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The response of a small metal sphere to a uniform electrostatic field is calculated within density-
functional theory. The gradient-expansion approximation is used for the kinetic-energy functional,
while exchange and correlation are treated in the local-density approximation. A jellium model is
assumed and the electron density is determined by a variational method. Calculations were per-
formed for spheres containing between 5 and 8000 electrons. The applied field was found to induce
a substantial amount of charge outside the sphere. This causes the electronic polarizability n to be
larger than the classical value R, where R is the radius of the sphere. Our calculations give
a=(R+5), where R+6 plays the role of an effective radius, and 6 is approximately 2.0 a.u. for
the electron-radius parameter r, =2 and is approximately 1.0 a.u. for r, =4. Our calculated values
of 5 are nearly independent of R. As R approaches infinity, 6 approaches the image-plane distance
for the problem of a flat surface. It is shown that there is a force sum rule that is not well satisfied
by previous calculations, and is approximately satisfied by most of our calculations.

I. INTRODUCTION

The response of a small metal sphere to an electric field
is an area of great current interest. ' Theoretical calcula-
tions of the response to time-dependent and static
electric fields have appeared, but none of these calcula-
tions provide a fully self-consistent quantum-mechanical
treatment of the electrons. In this paper we present a
density-functional calculation of the electronic response of
a small metal sphere to a uniform electrostatic field. Ex-
cept for approximations introduced by a variational pro-
cedure our calculation is self-consistent.

Although we treat only the static case, the results can
also be used to determine approximately the induced elec-
tric field around a small metal sphere exposed to infrared
radiation in the "quasistatic" or "nonretarded" regime.
This is the regime where the radius of the sphere is much
less than both the wavelength of radiation and the skin
depth. The results for the static case are therefore
relevant to the problem of infrared absorption by adsorbed
molecules on a metal sphere, where, for example, the ra-
dius is smaller than about 50 A and the wavelength is on
the order of 50000 A or more. '

A self-consistent quantum-mechanical calculation of
the electronic response to an applied static field is a diffi-
cult task. An approach based on the random-phase ap-
proximation" (RPA) suggests itself, but such an ap-
proach leads to considerable calculational complexity. In
the RPA one first calculates the self-consistent electronic
wave functions for the system in the absence of the ap-
plied electric field. These wave functions are then used to
obtain the RPA response function, and a new self-
consistent problem must be solved with the applied field
present. Rice, Schneider, and Strassler calculated the
static polarizability within the RPA, but used an infinite-
barrier model to obtain the zero-field wave functions. The
first phase of their RPA calculation, therefore, is not

self-consistent. Furthermore, as we shall see, their values
for the electronic polarizability are artificially small be-
cause the electrons are effectively held back by the infinite
barrier. A similar effect occurs in the calculations of
Lushnikov and Simonov and Dasgupta and Fuchs,
where the electrons are confined by a sharp boundary
which is taken to be the radius of the sphere. In all of
these calculations the effective radius of the induced sur-
face charge is less than the radius of the particle. In our
calculation, the electrons are allowed to penetrate into the
vacuum, and consequently, the effective radi. us turns out
to be greater than the particle radius.

The density-functional theory ' provides a powerful
framework fol a self-consistent calculation of the statIc
electronic polarizability. In its wave-mechanical ver-
sion, ' ' the theory is as difficult to implement as the
RPA. However, in one of its more approximate versions,
the theory becomes quite tractable. In this version, the
kinetic-energy functional is treated in a density-gradient
expansion, while exchange and correlation are included in
a local-density approximation. ' We have recently used
this model to calculate the work function of small metal
spheres. ' In this paper we apply the model to calculate
the electronic polarizability. We express our results in
terms of an effective radius, which allows us to make con-
tact with image-plane calculations for the response of a
flat metallic surface to a uniform electrostatic field.
Along the way, we develop a sum rule for the electrostatic
forces exerted upon the positive-charge background. It is
pointed out that none of the previous calculations of the
static electronic polarizability of metallic spheres satisfies
the sum rule. This failure of the previous calculations is a
consequence of their lack of self-consistency.

