4,8,8), (4,6,12), and (3,12,12); these symbols have
the following meaning: As each atom belongs to the three
adjacent polygons, the three numbers in the symbol define
their number of sides. In each of these cases the three an-
gles between the bonds linking the atom to its immediate
neighbors are el =2= 3 =2~/3' ~ l =~/» o2 o.'3
=3m/2; al ——m/2, a2 ——2m/3, a3 ——5m/6; finally al ——m/3,
a2 ——a3 ——5m /6.

Let us now consider a random lattice, in which all the
polygons are convex and equilateral, but not necessarily
perfect (i.e., with equal angles). It may contain triangles,
rhombs, pentagons, etc. , in some unknown proportions;
one should not however expect a lot of n-gons with a very
large value of n, which would resemble a bubble in the
midst of the lattice.

Consider an elementary tripod, i.e., an atom together
with its three closest neighbors linked to each other via the
covalent bonds. If it could be left free, by removing all the
rest of the surrounding lattice, it would have taken on the
most symmetric configuration in which u l

——a2—(x3 —»m /3. The simplest Lagrangian displaying an ab-
solute minimum in this configuration is obviously given
by

where u3 ——»m —a l
—a2,' so, up to an additive constant,

I-p
——6al+ 6o,'2+ 6alaz —1»mo.'l —1»mczq .2 2

(2)

(b)

(c)

On the other hand, if we consider an n-sided equilateral
polygon found in the lattice, it would also take on the reg-
ular symmetric shape with all its angles equal,
P, =P2 — ——P„, if the rest of the surrounding lattice
disappeared. Let us note that this shape gives a maximum
for the polygon's surface. Therefore, the Lagrangian
displaying a maximum for this configuration can be made
proportional to the surface.

Let us finally consider an elementary cell of the lattice,
containing an elementary tripod and the three adjacent po-
lygons, with numbers of sides respectively n j, n 2, and n 3

(altogether nl+n2+n3 —5 atoms) (Fig. 2). The shape of
such a cell is fully determined by fixing the three numbers
n&, n2, and n3, and all the angles in the polygons. It is
easy to see that only (n

& +n2+ n3 —10) of these angles are
independent. Let us call the angles in the tripod a&, a2,
and a3 (with a3 ——2~—al —o.'2), and the angles of the
polygons P(1)(~P(1)2~ ~ P(1 jn ~P(2)1&P(2)2~ ' ' ~ P(2)n1 2'

P( 3 ) 1 P( 3 )2 P{3)., of course in each set of P's one an-

gle is identical with one of the a' s.
Following the suggestions formulated above, we postu-

LP =(O'l —&2) +(&2—O'3)'+(~3 +])2 FICs. 1. Four tricoordinate regular homogeneous lattices on
the plane: (a} (6,6,6), (b) (4,8,8), (c) (3,12,12), and (d) (4,6,12).
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FIG. 2. Elementary cell in the amorphous lattice.
{n&, n2, n3) ={5,6,7).

+A,(S„+S„+S„,) (3)

with S„. denoting the surface of the ith polygon
l

(i =1,2, 3), and A, some constant describing the relative
weight of the two contributions to the energy.

The formulas giving S„ for different values of n and for
arbitrary angles are quite cumbersome; for example, the
surface S5 of an equilateral pentagon with angles
P) Pz, . P& is equal to

S5 = —,
'

sing) + —,
'

sinp3

P) . P3 . P) P3—2 sin sin sin pz+ +
2 2 2 2

(4a)

while the surface S6 of a hexagon is given by

late the Lagrangian of the cell to be equal (up to a con-
stant) to

L = 6a~+6a2+6a~a2 —12m.a] —12++22 2

and so on.
For a cell ( n), n z, n 3 ) the Lagrangian depends on

(n) +nz+n3 —10) independent parameters. It is obvious-
ly out of the question, for technical reasons, to minimize
the Lagrangians of this type for all the elementary cells in
the random lattice; therefore, we should simplify the prob-
lem by introducing some mean value parameter instead of
the multitude of real angles of the lattice.

