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The dynamical process of the diffusion of tagged particles in a one-dimensional concentrated lat-

tice gas is investigated. The particles are noninteracting except that double occupancy is forbidden.

The mean-square displacement of a tagged particle is calculated for all times by an approximate

theory and compared to results from Monte Carlo simulations. The overall agreement is quite good.
For an infinite chain and for large time t the mean-square displacement is found to increase propor-

tionally to t' in agreement with existing results. For periodic chains it increases as 2D„t for large

times, with a coefficient of tracer diffusion D„ inversely proportional to the number of particles on

the chain. This, too, is in agreement with the results of older calculations. In the case of hard re-

flecting walls finally the mean-square displacement asymptotically approaches a constant, which

can be calculated simply.

I. INTRODUCTION

In this paper we study tracer diffusion on a linear
chain, the sites of which are partly occupied by identical
particles. The average rate of occupancy of a site equals c,
the concentration of particles, and no double occupancy is
allowed. The dynamics of the system consists of a hop-
ping process, where the transition rate of each particle to
an empty neighboring site equals I . Alternatively the sys-
tem may be interpreted as an Ising-spin system with occu-
pied sites corresponding to one spin direction and empty
sites to the other one. In this case, the dynamics consists
of spin exchange between neighboring sites of oppposite
spins at the constant rate I, which is known as Kawasaki
dynamics' in the limit of infinite temperature. In this
limit the collective diffusion of this model is trivial, and
the diffusion constant entering Fick's law is simply'

D =I a

D„=" ((N. +I)-'), (1.2)

where D„ is the tracer-diffusion coefficient, N, is the
number of particles in the channel besides the tracer or
tagged particles, and the angular brackets indicate an
equilibrium average. Furthermore, ~T is an isothermal
compressibility, defined as

(1.3)

mann ) introduced the single-filing concept to describe
diffusion through very narrow pores in membranes. Here
a central problem is that of tracer diffusion through pores
of finite length. The main result, implicit in the work of
Hodgkin and Keynes and elaborated on by E. J. Harris,
Lea, and Rickert, gives the ratio between tracer- and
collective-diffusion coefficients (or, equivalently, between
tracer-diffusion coefficient and permeability) as

where a is the spacing between the sites. Tracer diffusion,
in this case, however, is completely different from tracer
diffusion in higher dimensional lattice gases, where, under
most conditions, the tracer-diffusion constant exists and
the mean-square displacement of a tagged particle in-
creases linearly with time, after some initial period. The
circumstance that particles can never pass each other,
known especially in the biophysical literature as single
filing condition, severely restricts their freedom to move
over large distances, and thereby dramatically influences
the properties of tracer diffusion. For many years this has
intrigued researchers froin various disciplines, resulting in
polychromatic literature. To our knowledge the first field
in which our present problem raised interest was that of
biophysics, where Hodgkin and Keynes (see also Heck-

where p is the collective chemical potential and
P= (k& T) ' with T the temperature and kii Boltzmann's
constant. Levitt gives a general thermodynamic proof of
this result. An experimental check of (1.2) was made by
Rosenberg and Finkelstein, who in turn could use this
equation to estimate average numbers of molecules in
membrane pores. Notice that in the limit of an infinitely
long channel D„becomes zero.

Among mathematicians the interest in one-dimensional
diffusion problems subject to a single-filing condition
arose with a publication of Harris's' work. He con-
sidered a one-dimensional system of Brownian particles
with hard-core interactions. The latter may be defined by
constructing independent Brownian paths and interchang-
ing particle labels pairwise whenever two trajectories inter-
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sect each other. Harris showed that in the thermodynam-
ic limit the mean-square displacement of a labeled
Brownian particle increases for long times as

1/2

([Sx(t)]')=2S (1.4)

where S is the average spacing between the particles and
the collective-diffusion constant D is identical to the dif-
fusion coefficient for a single noninteracting Brownian
particle. Moreover, he proved that the spatial distribution
of a tagged particle starting at the origin approaches a
Gaussian for long times. The absence in (1.4) of a linear
term in t implies again that for the infinite system the
coefficient of tracer diffusion vanishes. Under appropri-
ate scalings of space and time, the lattice gas becomes
identical to Harris s system in the limit c~O, as will be
discussed further in Sec. III. Remarkably, Levitt" in a
short paper rederived Harris's result in a more physical
language, allowing furthermore for a class of independent
particle processes more general than the Wiener process
considered chiefly by Harris. Spitzer wrote a paper on in-
teractions of Markov processes' that has become well
known among mathematicians. In this paper he posed
several problems and, inspired by the work of Harris,
made the conjecture that for all c the mean-square dis-
placement of a tagged particle in our lattice gas would
grow proportional to t ' for long times.

In the late seventies the problem was taken up by solid-
state physicists interested in superionic conduction, in-
dependently of previous work. Richards' found by
Monte Carlo simulations that the mean-square displace-
ment of a tagged particle increases proportionally to t'
for long times, and he gave some qualitative arguments to
explain this behavior. Fedders' obtained similar asymp-
totic behavior by a diagrammatic Green s-function tech-
nique. Correcting the coefficient obtained by Richards he
found the asymptotic law, valid for large times,

' 1/2

([~( )]2) 2( 1 c) 2 r
(1.5)

2K z.
([Ax(t)] ) = a (1.6)

In our case ~z equals c(1—c), and D is given by (1.1), so
(1.6) reduces to (1.5) indeed.

Along the mathematical line Arratia' recently proved
(1.5) rigorously, and in addition established, for general c,
the asymptotically G-aussian behavior of the spatial distri-
bution of a tagged particle starting at the origin.

In the limit c —~0 this is in agreement with (1.3), as fol-
lows from (1.4) and the identification 5 =a/c. Alexander
and Pincus' gave a very simple and elegant explanation
of the result (1.5). They noticed that, under the single-
filing condition, the derivative of the displacement with
respect to the particle label is directly proportional to the
collective particle density. Hence, if the time evolution of
the latter is described by Fick's law with the diffusion
constant D, one obtains a mean-square displacement,
which in general would be of the form

1/2
Dt

The new element in this paper is that the mean-square
displacement of a tagged particle is investigated for all
times, both by an approximate theory and by Monte Carlo
simulations. The theory is developed in Sec. II. For the
infinite system, we find agreement both with (1 4) and
with exact expansions for the short-time behavior. ' In
Sec. III we compare our theoretical predictions with the
result of Monte Carlo simulations. The agreement is
found to be quite good for all times and for all concentra-
tions.