The organization of this paper is as follows. Section II
describes our model. A rigid jellium background is as-
sumed. The energy functional is presented and expanded
to second order in the applied electric field. Section III
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describes the variational calculation of the electron densi-
ty. The form of the trial function is specified. The polar-
izability is expressed in terms of an effective-radius shift 6
which is related to the dipole moment of the induced
charge and which can also be related to that part of the
energy that is second order in the applied electric field. A
discussion of the results of the calculation is given in Secs.
IV A—IV E. The induced charge and electric field are dis-
cussed in Sec. IVA. The electronic polarizability is dis-
cussed in Sec. IV B. It is shown in Sec. IV C that for large
spheres the parameter 6 reduces to the image-plane dis-
tance for the problem of a semi-infinite meta1. In Sec.
IV D the sum rule is discussed. The reliability of the vari-
ational calculation is considered in Sec. IVE. Finally,
Sec. V provides a summary and conclusion.

II. MODEL

We assume a jellium model for the spherical particle,
i.e., the metallic ions are modeled by a uniform positive
background filling a sphere of radius R. We take the en-

ergy functional to be the one used by Smith, ' Appelbaum
and Hamann, ' and others. ' ' ' Exchange and correla-
tion are treated in a local-density approximation, with
correlation given by Wigner's interpolation formula. ' In
terms of the electron density n (r), the energy functional
has the form'

E =Ek;„+E„,+Eco 1+E
where the kinetic, exchange-correlation, Coulomb, and
external-field contributions are, respectively,

Eg;„——a) n (r)d r+a35/3 ~ 3 ~

V'n(r)
~ d r

n(r)
a4E„=— n r a 3+

a, +n'"(r)

[n(r) n+(r)—][n(r ') —n+(r ')]
Ecoul d rd r

which vanishes because the functional derivative
5E[n]/5n(r) =p, which is a constant, '3 and

~

~5n(r)d r=0 by particle conservation. Finally, there is
the part of E which is second order in 6n, or equivalently
second order in 8'p. Denoting this quantity by 5E, we
have

5n(r)5n(r ')
d3kin+

Ir —r'~

+ f 5n ( r ) 8'o rd r.,
where 5Ek;„and 6E„are the second-order terms iv. the
expansion of the integrands in Eqs. (2) and (3), respective-
ly, in powers of 6n.

To first order in 8'p, the density perturbation has the
form

5n (r, 8) =f(r) 8'p cosO, (8)

where we use spherical coordinates with the polar axis
along 8'p. This form follows from spherical symmetry
and the assumed linearity in the response. When the form
(8) is used in Eq. (7) the angular integrals can be done im-
mediately. One obtains

2

5E= ) &o graf +g2f d +g3
4m 2 2 df df

Our goal is to determine n ( r ) for the case of a weak ap-
plied field 8'o. To this end, we write

n (r) =no(r)+5n(r),
where np(r) is the density in the absence of the field and
5n(r) is the perturbation arising from the external field.
We now expand the integrands in Eqs. (2)—(4) to second
order in 6n. The zeroth-order expression for E is the sum

Ek;„+E„,+Ec,„&, with n(r) replaced by np(r). The
first-order expression for E is equal to

f [5E[n]/5n(r)I ~„ „,5n(r)d r,

E,„,=f [n ( r ) n+ ( r ) ] 8'
p r d—r, r ——f rdr,

2
(9)

where the coefficients a; have the following values:
a 1

——2.8712, a 2
———„, a 3 ——0.7386, a4 ——0.056 41, and

a 5 ——0.079 53. Atomic units are used throughout
(e =A'=m = 1, energy unit=27. 2 eV, and length
unit=0. 529 A). The positive jellium background density
is n+ (r), which is taken to be a constant for r & R and
zero for r & R. The term E„, explicitly contains the ap-
plied electric field 8'o and represents the Coulomb in-
teraction between the metal sphere and the sources of the
applied field. For definiteness we may imagine these
sources to be oppositely charged sheets at z =+I,, where