First of all, as the maximum of S„ is obtained when all
the angles are equal, we shall replace the complicated ex-
pressions in (4) by a simple function of one variable,
displaying the maximum at the same time as the corre-
sponding S„; supposing that the real angles in a random
lattice take on the values not very far from the perfect po-
lygons' values, the error will not be very great. A suitable
simple substitution we choose is

S„~A„[(n—1)sinu+sin[(n —2)m —(n —1)a]j (5)

with the normalizing coefficients A„chosen in such a way,
that for the value of a corresponding to the angle of a per-
fect polygon (i.e., [(n —2)/n]vr for the n-gon} our expres-
sion will take on the exact value of Sn. One can easily
compute, for example, A5 ——0.3618, A6 ——0.5, A7 ——0.664,
etc.

We also have to fix the precise meaning of the variable
a. We think that the geometrical mean value is a good
choice; that is, we shall put for a cell with the three adja-
cent polygons n &,n2, and n 3,

1/(n &+n2+n3)
&=(P(1))P(1)2 P(1)n)P(2)1 P(2)n&P(3)1 ( (3)n&)

rather than the arithmetic mean value over the three po-
lygons. Such a choice becomes convincing if we look at
the plot in Fig. 3, which shows the relation between the in-
verse surface density and o: for the eleven regular homo-
geneous lattices existing on plane. The four tricoordinate
lattices are found beyond the angle 2m /3; the three
tetracoordinate ones are found near ~/2; then we have two
pentacoordinate lattices and only one hexacoordinate {til-
ing the plane with the perfect triangles). The numerical
values for the tricoordinate lattices on plane are given in
Table I (see also Ref. 4).

Although not exact, the inverse density D ' of the lat-
tice seems to be proportional to the geometrical mean
value of the angles in an elementary cell; at least on the
qualitative level the fits are quite satisfying (if we take the
arithmetical mean value instead, the fits are less close to
straight lines).

With this in mind we can analyze in more detail the
grangian (3), Inodified as follows:

L = 3o.' —4mo, '

N
+& g &),&k [ (k —1)sina

k=3
+sin[(k —2) —(k —1)a]j,

FIG. 3. Inverse density D ' {in arbitrary units cm ) as
function of the mean geometrical value a of angles in an elernen-
tary cell. The 11 regular lattices fall into four groups, one hex-
acoordinate, two pentacoordinate, three tetracoordinate, and
four tricoordinate. The dependence is close to linear. The ex-
trapolation to the straight lines passing through these groups of
points enables us to evaluate D ' for any o. corresponding to the

(7) amorphous states.
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TABLE I. The numerical values for the tricoordinate lattices on plane.

Lattice
type

(6,6,6)
(4,8,8)

(4,6, 12)
{3,12,12)

Density
D

0.7698
0.6863
0.6188
0.4974

Inverse
density D

1.2990
1.4571
1.6160
2.0104

Arithmetic
mean value

120
126

130'55'
140

Geometric
mean value

120'
124'30'
128'37'
135'30'

where A, as before is the overall ratio of the two contribu-
tions (tripods versus polygons), Ak are the normalizing
constants introduced above, and Pk is the relative frequen-
cy of the k-sided polygons in the lattice. Note that if we
call pk the probability of finding a k-sided polygon among
the three polygons of an elementary cell chosen at ran-
dom, then obviously

(8)

and of course, in both cases

which gives

kPk
Pk =

gkP
The fact that we are using the probabilities Pk comes

from the way we have constructed our mean value La-
grangian; this is an important point which needs to be
underlined.

The first term 3a —4~a, no matter how it is
parametrized, is obtained as follows: We consider all the
tripods of the lattice whose number is exactly the number
of atoms present (we neglect, of course, the boundary
which is supposed to be at infinity); for each of them we
take the corresponding contribution given by (2), add them
up and divide by the number of atoms.

The second term is obtained by considering all the po-
lygons of the lattice, taking the contributions proportional
to their surfaces Sk, adding them up together, and divid-
ing by the number of all polygons present in the lattice;
this will yield the relative frequencies Pk in front of each
"mean valued" surface Sk.

