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Shell model and the nature of the collective oscillations of shells
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The specific form of the change in overlap interaction between ions due to the presence of dipole

polarizability implied by the shell model lacks any microscopic justification, while all other terms of
the model have a sound quantum-mechanical basis. Recently we have shown that within the frame-

work of the Heitler-London approach this modified overlap term of the shell model is microscopical-

ly justifiable. This calculation provides a method of evaluating the parameters of the model directly
from the wave functions of the ions. Since the shell model has been successful in describing the dif-

ferent lattice-mechanical properties, it seems instructive to investigate how far it can reproduce the
collective dynamics of the electrons in insulators. Starting from the Hartree-Fock wave function of
the ions the calculation is presented for the dispersion relations of the collective oscillation of the
shells in the shell model by relaxing the usual adiabatic condition for the two crystals: namely, KC1
and NaC1. It is interesting to note that the q ~0 frequencies of these collective oscillations of shells

of these two crystals together with those of the other fourteen crystals obtained phenomenologically
are found to compare satisfactorily with the measured plasma frequencies.

I. INTRODUCTION

Evidence, both empirical and theoretical, is gradually
increasing and is by now compelling enough to justify the
objective validity of the crucial underlying assumption of
the shell model, ' i.e., the existence of a localized electronic
dipole or more commonly that of a shell in the shell-
model parlance. This model has been widely used to inter-
pret the dielectric and the phonon data of various solids in
general and the insulators in particular. On the theoretical
side since the introduction of the idea of the shell model
by Dick and Overhauser several works have appeared to
justify the model. Among the earlier works those of Tol-
pygo and co-workers need special mention. During the
last decade or so the works of Gliss et al. , Zeyher, %'ak-
abayashi and Sinha, and Nidermann and Wagner have
presented quantum-mechanical justification of the basic
formalism of the shell model. Recently it has been
demonstrated by Banerjee et al. that under suitable ap-
proximations the specific form of the change in overlap
interaction between ions due to the presence of the dipole
polarizability implied by the shell model is derivable from
the first-principles analysis.

The above-mentioned works indicate that the shell
model may be looked upon as a simplified way of taking
account of the very complicated collective response of the
electron system in insulators to nuclear displacement and
the external electric field. Moreover, the empirical success
of the shell model shows that this treatment of the elec-
tron response describes fairly well the properties of insula-
tors connected with nuclear displacement. It is therefore
legitimate to ask if the same response mechanism can also
describe the collective dynamics of the electron system,
i.e., of the plasma oscillations in insulators. In fact, in this
report we shall attempt to add a new dimension to the
shell model by interpreting the collective oscillations of

the shells in the shell model hitherto not considered as a
meaningful physical quantity as the plasma oscillations in
insulators. However, it is to be mentioned that the idea
presented in this work is not altogether a new one. Slater
discussed a general scheme of obtaining the collective os-
cillations of ions and electrons in insulators from a unified
point of view, although he did not actually use the idea of
the shell model. Next, in the first international conference
on lattice dynamics a somewhat analogous idea, of course
not exactly similar to the present work, was advanced as a
speculation by I.ax' in which he called attention to a
"shellon" the shell frequency. We shall try to substantiate
our interpretation by presenting a parameter-free calcula-
tion of the dispersion relation of the collective shell oscil-
lations for the two solids, namely, NaC1 and KCl crystals.
Next we shall present the phenomenological calculations
for 14 other crystals. Finally, we shall compare'these fre-
quencies with the measured plasma oscillations.