We have also investigated the influence of boundaries
on our results. Most interesting is the case of periodic
boundary conditions. In this case the center of mass may
diffuse around the chain. Consequently, if displacement
is measured by following a particle around the ring, the
mean-square displacement becomes linear in time again,
for large times. The dependence of D„on system size is
found to satisfy (1.2) indeed. A slight extension of the
theory for infinite systems yields a prediction for the
mean-square displacement for all times in the periodic
systems. This also is worked out in Sec. II and compared
to Monte Carlo results in Sec. III.

In the case of finite chains with reflecting boundary
conditions the mean-square displacement reaches an
asymptotic value for large times, which is calculated in
Sec. II and compared to numerical simulations in Sec. III.
Under these boundary conditions our approximate theory
becomes rather cumbersome, due to the breaking of shift
invariance. It becomes simple again under a further ap-
proximation, which is good in the limit of large %. In
Sec. IV finally we make some concluding remarks.

II. CALCULATION OF THE VELOCITY
AUTOCORRELATION FUNCTION

A. Low concentration of vacancies

The anomalous t' long-time behavior of the mean-
square displacement of a tagged particle on the linear
chain is easily understood in the limiting case of very
small vacancy concentration. In this case we may assume
that each of the vacancies present in the chain performs a
random walk, virtually uninfluenced by the others present.
(This implies that we consider the vacancies as being able
to pass each other. ) The displacement of a tagged particle
after a given time t can be denoted as a [n„~(t)—nI„(t)],
where n„~(t) is the number of vacancies that were to the
right of the particle at time 0 and are to the left of it at
time t, and nI, (t) is defined analogously. Since the vacan-
cies exhibit normal diffusive behavior with a mean-square
displacement increasing proportionally to t for large
times, both nt„(t) and n„t(t) increase asymptotically as t '

Of course, on the average n„I(t) n~„(t) equals zer—o, but
the fluctuations of this quantity are typically of the order
of t ' . Hence the mean-square displacement of particle
1, given by the average value a ([n,&(t) —n~„(t)] ), in-
creases as t for large time.

For a more quantitative analysis we consider the (un-
normalized) velocity autocorrelation function, which is
directly related to the mean-square displacement by the
following chain of identities:
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d([x(t) x(0)]')=2 (V(t)[x(t) —x(0)])
dt

(2.1a)
The probability to find it after a time t at a distance of n
lattice units away from its starting position is given for
this process by'

=2 ( V(0)[x (0)—x ( —t)]) (2.1b)
dt P(n, t) =exp( —2I"t)I„(2It), (2.5)

=2( V(0) V( —r) ) (2. lc)

=2( V(t) V(0) ) . (2.1d)

P(t)=2I exp( 21 t) . — (2.4)

In the transitions from (2.1a) to (2.1b) and from (2.1c) to
(2.1d) we used time-translation invariance of the equilibri-
um average. In the Laplace domain, (2.1) becomes

2

C(s) = ([bx (s)] ) . (2.2)
2

A small conceptual problem is that in the model under
consideration the particles are assumed to jump instan-
taneously, hence a velocity connected to these jumps is not
defined in the usual sense. However, one may define a
generalized Uelacity by assigning to a jump, say in the for-
ward direction, occurring at the instant to,

V(t) =a6(r —r, )

The time integral of this quantity obviously describes the
time dependence of x (t) correctly.

The calculation of C(t) for the case of small vacancy
concentration is relatively simple. First of all a nonzero
initial velocity exists only if, just at t =0, the tagged parti-
cle makes a jump, hence we may restrict ourselves to situ-
ations where such an initial jump occurs. The effective
velocity, due to initial jumps to the right, equals (1—c)I a,
the product of the jump frequency and the distance
crossed in the jump. One way to understand this is by
considering the case where the jumps occur at a constant
velocity a/bt and last a time b, t, and pass to the limit
At —+0. Similarly the effective velocity due to the initial
jumps to the left equals —(1—c)1 a.

The self-correlation function of the initial jump yields a
contribution 2(1 —c)I a 5(t) to the velocity autocorrela-
tion function. This contribution is most easily understood
again by considering the case where jumps happen at con-
stant speed a/b, t and passing to the limit At~0. The
factor of 2 results from the two possible jump directions.

In performing the initial jump the tagged particle
changes positions with a vacancy, which will be called the
special vacancy, since it plays an important role in our
calculations. For t ~ 0 a nonzero contribution to the velo-
city autocorrelation arises only if just at time t the tagged
particle and the special vacancy change positions again.
Contributions from jumps of the other vacancies past the
tagged particle cancel on the average, since to lowest order
in 1 —c the vacancies move independently of each other,
and the distribution of the vacancies other than the special
vacancy just after the initial jump, is symmetric with
respect to the position of the tagged particle. The special
vacancy describes, to lowest approximation in 1 —c, a ran-
dom walk with an exponential waiting-time distribution

where I„denotes a Bessel function of imaginary argu-
ment. Suppose the initial jump of the special vacancy is
to the left. Then the probability density for a jump to the
right of the special vacancy past the tagged particle at
time t equals I P(O, t) and that for a jump to the left
I"P(l, t). The respective contributions to the velocity au-
tocorrelation function of the tagged particle are—(1—c)I' a P(O, t) and (1 c)I a—P(l, t). If, in addition,
we sum over the two initial jump directions and add the
contribution from the self-correlation of the initial jump,
we find the total result

C(t) =2(1—c)I a t 5(I t) —exp( —21 t)

(2.6)

The coefficient of self-diffusion can be obtained from this
expression in the usual way' by integrating C(t) from
zero to infinit. As anticipated it is found to be zero. The
long-time behavior of C(t) is of the form

C(t)= —(1—c)I a (2~) ' (2l't) (2.7)

The mean-square displacement of the tagged particle is
obtained directly with the aid of Eq. (2.1) as

([doc(t)] ) =2(1 c)l a—f drexp( —2t r)IO(21 r)

(2.8a)

=2(1—c)a (I t/m)' (2.8b)

B. General concentrations

At general concentrations the picture sketched above
remains qualitatively the same. However, we must be
more careful about taking into account mutual influences
among the vacancies. For example, if we would impose
the rule that vacancies cannot pass each other, just as the
particles, then, if the special vacancy would be just to the
left of the tagged particle, it would prevent other vacan-
cies which are further to the left from jumping past the
tagged particle. Hence the velocity autocorrelation func-
tion would not be determined by jumps of the special va-
cancy past the tagged particle alone. We are completely
free, however, to let the vacancies jump among each other
as we please, since such jumps are physically inconsequen-
tial, and we can use this freedom to save the simplifying
feature that all nonvanishing contributions to the velocity
autocorrelation function stem from jumps of the special
vacancy past the tagged particle.