Now comes the subtle point: How should we add up
the two contributions? Qf course, there is the unknown
relative strength of these two types of energy visualized by
the constant A, in formula (7), but this is not enough. We

have to translate, so to speak, the two different ways of
averaging, the averaging "per atom" and the averaging
"per polygon. " To do so, it seems reasonable to admit
that the surfacial energy term of a k-sided polygon will
equally contribute to the energy of the k adjacent tripods;
in other words, when we add up the two kinds of contribu-
tions, the terms PkSk should be taken with the relative
weight k '. Therefore, the final version of the Lagrang-
ian 1s

X
+& g PI,Ak I (k ——1)sina

, k

+»n[(k —2)~—(k —1)a] j .

Let us carry on with a simplified model in which the
lattice is supposed to contain only five-, six-, and seven-
sided polygons. This means that all the Pk's vanish except
P&, P6, and P7, of course P5+P6+P7 ——1. There is one
more constraint on P5 and P7, namely P5 ——P7, which is of
purely geometrical character (cf. Ref. 5). If P6 is close to
1 and P5 and P7 quite small, we can argue as follows. The
presence of a pentagon in a hexagonal lattice creates a de-
fect in the mean angle value, as would happen when there
is a local positive curvature; the presence of a heptagon
creates an excess in the mean angle value, corresponding
to a local negative curvature. If our lattice has to remain
globally flat, there should be as many pentagons as hepta-
gons present; the five defects of pentagon angles will then
annihilate the seven smaller excesses of a heptagon. That
is why P5 ——P7 is a rigorous equality in flat two dimen-
sions, and we have P& ——P7 ——(1—P6)/2. Now our La-
grangian depends on one variable a and on two essential
parameters, A, and P6..

1.=3a 47ra+A[0. 03—62(1 P, )[64i sna+i s( n—7r3—4a)]+0.0833P6[5 sina+sin(4' —5a)]
+0.0474(1 —P6)[6sina+ sin(5m —6a) ] ] . (12)

If P6 ——1, the Lagrangian (11) has an extremum at
a=2m. /3 for any value of A, . However, if P6~1, it is easy
to see that when k grows larger at some critical value k,
the minimum at 2m/3 gives way to a maximum, whereas
other minima can be observed nearby [Figs. 4(a)—4(d)].
The critical value of A, is easily computed,

The fact that there is always an extremum at a=2m/3
should be expected. As a matter of fact, we could have ar-
gued in a different way: Suppose that we have not im-
posed any constraints on P5 and Pq, and introduced the
Lagrange multipliers A, &, A.6, and A, 7 for the corresponding
contributions

6
0.873+ 1.292P6

I. =- 3a' 4+a+X,P,W,S,(a)+—A,6P,W,S,(a)
+X7P7A 7S7 (a) (14)
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FIG. 4. Lagrangian plotted as function of a. The values of P6 have beeri chosen as follows: (a) P6 ——0.25, (b) P6 ——0.50, (c)
P6 ——0.75, (d) P6 ——0.90. On each plot we have traced eight curves corresponding to varying values of the parameter A, : A, =O. 5m, with
m =3,4, 5, . . . , 10. The lowest curve corresponds always to the lowest value of A, . a is given in radians, energy units arbitrary.

with Ak, Sk defined as above. Then require an extremum
at a=2~/3. This yields, after simple calculus, the rela-
tion

~sP5 1.99 = 1.382=-
A,7P7 1.44 (151

which coincides up to 1.3% with the ratio of our previous
weighting coefficients introduced via the geometrical
reasoning. This is quite comforting if we recall the ap-
parent roughness of our approximation.

Let us return to the curves displayed in Fig. 4. The
minimum at 2m/3 can be identified with the regular crys-
talline lattice (6,6,6) when P6 ——1; for P6&1 we still have a
minimum very close to the value 2m/3, which we can in-
terpret as stable amorphous configuration. If A, grows
bigger, new minima are observed away from a=2m/3;
these should in principle correspond to new stable amor-
phous configurations; we think that in our simplified
model only the minimum at u &2m/3 can be taken seri-
ously, because when we mix up pentagons, hexagons and
heptagons so that P5 ——P7, the geometrical mean value a

in an elementary cell will be more than 2m. /3. The possi-
bility of having other crystalline states corresponding to
these minima can be safely excluded, because no regular
lattice displaying a translational symmetry can be pro-
duced out of five-, six-, and seven-sided polygons only.