I.»R. Then 8'p ——8'pz, where z is a unit vector along
the z axis, and the energy E given above is the total energy
of the isolated system consisting of the metal sphere and
the charged sheets except that we ignore the uninteresting,
n ( r )-independent Coulomb interaction energy of the
charged sheets in the absence of the metal sphere.

where the g; are functions which depend only on n p(r) and
dn p(r ) ldr. Explicitly,

—1/3
gl =

9 alno +
np

2
dnp

+h (n, ),
no r

g2 ———(2az/n o)dnp/dr,

g3 —
a 2 /np

1/3
—2/3 (2as+no )

h (np)= —
9 np 2a3+a4a,

(a, +n,'")'
The (r —U/2)f term in Eq. (9) is 5E,„,+5EC,„~, where the
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electrostatic potential due to 5n (r, 0) is written as
u(r)8'pcosO. In terms off (r), we have

4~
u(r) =—

3 I f(r')(r') dr'+r I f(r')dr' . (10)

8'(r, 0)= —V'V(r, o) . (12)

By this definition, 8' is the part of the electric field that is
linear in the applied field, and does not contain the field
due to no or n+.

III. CALCULATION

The electron density n (r ) could be obtained by numeri-
cal solution of the Euler-Lagrange equations appropriate
to the energy functional given in Eq. (1).' Rather than
follow this laborious course we obtain an appropriate n (r )

by means of a variational calculation. The correct n ( r ) is
the function that minimizes F. ' %'e proceed by assum-
ing a trial function for np(r) and varying its parameters to
minimize the energy in the absence of the applied field
8'p. We then use this variationally determined np(r) to
calculate the g; functions in expression (9) for 5E. Final-
ly, we assume a trial function for f (r), and vary its pa-
rameters to minimize 5E using Eqs. (9) and (10). The
variationally determined f (r) then gives 5n(r, g) for our
problem by Fq. (8).

The variational calculation for np(r) has been described
in detail elsewhere. ' Our trial function was assumed to
have the form

np(r) =-
1+exp[2b (r —R —a)]+exp[ 2b (r +R +a—)]

where a and b are two variational parameters and c is a
normalization constant. Our trial function is similar in
form to the trial function chosen by Appelbaum and

The total electrostatic pote]..tial arising from the applied
field and 5n is given by

V (r, 0) = —r 8'p cosO+ u (r) 8 p cosO,

from which one obtains the electric field 8'(r, 8) using

Hamann' for the problem of a plane surface. They chose
the function

np(z) =c/[1+exp(2bz)] .

Our function is a smooth two-parameter function which
can reduce to the Appelbaum-Hamann form near the sur-
face of a very large sphere. The second exponential term
in the denominator of our np(r) assures that our np(r)
behaves correctly at the origin (dn p/dr =0 at r =0).

Values of a and b were numerically obtained by evaluat-
ing the energy E in the absence of the external field
(8'p ——0), and searching for the a, b pair that gave the
minimum value for E. Results for the a, b parameters for
spheres of different radii R are shown in Table I. Calcula-
tions were performed for two choices of the bulk
electron-density parameter r„where (Ter, ) equals the4 3

jellium background density. (r, =2 corresponds to alumi-
num; r, =4 corresponds to sodium. ) The number X of
electrons in a sphere of radius R equals (R/r, ) . This
number, rounded off to the nearest integer, is listed for
each R in Table I. Also listed are the parameters relevant
to the trial function f (r) for the perturbed density, which
we now describe.