Consider the situation just after the initial jump. If we
would take out the special vacancy, the system would be
on the average mirror symmetric, with the tagged particle
as the reflection center. This is a consequence of the ab-
sence of correlations between the particles. Furthermore,
if we let the system evolve in time, this average symmetry
is conserved. A consequence of this symmetry is that
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(i) Immediately after a jump of the special vacancy the
special-vacancy cluster has size m ) 1, with probability

P(m)=c(1 —c) (2.9)

(ii) The rate of growth of a vacancy cluster from size m
I

after taking out the special vacancy, the average velocity
of the tagged particle would be zero for all times larger
than zero, in spite of our knowledge about the initial
jump. Hence beyond the initial 5 function, no further
contributions to the velocity autocorrelation function
would arise.

%'e want to define the dynamics of the vacancies, in-
cluding the special one, among themselves in such a way
that at all times by taking out the special vacancy one
would restore the symmetry mentioned above. The way to
do this is as follows: At each instant of time the special
vacancy belongs to a cluster of vacancies of size greater
than or equal to 1. Call this cluster the special-vacancy
cluster. As all other clusters of vacancies, the special-
vacancy cluster may grow or shrink by units of size 1, due
to jumps of vacancies into or out of the cluster. As long
as the size of the special-vacancy cluster is larger than un-

ity, we could take out the special vacancy without in-
fluencing these growth and shrinking processes at all. If
the special-vacancy cluster is of unit size, its growth still
does not depend on the presence of the special vacancy,
but of course it cannot shrink any more if the special va-
cancy is taken out. Hence we define the following dynam-
ics for the special vacancy: It remains constrained to the
special-vacancy cluster as long as the latter is larger than
unity and it may jump, with jump rate I in either direc-
tion, whenever the special-vacancy cluster has shrunk to
size 1. Of course, after each jump the special vacancy be-
longs to a new special-vacancy cluster. By this definition
the dynamics of all nonspecial vacancies is completely
uninfluenced by the special one, hence the average symme-
try of the system on taking out the special vacancy is
guaranteed for all times. As a consequence, C(t) is deter-
mined exactly by jumps of the special vacancy across the
tagged particle.

As in the extremely dilute case, the special vacancy per-
forms a random walk among the particles, but now its
waiting-time distribution is given by the probability of the
special-vacancy cluster to shrink to 0 size. Therefore we
cannot expect the waiting-time distribution to be indepen-
dent of the past. For example, just after a jump of the
special vacancy the growth rate of the new special-
vacancy cluster is smaller than average, since on one side
it is bounded by two neighboring occupied sites.

Such memory effects cannot simply be taken into ac-
count exactly, or even systematically. Therefore we have
calculated the waiting-time distribution P(t) for the spe-
cial vacancy, ignoring these effects completely. The cal-
culation starts from three basic assumptions.

to m +1 is 2(l —c)1 .
(iii) The rate of shrinking of a vacancy cluster from size

m to size m —1 is 2I .

In fact (iii) is exact, but in (i) and (ii) all knowledge of the
past is ignored. The problem of calculating the waiting-
time distribution starting from the above three assump-
tions is equivalent to the solution of an asymmetric
random-walk problem with an absorbing boundary at the
origin. In the Laplace domain the solution is straightfor-
ward and well known, ' therefore we defer the details to
Appendix A and just quote the result here,

p(s) =
[1—X(s)](2—c)(v+s) —(1—c)v

with

(2.10)

v=21 (2 —c) (2.11)

1X(s)=——
2

'c +(2—c)
2(s +v)(2 —c) v

2 ' 1/2
S

+

(2.12)

A short derivation is presented in Appendix A. Assume
that the initial jump of the special vacancy was directed to
the left. Then the contribution to C(s) due to final jumps
to the right is equal to —(1—c)I a —,

' g(s)P(O, s). In this
expression the factor (1—c)I is the initial jump rate
again; —,g(s)P(O, s) describes the probability for a return
of the special vacancy to the left of the tagged particle,
followed by a jump to the right, and the factor —a stems
from the Laplace transforms of the initial and final velo-
city. The contribution from final jumps to the left is
found similarly as (1 —c)I a —,

' P(s)P( i,s). Both these
contributions must be multiplied by a factor of 2 because
of the two possible directions of the initial jump. Finally
the self-correlation of the initial jump yields a contribu-
tion (1—c)I a again. Taking all contributions together
and substituting (2.13) for P(O, s) and P( l,s) we obtain the
result

To calculate the velocity autocorrelation function C(s)
we need an expression for P(n, s), the Laplace transform
of the probability density for the special vacancy to arrive
at site n at time t, having made an initial jump to site 0 at
time 0. For the symmetric random walk with waiting-
time distribution g this expression is well known and
reads

P(n, s)=[1—g (s)]' (g/II+[I —g (s)]' I)
(2.13)

=(1—c)l a
c +(1—c)g+c[c +2(2 —c)g+g ]'~

1/2

(2.14a)

(2.14b)
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where we introduced the dimensionless Laplace transform
variable g=s/(21").