The parameter A, has a well-determined physical mean-
ing, and should vary from one chemical element to anoth-
er. In principle, it can be evaluated by means of quantum
mechanics (calculus of orbitals in elementary cells of the
lattice). Let us note that in the case of carbon the forma-
tion of polygons occurs very easily', therefore, the energy
captured in a polygon is not very high, which means that
k is small. In the case of silicon the formation of "trees"
(polymerization tendency) is preferred and the polygons
must be more difficult to create, which means that A, is
large. According to our model, when A, grows larger, the
amorphous state becomes energetically preferable; if we
recall that silicon is a good glass former, whereas carbon is
not, we have reasons to think that we are on the right
track.

In principle, we can go further if in a n ~re realistic
model we include the contributions coming from other
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possible polygons also, appearing with the finite probabili-
ties P3,P4, . . . , Pi2 (we can safely stop at 12). There will
be plenty of new information, too. Of course, we shall
still have gP; = I, but our generalized Lagrangian should
present new minima corresponding to the regular tricoor-
dinated lattices, i.e., we shall impose BL/Bu=0 also at
other values of a (given in Table I) and at the values of P;
defined by the regular lattice itself, e.g., P4 ———,, P8 ———,,
other P; s vanishing for the lattice (4,8,8), etc. It is quite
easy to see that all such identities cannot be satisfied for
one common value of A., because in reality the energy of
polygon forming is not just proportional to the surface of
the polygon with the same scale constant factor indepen-
dent of the number of sides; our model is oversimplified.
In a more sophisticated version one should introduce A,„
different for each n.

Then, after satisfying all the identities for the known
minima, most of the parameters A,; and P; can be eliminat-
ed; the remaining independent ones can be fixed by com-
paring the values of L for different lattices. As L de-
scribes the energy per atom bound in the lattice, these
differences have a precise physical meaning and can be put
into correspondence with, for example, the melting points
of the given crystalline structures. This in turn can fix the
overall scale of the Lagrangian, which is not defined yet.

Let us close by summarizing the features of the model
which seem to be the most important ones. In spite of the
very rough approximation we have used, it enables us to
get the following insights.

(1) The ease or difficulty of glass formation can be ex-
pressed by one parameter A, (energy of polygon forming
versus energy of a bare tripod). Its magnitude can be
evaluated, in principle, for different chemical elements us-
ing the methods of atomic physics. We have seen on our
curves that for A, above the critical value an infinity of
amorphous states exist; glass is an amorphous state, but
not every amorphous state has the properties of glass.
Our guess is that among all the amorphous states observed
as minima on our curves, the glassy state should corre-
spond to the flexion point at which (BL/Bu)=0 and
(3 L/Qa )=0, too. This fixes the amount of P6 for a
given A, in our bidimensional "glass. "

(2) The choice of the geometrical mean angle value in an
elementary cell enables us to take into account, in a very
simple way, the medium-range correlations in the lattice;
it enables us also to compare in a continuous manner the
crystalline and the amorphous lattices. The extrapolation
of the (roughly approximative) linear law of the depen-
dence of D ' on a gives us the density of any amorphous
configuration. Then the coefficient of elasticity (at least
the contribution coming from pure bond-bending defor-
mations and neglecting the bond stretching) can be calcu-
lated as BL /B(D ').

(3) In a more realistic model the contributions of all
possible polygons, i.e., triangle:, rhombs, etc., have to be
considered, too. It is easy to see that in this case more
new minima will appear, because the Lagrangian shall
contain more different harmonics. Such a phenomenon is
really observed, because a denser glass can be obtained by
thermal annealing and internal restructuration without a
phase transition in a classical sense.

(4) The fact that the energy dependence on P6 is very
weak in the vicinity of the extremal point [a kind of "pla-

teau" on the graph L(P6) for a fixed near the critical
value] also suggests the possibility of a gentle restructura-
tion, i.e., the quasicontinuous passage from one amor-
phous state to another, if the temperature is high enough
to easen the bonds here and there, but not sufficient for
melting the glass completely.