II. THEORY AND METHOD OF CALCULATION

Before we proceed with the actual calculation let us
briefly recall the shell model. In insulators it is assumed
that the response of the electron system to an external
electric field will in general continuously vary from the
loosely bound valence-electron states to the rigidly held
deep-lying core states of the ion, the perturbation being
maximum for the outermost electron and vanishingly
small for the innermost one. In the shell-model descrip-
tion this entire complicated process of response is approxi-
mated by assigning a fixed charge to the shell whose
response is controlled by a spring of finite strength, while
the rest of the electrons are held to the core with infinite
strength. This assumption is seen to be justified from the
following direct numerical calculation. Placing a Cl ion
in an electric field a coupled Hartree-Fock calculation is
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performed to obtain the dipole polarizability. The
perturbation-wise break up of the result is shown in Table
I. The results clearly show that the perturbation of the 3p
electrons alone contributes about 99% of the total dipole
polarizability. In the shell model this entire process
shown in Table I is approximated by assigning a fixed
charge to the outermost valence orbital (3p shell in the
present case) whose response is controlled by a spring of
finite strength, while the rest of the electrons (i.e., 3s, 2p,
2s, and ls orbitals) are held rigidly to the core. Retaining
the full charge of each orbital a rough estimate from the
values given in Table I shows that the spring constant of
the next important orbital (3s) is approximately 60 times
larger than that of the 3p orbital. This may be advanced
as a justification of the mechanical spring shell picture en-
visaged by the shell model. But this simple picture should
not be stretched too far. It must be emphasized here that
after an ion is transferred to a lattice the shell charge is no
longer an individual ion property: It is a joint property of
the ion and its surroundings. What is important to note is
that the relative response of the orbitals is assumed to
remain more or less the same in the crystal, and the shell-
model description is tenable. This point is further treated
later. After these preliminaries our purpose in the present
work is (l) to indicate that under suitable approximations
the form of the change in the overlap interaction term due
to the presence of dipole polarizability implied by the
phenomenological shell model is derivable from the first-
principles analysis (it may be noted here that all other
terms in the shell model except this one have sound
quantum-mechanical justification in the Heitler-London
approach for an aggregate of ions), (2) to then calculate
the relevant parameters from the Hartree-Fock wave func-
tions of the ions when the ions are placed in a lattice, and
(3) finally to solve the equations of motion in the shell-
model formalism without invoking the adiabatic condition
and to obtain the dispersion relations of the collective os-
cillation of the shells. For crystals other than NaCl and
KC1 only the q~0 frequencies have been calculated by
using the values of the parameters determined from the
crystal properties.

Recently, in a series of works ""we have presented a
careful analysis of the energy expression for an assembly
of ions within the s approximation. We indicate, in brief,
the part of the analysis related to our discussion. We
make use of the Heitler-London method of construction of
the wave functions first used by Paul et al. ' for ionic
solids. Denoting by the one-electron wave functions the
ion at site 6, where v=6,i, cr (i and o. indicate the spatial
and spin quantum numbers), we construct the antisym-
metric wave function for the whole crystal. We associate
with every lattice site 6 a positive nucleus of charge zGe
and the electronic charge n ge, and age =(zg ng )e is the-
net ionic charge at G. With an even number of electrons
the electronic states are occupied, including both spin
states o.=+1, and the normalized antisymmetric wave
functions are given by

C&g=Ag +4
where AG is a normalized antisymmetric operator acting
on the electrons of the 6 ion. The antisymmetric wave
function for the entire solid is given by

qio ——A@p, No ——+Ng
G

(2)

where A antisymmetrizes No with respect to interchange
of electrons belonging to different ions. With the use of
the standard set for numbering of electrons the Hamiltoni-
an of the solid is given by

@0+g Cg+(6+) + g Cgg'+(G~, G'~'), (4)
G, G'

where the excited state is denoted by v. In the above ex-
pression N(6v) and +(Gv, G'v'} are the excited states of
the crystal in which only the G ion and the G and 6' ions
are excited, respectively. Since our major motivation is to
derive the shell-model energy expression we are interested
only in the dipolar deformation of the ions. Hence
without any loss of generality we assume the individual
ion excited state to be p states only. Antisymmetrizing the
wave function (4), 0'0 ——A+0, the total energy of the solid
may be written as

0,'HC

%,'4

Next, making a multipole expansion of V and using the S
approximation, Eq. (5) may be split up in different orders
of S and V. The details of this derivation are discussed
by Banerjee et al. Qf all the terms, we consider the one
which is second order in V and first order in S because
this is the crucial term on which the shell model hinges.
The other terms occurring in the shell model are quite well
known and correspond to various terms in the expansion
of Eq. (5). The dominant term of this second-order ex-
change interaction is given by

&zi-—&g C (Vo" —Voodoo. )

where

(6)

H =Hp+ V, V= —, g Vgg
G, G'

where Ho is the Hamiltonian of the isolated ions and VGG
represents the interaction term. It is to be noted that this
is not the total potential but represents only that part of
the potential which results from the interaction between
ions and is small compared to the energy of the isolated
ions. Now in order to include the effect of perturbation
the modified wave function is given by

C'o =co+ g C.e„

Perturbation
Polarizability

2$-np
0.0018

3p"nd
20.6712

3p"ns
4.5798

3s-np
0.1059

TABLE I. Contribution to dipole polarizability from different orbitals of Cl in atomic units.