Some comments on the result are in place. Firstly, the
coefficient of self-diffusion is zero for all c, as follows
from

1/2

C(s)= I a
C

(2.17)

tion of a jump.
The asymptotic small-s behavior of C(s) is of the form

limC(s) =0 .
s —+0

Secondly, C(s) has a finite limit for s ~ co,

(2.15)
corresponding to a t long-time tail in the time domain
again. The crossover between the large-s behavior (2.16)
and the small-s behavior (2.17) occurs in the region

lim C(s)=(1—c)l a
S~ oo

(2.16)

This limit results solely from the self-correlation of the in-
itial jump. It may be interpreted as an infinite-frequency
diffusion coefficient. The fact that it is nonzero is an ar-
tifact of the model, resulting from the assumption of in-
stantaneous jumps. For realistic systems (2.16}should ap-
ply to frequencies which are much larger than the jump
frequency but much smaller than the inverse of the dura-

C

2(2 —c)
or, in the time domain, for

2 —ctc- cr

(2.18)

(2.19)

The mean-square displacement follows from (2.14) and
(2.3) as

([hx(s)] ) = (1—c)a 1

2I g c +(1—c)g+c[c +2(2—c)g+g2]'/2

1/2

(2.20)

In the time domain, the short- and long-time behavior are
readily obtained as

( [bx (t)] ) =2(1—c)I a t (small t),
1/2

(2.21a)

([~ ( )]2) 2(1 —c) 2 I t
C 77

(large t) . (2.21b)

Again, the crossover time is of the order t, .
The regime of small particle concentration is of some

special interest. For short times the tagged particle mill
not see its neighboring particles in most cases and hence
performs a regular random walk with exponential
waiting-time distribution. Only after a time of the order
t„which may be interpreted now as the average time a
tagged particle needs to meet one of its neighbors, the par-
ticle will "notice" it cannot pass its neighbors, and a cross-
over to the long-time behavior will take place. However,
for small c the crossover does not occur immediately;
from (2.14) one sees that there is an intermediate regime,
characterized by c & g & 1, where C(s) behaves dominant-
ly as

C(s) = I a (1—cg '/
) . (2.22)

This implies that for 1 &2I t &c the mean-square dis-
placement should behave roughly as

( [M (t)] ) =a [21"t——,m'/ c (2I t) / ],
1&2I t &c (2.23)

In the two limiting cases c—+0 and c—+1 we expect our
expression (2.14) for the velocity autocorrelation function
to become exact, since then the neglect of memory effects
in determining the waiting-time distribution for the spe-
cial vacancy appears to be justified. For c~l this is so
because we have the case treated in Sec. II A; the dynam-
ics of the special vacancy becomes uninfluenced by the
other vacancies and reduces to a simple random walk with

exponential waiting-time distribution. In the case c~0
both the special-vacancy cluster and the neighboring clus-
ters of vacancies are almost always very large. Therefore
we expect that memory effects, which do typically arise
from situations in which the special vacancy cluster or
one of its neighbors are of size 0 or 1, extend over an in-
significant fraction of the total waiting time only.

In the limit c~l one may check these properties by
comparing (2.6) and (2.14). Indeed in this limit an inverse
Laplace transform of (2.14) reproduces (2.6) up to correc-
tions of the order 1 —c. In the limit c~0 we should
reproduce Harris's results' if we introduce scaled vari-
ables /=ex/a, o =g/c, and r=2I c t. One then finds
from (2.20), by passing to the limit c~0,

&[~p )]'&=
3/2

1 + +( 1 +4~)1/2

and for the long-time behavior of the mean-square dis-
placement this yields

(2.24)

1/2

& [~Sr)]'&= (2.25}

The last result is in agreement with those of Harris, but
Harris does not give any explicit results to which (2.24)
can be compared for general a.. Hence this equation
seems to establish a new result for a system of Brownian
particles with mutal hard-core repulsion on a line.

C. Short-time expansions

Short-time expansions for the mean-square displace-
ment, the velocity autocorrelation function, and other
correlation functions of interest may be obtained through
an iterative solution of the master equation describing the
hopping process we are considering. The details will ap-
pear in a separate paper by one of the authors'; here we
tnerely quote the result for the mean-square displacement:
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( [bx (t)] ) =a [ 2(1 c—)l r —2c (1 —c)(I t) + —', c (1—c)(1+—,
' c)(l t)

——,c(l —c)(8+c+c )(I t) + 3oc(l —c)(40—10c+4c +c )(I r) +O((I r) )]

This may be compared to the short-time expansion one obtains from our approximate expression (2.20) by expanding in
powers of g

' and applying an inverse Laplace transform. The result is

( [bx (t)] ),pp„„——a [2(1—c)I t —2c (1 c)(—l t) + —,c (1—c)(l+ —,c)(I t)

——,
' c (1—c)(4+c')(I t)'+ —,', c (1 —c)(40—20c +12c'+3c')(I t)'+O((l r)')] . (2.27)

Upon comparing (2.26) and (2.27) one discovers the fol-

lowing features.

(i) The first three terms in the expansions are identical.
(ii) In the limits c~0 and c—+1 all coefficients become

the same in the two expansions, not just in the sense that
they appraoch zero in these limits, but the ratios of corre-
sponding coefficients approach unity.

(iii) For 0 & c & 1 the coefficients of t and t s are dif-
ferent in both expansions. The relative differences are
largest for c= —,. For this value of c the approximate
coefficient of t is about 3% larger than the exact one and
the approximate coefficient of t is about 8% smaller than
the exact one. The fact that the first deviating coefficient
in the approximate series is too large suggests that this
series overestimates the mean-square displacement.

(iv) In the limits c~0 and c~ 1 the coefficients in the
Laplace transforms of (2.26) and (2.27) reduce to those of
the Taylor expansions for

1/2

([bx(s)] )= 1 ————1+—Za I c c 4
s 2 2

(2.28)

—1/2
2(1 —c)a I 2

S
(2.29)

respectively. These equations can be obtained from (2.20)
by taking the appropriate limits. Equation (2.28) corre-
sponds to the intermediate-time behavior (2.23) and (2.29)
is the complete expression for c~ l.

D. Periodic boundary conditions

Consider a chain of X sites, put on a ring, such that site
X is neighboring site 1, and let there be M particles on the
chain; hence c =M/X. It turns out that the mean-square
displacement of a tagged particle, measured by following
the particle around the ring (hence not modulo the ring
length) grows proportional to t for large times.