(5) The very small differences between the energy levels
of different amorphous states (as compared to the differ-
ence in energy between these states and the crystalline
state) make possible the existence of tunneling modes in
glasses on the quantum level. The possibility of the tun-
neling in glasses, which might explain the Vogel-Fulcher
law at low temperatures, has been discussed by Rivier,
Kleman, and other authors, although in a completely dif-
ferent context, which considered the "defects" in glasses
and their possible contribution to the energy of the lattice.
We see that our formalism can take into account the ex-
istence of tunneling modes, giving also some clues to the
order of magnitude of the potential barriers.

(6) In order to make this theory operational and to per-
mit the verification by experiment, we have to generalize it
to three dimensions. A tetracoordinate lattice should be
then considered, and the parametrization of the problem
has to undergo some important changes. Not only the
geometrical mean value of the angles in the adjacent po-
lygons has to be considered, but also the dihedral angles
between the adjacent polygons are important, too; the solid
angles can be then derived as the function of these two
kinds of angles. The density as well as the energy depend
on these quantities, and also on the new parameters absent
in the two-dimensional case, such as the number of po-
lygons per bond and the number of polygons per atom
(which is not a simple function of the coordination num-
ber as before).

(7) The generalization for the mixed lattice, with dif-
ferent coordination numbers appearing in the lattice
simultaneously, can be obtained quite easily. In the same
spirit as before, we should consider the coordination num-
ber as a continuous variable (mean value of X, over the
lattice). If we continued Fig. 3 in three dimensions, con-
sidering D ' as a function of both a and N„our points
would most probably stay on some surface in the space
(D ', a,X, ). It would be worthwhile to look at the mini-
ma of the modified Lagrangian (in which the term 3a is
replaced by X,a ) as functions of 0,, X„and P s. This
should give some insights concerning such glass formers
as Ge~Sei ~, etc., as has been suggested by Phillips. '

(8) Until now, we considered P s as independent param-
eters; if so, we are describing the elastic deformations of
an amorphous solid (without considering the bond-
stretching contributions). However, if both a and P s are
supposed to vary, then we are in fact describing a struc-
ture which behaves rather as a liquid, or something that is
happening during the glass transition or crystallization.
In such a case, it seems reasonable to assume, as a first ap-
proximation, that the spontaneously formed polygons are
very close to the perfect (equiangular) form; then a simple
relation between D ', the probabilities Pk and a can be
introduced as follows: According to our definition,

"pk (gk kpk )

(16)
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or, as pk =kPk/g„kPk,

lna=
2 gk Pkln

1 2 (k 2—)vr

J'~~ k
J

As for D ', we recall that the surface of a perfect k-gon is
given by

(17)

k (k —2)ir
Sk ———tan

4 2k

and each atom in the lattice is surrounded by three po-
lygons with the probability of finding a k-gon equal to pk,'

therefore

3 kPk (k 2)~

In the simplified model with P5 Pq ——(1——P6)/2, —other
P s equal to zero, everything depends then on one parame-
ter a only; e.g., one obtains easily the relation

37 in+ —27.726
1na —1.1128

Then we can replace P6 by this expression in our Lagrang-
ian (12). Let us note that now a=2m/3 is the minimal
value of a, corresponding to P6 ——1; the variation of a is

very limited now, e.g., for P6 ——0.5, a=120'37'. The in-
verse of density is also easily obtained now,

1.4622 lna —1.09S7
inn —1.1128

(21)
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Maximal density is reached for P6 ——1, when D '=1.299;
minimal density corresponds to P6 ——0 when D '=1.3386
(the variation is of the order of 1.57%).

In order to have an extremum at a=2~/3 we have to
impose now the condition (14). Similar phenomenon as
before can be observed now, too: Below some critical
value of the parameter A, we get (BL /Ba) & 0 for a & 2~/3,
and the crystallization" will be energetically preferable;
for A, growing larger, at some point BI./Ba & 0 for
o.)2/3, and the system will tend spontaneously to an
amorphous configuration corresponding to P6&1. Closer
investigation of these phenomena, together with the even-
tual analysis of the time dependence a{t) will be the sub-
ject of our planned future papers.
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