1s-np 2p-ns 2p-nd
0.0001 0.0011 0.0138

Total
25.3737
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v =(oI vIv), v,'"„=(vI v(w —l) Io),
s',„=(oI(w —l) Iv) .

E2 It(G, G'),
96 9G'

(8)

If we compare this term with the term which is first order
in V and first order in S, namely,

E» —(S'V~ —V~),
where

v~=(oI vIo) vN=(oI v{w —l)Io) *

s'= (o
I

(w —l)
I
o),

(6a)

we may immediately note that Eq. (6) is a modification of
Eq. (6a). Let us clarify the point; Eq. (6a) describes, along
with the Coulomb overlap interaction, the usual short-
range overlap interaction (see Paul et al. '

) between ions
which are spherically symmetrical, and their electron dis-
tribution is unperturbed by the field of other ions. The
part of E2~ given in Eq. (6) describes a modification of
this short-range interaction [Eq. {6a)j due to the presence
of the dipolar perturbation of the electron wave functions
produced by the C 4, terms of Eq. (4). Basically this is
also the essence of the shell-model approach where a
specific form of this change in overlap interaction due to
the presence of the dipole moments of the interacting ions
has been phenomenologically suggested. We shall now
show that under reasonable assumptions Eq. (6} leads to
correction to the overlap interaction, which is identical to
that envisaged in the shell model.

Let us consider two ions separated by a distance RGt-.
Taking the z axis along A&6 we assume that the dipole
moments mG and mG are also along this direction. We
shall only consider those terms for which C„ is CG. In
this case CG reduces to a single component and Eq. (6}
may be written completely in terms of the dipole mo-
ments,

where qG 2——enGJG A. gain in the shell model the crucial
assumption is that the overlap interaction between the two
ions will alter when the ions have generated dipoles ac-
cording to the following relation (see Refs. 14 and 15):

2t)(G, G'),
y'Gp O'G'p

(9)

where P(GG') =b exp( —RGG /p) is the Born-Mayer {BM)
form of the overlap interaction and —yG is the shell
charge of the G ion. Equation (g) provides the justifica-
tion of the specific form implied by the shell model (9).

Next we briefly discuss how to determine the shell pa-
rameters from the Hartree-Fock wave functions of the
ions. Comparing Eqs. (8) and (9) we immediately obtain
the expression for the shell charge

yG=RG~p ~

which clearly shows that the shell charge of the G ion is
no longer a property of the ion alone, in contrast to the
simple arguments given earlier. Basu and Sengupta' '
have discussed in detail the method of evaluation of Eq.
(8) by using the Clementi wave functions of the ions. In
addition to the shell parameters the BM potential parame-
ters, namely, b and p are also determined. The method
essentially consists of evaluating the overlap energy be-
tween the ion with and without dipole perturbation of the
wave functions. It is noted from a very exhaustive calcu-
lation that the magnitude of the shell charge slightly
varies with the equilibrium separation between the ions. '

Since we do not expect an exact reproduction of the plas-
ma frequencies using only the free-ion wave functions we
disregard this small variation and use the values corre-

Ezi =— mGP~(G G ) mG'Pp (G G')
+

2enG(G 2enG (G'
(a&

KCL

gg=(d&g g)g; —Rg), Rgg

o
0.2

I

0.6

C»o)
I I

0.2, Q o.l

(111)

0.3 0.5

igg= —2eCg R'g g)g; —Rg) kg ),
and {t)~(G,G') is the overlap interaction between G and G'
ions when an electron of the G ion is in an excited state.
We further assume that the overlap interaction does not
substantially alter when only one of the electrons in the
ions concerned is in an excited state. So, we may write