This is most easily understood again in the case of low
vacancy concentration; in fact, we may turn to the case
where just one vacancy is present. In performing its ran-
dom walk this vacancy will cycle around the ring errati-
cally. If we count clockwise cycles positive and counter-
clockwise cycles negative, the number of complete cycles
made by the vacancy after a time t much larger than the
average time needed for one cycle, will have a normal dis-
tribution with a width proportional to t' . The displace-
ment of a tagged particle during time t just equals, up to a
difference of +1, the number of cycles made by the vacan-

cy, hence its mean-square displacement grows as t. The
time scale on which this behavior becomes manifest is the
average time the vacancy needs to make one cycle. It is
proportional to X . Hence for large X the mean-square
displacement of a tagged particle will exhibit a crossover
on this time scale from an increase as t '~, the infinite sys-
tem behavior, to an increase proportional to t, a normal
diffusive behavior. Another way to interpret this behavior
is as a diffusion of the system of all particles around the
Ang.

Calculation of the velocity autocorrelation function for
general concentration can be done in complete analogy to
the calculation for the infinite system. There are three
important modifications, however.

(i) The rate for an initial jump in a given direction is
(1—c)I X/(X —1) instead of (1—c)l, because the
knowledge that the tagged particle is at a given position
increases the probability of finding a vacancy at a neigh-
boring position by a factor X/(X —1).

(ii) The waiting-time distribution p(t) for jumps of the
special vacancy depends on the system size X for similar
reasons. This we wi11 ignore in our calculations.

(iii) Velocity correlations may arise from jumps to the
special vacancy past the tagged particle after making a
number of cycles around the ring. Mathematically this is
equivalent to letting the special vacancy make a random
walk on a periodic infinite lattice with period % and con-
centration c, and counting the jumps past all particles la-
beled kcX+1, k =0, +1,+2, . . ..

An analysis similar to the one given in Sec. II 8 then leads
to the following expression for the velocity autocorrelation
function:

C~(s,X)= (1—c)l aX —1

X 1+—,P(s) g [p(kcX —l,s) 2P(kcN, s)—
k = —oo

+ P(kcX+ l,s)]

(2.30)

The first term comes from the self-correlation of the ini-
tial jump again; the three terms behind the summation
sign contain the contributions from final jumps past parti-
cle kc% + 1 in the opposite direction (negative sign),
respectively, the same direction (positive signs) as that of
the initial jump past particle 1. By substituting (2.13) we
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1/2
1 —g(s) 1+q'

N —1 1+P(s) 1 —q'

the condition

g 1—
cN

(2.35)

where we introduced

(2.31)

g(s) [1+/(s)]' ' —[1—g(s)]'~'
1+[1—g (s)]' ' [1+/(s)]' '+ [1—1t (s)1

(2.32)

Again, we want to make a few comments. First, in the
limit N~oo, (2.31) reduces to (2.14) as it should. For
c =1/N, the case that only one particle is present in the
system, one has C(s) = I a, the result for the regular sym-
metric random walk. The coefficient of tracer diffusion
for general c follows as

D„(N) =limC~(s, N) = (1—c)I a
s~0 c N —1

(2.33)

Notice that this result is independent of the precise form
of P. Furthermore, Levitt's result (1.2) is seen to be valid,
if one observes that for the periodic system the isothermal
compressibility is of the from ~T ——c(1 c)N/(N ——1). It
should be stressed, however, that (2.33) defines D„
through the Einstein relation between tracer-diffusion
coefficient and mean-square displacement, and it is not a
priori obvious here that this definition coincides with the
usual definition of D„as the ratio between tracer current
and the negative of the tracer gradient, nor is it obvious
that the coefficient of tracer diffusion for a periodic sys-
tem should be the same as for instance that for finite open
systems in contact with particle reservoirs. The reason
why this is not obvious is that tracer diffusion is driven by
bulk fluctuations and the latter are highly sensitive to con-
straints and boundary conditions. These problems will be
pursued in a separate publication.

From (2.29) it follows immediately that the mean-
square displacement of a tagged particle satisfies

2 1 — I([hx (r)]') =
c (N —1)

(2.34)

for large t.
The crossover from the infinite-system behavior (2.17)

to the finite-system limit given in (2.29) is determined by

Inserting (2.10) for f(s) and expanding for small s with

g(s) = 1— (2.36)
21 c

one finds that (2.31) is satisfied for s =I /N . In the time
domain this corrresponds to a crossover time of the order
N /I . Indeed, the average time the special vacancy needs
to diffuse around the ring is independent of concentration;
it is of the order (cN) times the average waiting time for
a jump of the special vacancy; the latter follows from
(2.36) to be equal to (2I c 2)

E. Finite chains with reflecting boundaries

Finite chains with reflecting boundaries can be dealt
with in approximately the same way as chains with
periodic boundary conditions. A chain of length N maps
on to an infinite system with periodicity length 2N and
symmetry centers between site pairs [Nk, Nk+1], with
k =0, + 1, +2, . . .. Qwing to the presence of these symme-
try centers, the vacancy clusters between the site pairs
[Nk, Nk+1] behave differently from the other vacancy
clusters. They always contain an even number of vacan-
cies and grow and shrink by units of size 2. The rates for
growth and shrinkage are (1—c)l and I", respectively.
They are twice as small as the corresponding rates for the
other clusters, since diffusion of vacancies through the
walls of the system is not allowed. In this case too it is
possible to calculate the dynamics of the special-vacancy
cluster under the same assumptions as before, but the
breaking of translational symmetry makes this calculation
much more cumbersome. The calculation becomes simple
again if one treats the vacancy clusters near the walls on
the same footing as the other clusters, and for large N the
error introduced by this approximation is small of
O(1/N). Even under this approximation the velocity au-
tocorrelation function is different for different particles,
because the relative positions of the image particles of a
given particle depend on the distance of this particle to the
walls. If the particles are labeled 1,2, . . . , in natural or-
der and their total number equals cN, the velocity auto-
correlation function of particle m can be approximated for
large N as

C„(s,m) = (1—c)I a 1+—,P(s) g [P(2kcN —l,s) —2P(2kcN, s)+P(2kcN + l,s) P(2kcN +2m ——2,s)
k = —oo

+2P(2kcN +2m —l,s) P(2kcN +2m, s)]— (2.37)

with P(n, s) given by (2.13). Substitution of this equation
yields the explicit form

I

For small s, (2.38) behaves under the approximation (2.36)
for P(s), as

C„(s,m) = (1—c)l a
1 — (s)

N —1 1+q(s)

]/2

C„(s,m) = (2m —l)[2(cN —m)+1](1—c)a s
4(N —1)c

l + 2Nc 2m —1 2(,cN —m)+ 1

X 2Nc (2.38)
(2.39)

This implies that for large time the mean-square displace-
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ment of particle m according to (2.3) approaches a con-
stant

N2
lim ([dec(t)] ) =2 a — p(1 —p)

f—+ a) N —1 e
(2.40)

with p=(m ——,)cN.
This result may be checked independently, since for

large times the initial distribution for the position x of
particle m becomes uncorrelated from the final distribu-
tion. Hence one has

([x (t) —x (0)]')=([[x (t) —(x )]
(x~ ) =ma 1+ cN (2.43)

where the two factors in the numerator count the number
of configurations of all particles to the left and right of
particle m, respectively, and the denominator counts the
total number of particle configurations on the chain. The
mean value and the mean square of the position of particle
m can be evaluated by generating function techniques; the
appropriate generating functions for the problem at hand
are given by Netto. The results are as follows:

—[x (0)—(x )]}')
=2((x' ) —(x )') . (2.41)

(x~ ) =a' m~
cN

N
'

N

cN+1 cN+2

The right-hand side of' this equation can be evaluated by
means of elementary combinatorics. The probability of
finding particle m at site k, with m & k (N, is given by

+m (1—c)N

N '

m —1 cN —m
W~(k) = 'N' (2.42)

—(cN+1) cN

(2.44)

cN From this the variance of x~ is obtained directly as

z )z z(1 c)(N+1)—Nm(cN+1 —m)

(cN+1) (cN+2)
(2.45a)

q1 —c=a

1

P+2N
)2

1 1+
N

+

1 11+p+ +
2cN

(2.45b)

Hence we may conclude that the limiting long-time
behavior of the mean-square displacement of particle m is
correctly described in (2.40) to leading order in ¹

Higher-order corrections cannot be taken from this equa-
tion, but this was to be expected, since both our use of the
same waiting-time distribution P(s) for all vacancy
clusters and our approximation of f(s) by the infinite
system value introduced errors of order 1/¹

Finally one may average (2.45) over m with the result

1 ~ (( p ) ( )p) p (1—c)(N+1)N
cN i

™~m a
6(cN+1)

(2.46)
whereas a similar averaging of (2.40) would yield

cN (1 c)[(cN) +3cN+——, ]
— g ((x' ) —(x )')=a'

cN 6c (N —1)

(2.47)

III. NUMERICAL SIMULATIQN

A. Procedure

The simulation of particles in the concentrated lattice
gas by Monte Carlo techniques has been comprehensively

I

described in the first paper of this series for the case of
diffusion of a three-dimensional fcc lattice. In this section
we present some special features of the procedures used
for the one-dimensional chains. In order to simulate dif-
fusion on an infinite chain, one long chain was taken and
the particles were added randomly to the chain with
prescribed mean concentration c, as detailed in Ref. 25.
Since the occupation probabilities of the sites are uncorre-
lated no "thermalization" procedure was needed. Periodic
boundary conditions were taken for the long chain. En-
sembles of short chains were used for the study of boun-
dary effects. Each ensemble consisted of many chains,
each having the same length and number of particles. The
particles were randomly distributed over the sites of each
chain.

In order to achieve good accuracy in determining the
mean-square displacement, large numbers of tagged parti-
cles must be followed. This argument can be given in
quantitative form. The simulations aim at estimating the
mean-square displacement of a tagged particle by taking
the average of the squared displacements of all particles,
which are considered as tagged ones. The magnitude of
the deviation of this average from the expectation value is
determined by the variance of the squared displacements,
which can be related to the fourth moment. Using the
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asymptotic law Eq. (1.1) for the mean-square displace-
ment and ([x(t)] ) =3([x(t)] ), one finds that the rela-
tive deviations of the squared displacements from the ex-
pected values are approximately (2/M)'i where M is the
number of tagged particles. Hence at least 20000 parti-
cles must be taken when an accuracy of 1% is desired.
We worked with long chains of at least 32000 sites; for
short chains we created so many members of the ensem-
bles that at least a total of 16000 particles were present.

B. Results for large chains

Figure 1 shows a typical result of the simulation of
self-diffusion of individual particles on the "infinite"
linear chain randomly occupied by many particles. One
chain with 256000 sites and 127928 particles was used.
The results for the mean-square displacement agree quite
well with the theoretical curve which was obtained by in-
version of the Laplace transform of the mean-square dis-
placement, Eq. (2.20). The inversion was performed by
application of the fast routine developed by Honig.

The simulated mean-square displacement at c =0.5 ap-
pears to be smaller than the theoretical curve at intermedi-
ate times (2I t=50—200). Similar systematic deviations
of 2—3 % were found in runs with different random-
number generators, and at other concentrations. The devi-
ations become small at higher concentrations (c)0.9).
The observed discrepancy between theory and simulations
probably results from the approximations made in the
derivation of Eq. (2.20). Its sign agrees with our expecta-
tion, based on the short-time expansions (2.26) and (2.27).
However, we are not able to assess the errors due to these
approximations in a more quantitative way.

In order to demonstrate the agreement of simulation
with theory over a wider range of times and for different
concentrations, we give in Fig. 2 results for c =0.09909,
0.506 81, and 0.899 81, in a doubly logarithmic representa-
tion. The crossover between the asymptotic behaviors for
short and large times is nicely seen. Other concentrations
showed the same qualitative behavior, and the same
overall quality of agreement between theory and simula-

100

~ 10

I

C5

~01

0.01
01 1 10 100

Monte CarLo steps/particle
1000

FIG. 2. Mean-square displacement of tagged particles on
linear chains with three different concentrations. Solid line,
theory; closed circles, numerical simulation; dashed lines,
asymptotic behavior.

tion. In summary we remark that the theory presented in
the preceding section gives a good approximate descrip-
tion of the mean-square displacement of tagged particles
in the concentrated linear chain.