P~(G, G') =(t o,(G, G') =P(G, G')
().2

(&oo&
I

0.$ 1.0

(b)
NaCL

I

0.6

&~to)
I I

o.p 0 o.l
I

0.3 0.5

when P(G, G') is the total overlap interaction between the
ions in their ground state. This is quite justified since the
overlap interaction involves all the electrons of both the
ions and the perturbation of a single electron will not sig-
nificantly alter the total interaction energy. With this ap-
proximation Eq. (7) reduces to

FICx. l. Dispersion relation of collective oscillation of shells
for (a) KC1 crystal and (b) Nacl crystal. Dotted and solid curves
refer to parameter-free and phenomenological calculations,
respectively. The upper and lower branches indicate longitudi-
nal and transverse modes. The arrow shows the observed plas-
ma frequency.
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TABLE II. Frequencies of collective shell oscillations (q ~0)
in 10' Hz.

Crystal

b

NaCl'
NaI
NaBr
NaF
KI
KBr
RbI
RbBr
RbCl
CsI
CsBr
CsCl
LiF
T18r
MgO

Calc.

1.92 (1.49)
1.84 (1.55)

1.56
1.60
3.20
1.33
1.68
1.55
1.83
2.36
1.78
2.32
2.32
2.85
1.67
2.80

Expt. '

2.11
2.31
1.94
2.10
2.62 (?)
1.79
2.02
1.68
1.85
2.04
1.62
1.72
1.78
3.84
1.78
3.39

'Reference 18.
The values within parentheses for these two crystals refer to the

parameter-free calculation.

sponding to the equilibrium separation. The perturbed
wave functions used correspond to the values given in
Table I. With the use of the results of the calculation for
NaC1 and KC1 crystals' and the above equations the shell
charges and the spring constants are evaluated. The
values of the shell charges obtained are 1.826e and 1.639e
for the NaC1 and KC1 crystals, respectively, the corre-
sponding spring constants being 20.450 and 16.570 10
dyn/cm. We have consistently used the one-ion polariz-
able model in all the calculations. The variation in the
value of the shell charge for the same ion iC1 l indicates
the effect of different surroundings in the two crystals.

Having thus known the parameters we may now obtain
the dispersion relations of the collective shell oscillations
by solving the equations of motion of the shell model: In
the usual vector notation the dynamical equations are
given by (symbols are those of Ref. 1)

(R +ZCZ) U+(R —ZCY) 8'=co I;,„U,
(R —YCZ) U+(E +R +ZCY) 8'=co m, h,))8',

where m, h, ~~ is the mass of an electron multiplied by the
shell charge. The other terms of the equations have their
usual significance. The major difference of Eq. (11) from
that of the conventional shell model is the absence of the
adiabatic condition. In the usual application the shell
mass in Eq. (11) is put equal to zero and the second equa-
tion of Eq. (11) reduces to the adiabatic condition. The
solution of Eq. (11) will yield both the phonon and the
plasma frequencies. In the symmetry directions the solu-
tion yields two branches, longitudinal and transverse, of
the collective oscillations of the shells. We discuss the re-
sults in the next section.

III. DISCUSSION

Figures 1(a) and 1(b) and Table II show the results of
the calculation and the experimental values. The q~0
longitudinal frequency compares with the measured plas-
ma frequency of the solid. It is seen from the figures that
as expected the branches are more or less flat and it is
found that the dispersion is produced by the underlying
lattice structure. In all cases, without any exception, the
correct order of magnitude is predicted. Even in the cases
of the NaC1 and KC1 crystals where no crystal datum is
used, the satisfactory agreement bears out the justification
of the interpretation advanced in this work. Moreover, it
may be mentioned that the same calculation also repro-
duces the different lattice-mechanical properties of these
two crystals within reasonable limits.

However, it is found from Table II in general, including
the two cases mentioned above, that the agreement with
experiment improves when the parameters are obtained
from the crystal data. The parameters for the crystals are
directly taken from Refs. 19—22. It may be further point-
ed out that we have not tried to adjust the parameters for
better agreement. The parameters used are also consistent
with the other lattice properties of the crystals.

In conclusion, it may be noted that it has been possible
to obtain a more or less satisfactory description of the
plasma frequencies in insulators within the framework of
the shell mode1. However, the verification of the disper-
sion relations awaits further observation.
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