C. Results for periodic chains

As discussed in Sec. II D the mean-square displacement
of a tagged particle in chains with periodic boundary con-
ditions will become a linear function of time, for large
times, when the displacement is measured from the start-
ing point without reduction to the original chain. The re-
sults of the simulation for 6400 periodic chains of N =20
sites, occupied with Mz ——10 particles each, are shown in
Fig. 3. One sees linear time behavior after an initial
period. The results of the simulation compare well to the
theoretical curve, derived from Eq. (2.31) by numerical in-
version of the Laplace transform. Also in this case a sys-
tematic difference between the theoretical curve and the

E
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U
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Monte Carlo steps/particle
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FIG. 1. Mean-square displacement of tagged particles on
linear chain. Solid line, theory; closed circles, results of the nu-
merical simulation on a chain with 256000 sites and 127928
particles, i.e., c =0.4997. One Monte Carlo step corresponds to
one attempted jump per particle, i.e., the time is measured in
units of (2I )

500
0
0 100 200 300 400

Monte Carlo steps/particle

FIG. 3. Mean-square displacement of tagged particles on fi-
nite chains of fixed length (1V =20) with periodic boundary con-
ditions, for c =0.5. Solid line, theory; closed circles, numerical
simulation.
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results of the simulation appears at intermediate times,
which can probably be attributed to the approximations
involved in the derivation of Eq. (2.31).

For further comparison of theory and simulation, we
have plotted in Fig. 4 the mean-square displacement of
chains with %=20 sites, at three concentrations, over a
larger time range. Note that the time- and square-
displacement ranges are shifted by 1 order of magnitude,
compared to Fig. 2. Also this figure exhibits very good
agreement between theory and simulation. The crossover
between the behavior in the infinite chain and the periodic
chain behavior is clearly seen. Table I contains results for
the diffusion coefficient D„determined from the asymp-
totic linear behavior, for different values of K and M~.
The numerical values have been determined from the
simulation by fitting linear behavior to the second half of
each simulation. The theoretical values follow from Eq.
(2.33). The agreement between simulation and theory is

very satisfactory.

D. Results for finite chains

1000

E 100
LJ
C$

10

l

C:
1&

10 100 1000
Monte Car lo steps/particle

10000

FIG. 4. Mean-square displacement of tagged particles on fi-
nite chains with periodic boundary conditions, for three dif-

ferent concentrations. Solid lines, theory; closed circles, numeri-

cal simulation; dashed lines, asymptotic long-time behavior.

The mean-square displacement of a tagged particle in a
finite chain must approach a constant value, for large
times. Figure 5 presents results for an ensemble of 6400
chains of X =20 sites, occupied by Mz ——10 particles each.
Other ensembles with differing chain lengths and particle
numbers showed similar qualitative behavior. The numer-
ical results are clearly below the dashed curve, which
represents the theoretical mean-square displacement ac-
cording to Eq. (2.38) after averaging and transformation
to the time domain. The simulation does reach with good
accuracy the asymptotic mean-square displacement given
by Eq. (2.46). The nature of the approximations used to
derive Eq. (2.38) has been discussed in Sec. II E, as well as
the fact that this equation does not even give the correct
asymptotic value for smaller chains, as is exemplified by

(~ 2) a(1—c)
3c

(3.1)

Fig. 5. The results for all N and Mz are given in Table II.
The asymptotic mean-square displacement has been deter-
mined from the last-third time interval of each simula-
tion. This range is approximately a factor of 3—9 above
the crossover point to the asymptotic behavior. The error
ranges represent the square root of' the variance. The
theoretical values have been calculated from Eqs. (2.41)
and (2.46). There is good agreeement between simulation
and the calculated asymptotic values for the mean-square
displacement, as expected.

The behavior of ((bx) )„with concentration c and site
number % is approximately

TABLE I. Asymptotic diffusion coefficient of tagged particles on finite chains with periodic boun-
dary conditions. Typically 8000 particles were followed in each simulation. The number of Monte Car-
lo steps is too small for X =30 and 40, compared to the other chain lengths.

Chain
length

Monte Carlo
steps/particle

Asymptotic diffusion coefficient
Simulation Theory

6
10

0.5
0.1

0.3
0.5
0.7
0.9

0. 199+0.002
1.00+0.01

0.268+0.003
0. 115

0.050+0.002
0.0128+0.0002

0.200
1.0 (trivial)
0.2593
0.1111
0.0476
0.01235

14
20

1.200
2.400

0.5
0.1

0.3
0.5
0.7
0.9

0.080+0.001
0.47+0.01

0. 122+0.002
0.053+0.001

0.0228+0.0006
0.0064+0.0001

0.0714
0.4737
0.1228
0.0526
0.02256
0.00585

30
40

1.200
1.500

0.5
0.5

0.035
0.024

0.0345
0.0256
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FIG. 5. Mean-square displacement of tagged particles on fi-
nite chains of fixed length (N =20) with reflecting boundary
conditions, for c =0.5. Dashed line, theory; closed circles, nu-

merical simulation; dashed-dotted line, asymptotic value accord-
ing to Eq. (2.4b).

[cf. Eqs. (2.41) and (2.46)]. We will use that equation to
derive the crossover from t' behavior to a constant
mean-square displacement. Comparison of Eqs. (2.21b)
and (3.1) yields the crossover time tf in finite chains

21"tf—— 1V
18

(3.2)

The crossover to the asymptotic behavior in the finite
chain is very similar to the crossover in the periodic chain,
as could be expected. Again the crossover time is in-
dependent of c. The derivation of (3.2) becomes invalid
for small c and small X, especially when the mean-square
displacement of a particle has not yet developed t'
behavior.

IV. DISCUSSION

In this paper we have compared the results from an ap-
proximate theory and from Monte Carlo simulations for
the mean-square displacement of a tagged particle in a
purely repulsive one-dimensional lattice gas. For both in-
finite and periodic systems the agreement was found to be
quite good for all times and all concentrations; the
discrepancies between theory and simulation never exceed-
ed a few percent. In addition both theory and simulations
were found to agree with known asymptotic results for
short and long' ' times. For systems with reflecting
boundaries the Monte Carlo results reproduce the exactly
known long-time limit of the mean-square displacement
correctly; for this case we have not developed a theory,
however, of an accuracy comparable to that of the previ-
ous cases. For the periodic system we obtained a coeffi-
cient of tracer diffusion inversely proportional to the
number of particles, in agreement with previous calcula-
tions. It is worth noting that an expression for the
Green's function P(n, t), describing the probability of
finding a particle in an equilibrium system, starting off at
the origin at t =0, at site n at time t, can be calculated
under one additional assumption. This assumption is that
the probability for the special vacancy to return to the
tagged particle at time t does not depend on the instan-
taneous position of the latter. The resulting expression for
P(n, t) reads

P(n, t)=exp( —([b,x(t)] )/a )I„I([M(t)] )/a I .
(4.1)

This would imply that all cumulants of the moments of
displacement, e.g., the fourth cumulant [ ( M (t)] )
—3([M(t)] )~[/a4, would be identical to
([M(r)]~)/a2. This is not confirmed by either short-

TABLE II. Asymptotic mean-square displacement of tagged particles on finite linear chains with re-

flecting boundary conditions. Typically 8000 particles were followed in each simulation. The number

of Monte Carlo steps for X =40 is too small, compared to the other chain lengths.

Chain
length

Monte Carlo
steps/particle

Asymptotic mean-square displacements
Simulation Theory

6
10

150
150

0.5
0.1

0.2
0.3
0.5
0.7
0.8
0.9

1.75
16.6+0.1

9.9+0.1

6.36+0.06
3. 14

1.42+0.01
0.85+0.02

0.371+0.009

1.75
16.5
9.77
6.42
3.06
1.375
0.815
0.367

20 0.1

0.2
0.3
0.5
0.7
0.8
0.9

41.5+0.4
22. 3+0.4
14.3+0.2
6.31+0.1
2.88+0.07
1.69+0.03
0.74+0.01

42.0
22.4
14.0
6.36
2.80
1.647
0.737

30
40

1.200
1.500

0.5
0.5

9.86
12.4

9.69
13.02
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time expansions or Monte Carlo results, however. Indeed
in the latter the fourth cumulant is found to increase as
t' for long times, but the coefficient is appreciably
larger than that for the mean-square displacement, except
in the limit c~l, where (4.1) becomes an exact result.
Hence we must conclude that the additional assumption
made is too crude.

Further we want to mention the fact, pointed out by
Buttiker and Landauer, that a t' long-time behavior
for the mean-square displacement of a tagged particle is a
general phenomenon for one-dimensional systems subject
to a single-filing constraint but exhibiting normal collec-
tive diffusion. The easiest way to understand this is by
the arguments of Alexander and Pincus. ' As further ex-
amples of such systems Biittiker and Landauer mention
the damped harmonic-oscillator chain, the sine-Gordon
chain, ' and de Gennes's reptation model of polymers.
The last example is closely related to a model of a random
walk on a random walk, discussed by Kehr and Kutner. '

Generalizations of the method presented here for the
calculation of the velocity autocorrelation function of a
tagged particle are, in general, not straightforward. In the
case of Kawasaki dynamics at finite temperature, where
besides the hard-core repulsion, a nearest-neighbor energy
is present, the situation resulting on taking out the special
vacancy is not on average symmetric any more and the
cluster dynamics becomes much more complicated than in
the case of infinite temperature. In higher dimensions one
cannot, even at infinite temperature, take out the special
vacancy without disturbing the lattice symmetry. Only in
the limit c—+1 is the situation always simple, because one
only has to study a simple random walk of an isolated va-
cancy. This has been used extensively for calculations of
the so-called correlation factor, which measures the
reduction of the coefficient of tracer diffusion due to
memory effects in the velocity autocorrelation function.
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APPENDIX: CLUSTER AND SPECIAL-VACANCY
DYNAMICS

We calculate the waiting-time distribution for the
special-vacancy cluster to shrink to zero under the follow-
ing three assumptions.

(i) Initially the probability for the cluster to be of a sizeI equals c(1—c) 'm ) 1.
(ii) The rate of growth from m to m + 1 is 2I (1—c).
(iii) The rate of decrease from m to m —1 is 21 for

m ) 1.

We consider the process as a random walk on the natural
numbers with an absorbing boundary at the origin. The
waiting-time distributions g+ and P for jumps to the
right (increasing numbers) and to the left, respectively, are
both Poissonian and have the form

(1—c)v
(2—c)(s +v)

(Ala)

(s) =
(2 —c)(s +v)

(A lb)

where v=2(2 —c)I is the overall jump frequency. Let
X(s) be the Laplace transform of the probability density
for a first return to a given site, for example m, after an
excursion to the right. It satisfies

X(s)=g+(s)g (s) g [X(s)]"
n=0

1= it +(s)g (s)
1 —X(s)

(A2a)

(A2b)

The nth term that occurs in the series occurring in (A2a)
results from all paths consisting of one jump from m to
m +1, followed by n excursions to the right returning to
m + 1, and a final jump from m + 1 to m. The solution of
(A2b) for X(s) is given in (2.12). The probability density
for reaching site m —1 for the first time starting from siteI is found as the product of the probability density for
making an arbitrary number of excursions to the right
from site m, followed by one jump to the left, i.e.,

P(m —1
~

m, s)=i' (s) gX "(s)
n=0

(~)

1 —X(s)
(A3)

From this the probability to reach the origin starting from
site m is obtained as

P(0
~

m, s) =P(m —1
~
m, s)P(m —2

~

m —l,s) P(0
~

1,s)
m

(s)
(A4)

1 —X(s)

Finally the waiting-time distribution f(s) follows as

it (s)= g (1—c) 'cP(0
~

m, s)
m=1

=C (s)[1—X(s)]
1 —(1 c)f (s)[l —X—(s)]

(A5)

Y(s) = —,
'
g (s)

1 —Y(s)

with the solution

(A6)

I'(s) = -,' I 1 —[1—itj (s) ]'~
I . (A7)

Then the probability to arrive at site m +n starting just
after a jump to site m is obtained as

which is identical to (2.10).
The derivation of (2.13) is very similar. In this case the

waiting-time distributions for jumps in both directions are
given by —,g(s). Then the Laplace transforms of the prob-
ability density for a first return from the right (or left) to
an arbitrary site m, if at the initial time the vacancy just
arrived at m, is found from the equation
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P(n, s)=
—,g(s)

'n

1 —F(s) 1 —2Y(s)
(A8)

The factor [—,g/(I —F)] is obtained in the same way as

(A4); the factor (1—2F) ' results from the possibility of
making an arbitrary number of excursions returning to n
in both directions after the first arrival at this site.
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