Our choice of a trial function for f(r) is guided by the
following physical considerations. The classical electron
distribution is f,&(r) =35(r —R)/4m. , which corresponds to
a surface charge that completely screens 8'p from the in-
terior of the sphere. The quantum-mechanical distribu-
tion is expected to have a finite width, and to be peaked
near, but not precisely at, the jellium radius r =R. Also
we must allow for field penetration even to r =0 for small
spheres. These considerations suggest a three-parameter
function, with one parameter, 3, governing the location of
the peak, another parameter, 8, governing the width of
the peak, and a third parameter, C, governing the normali-
zation off (r), or the amount of field penetrating to r =0.

A natural function to choose is the derivative of the
Fermi function, e.g., the r derivative of
C/I I +exp [2B( r —R —2 ) ]}. This form, however, will
not behave properly at the origin because a single-valued
5n(r) requires f (0)=0. We must modify the Fermi func-
tion so that f (0)=0. We elect to do this by symmetrizing
the denominator. Our choice for f (r) is

TABLE I. Results of variational calculation. R is the sphere radius, X is the number of electrons in
the sphere, ci, b are variational parameters for the zero-field density no(r), and A, B,K are variational pa-
rameters for the field-dependent density 5n(r). The quantity 5 measures the location of the effective
radius relative to R. Atomic units assumed.

2
4
8

—0.258
0.854
1.412
0.665
1.098
1.921

2
7

43
—0.168

0.840
1.625
0.649
1.058
2.014

2
14

343
—0.088

0.835
1.754
0.640
1.028
2.029

2
40

8000
—0.031

0.834
1.826
0.633
1.010
2.010

7
5

—0.302
0.847
0.266
0.670
1.174
0.923

4
14
43

—0.15S
0.849
0.444
0.668
1.071
0.909

40
1000
—0.054

0.852
0.552
0.668
1.022
0.886
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f(r)=
dr I+exp[28(r —R —2)]+exp[ —28(r+R +A)]

For very large spheres, the second exponential in the
denominator is irrelevant since there will be negligible in-
duced charge at r =O. In this case, our function reduces
to the derivative of the Fermi function.

Rather than deal with the variational parameter C
directly, it is more convenient to introduce the variational
parameter L defined by

f f(r)dr . (15)

8'(r =0)=(1—K) 8' (17)

which follows from Eqs. (10)—(12) and (15) regardless of
the form chosen for the trial function. Thus, K =1 corre-
sponds to perfect screening of the external field at the ori-
gin.

Values of A, B, and K were obtained by numerically
evaluating 6E and searching for the A, B,K set that gave
the minimum value of 5E. Results are given in Table I.
For the case r, =2 and R =7 a.u. , Fig. 1 presents the elec-
tron densities and the electric field. All other values of r,
and R that we have considered would result in graphs
qualitatively similar to Fig. 1.

The electronic polarizability u is defined in terms of the
dipole moment p according to p =u 8'o. This gives

For our choice of trial function, it follows that

C =—[1+2exp[ 2B (R +A—)] I .
3K
4~

The parameter K is a measure of the screening effective-
ness of the polarization charge. The electric field at the
origin is given by

t

rameter 6=—R,ff —R. By definition,

a=(R +5) (20)

u = —26E/8", . (21)

If the variational calculation is consistent, Eq. (21) will
agree with Eq. (18). However, for a poor choice of trial
function in a variational calculation, Eqs. (21) and (18)
may give significantly different values of u. This is not
the case for our trial function. We find that Eqs. (18) and
(21) give values of a that agree to better than one-tenth of
a percent. However, when we attempted to use a two-
parameter trial function, the agreement was poor (see Sec.
IV E).

Cf)

LL)
C3

Values of 5 obtained through Eqs. (18) and (20) are shown
in Table I.

An alternative way to calculate a, and hence 6, is from
the energy 6E rather than from the dipole moment as in
Eq. (18). Within the framework of linear response, the ex-
act value of the energy 5E is equal to the classical
Coulomb interaction energy between the polarizable
sphere and the applied electric field. ' But this classical
Coulomb interaction energy is just ——, p 8'o ————,o.8'o,
so that

a= — J6n(r, g)r cosgd r= — f f(v)r dv .
&o 3 0

(18)

0-—
0 IO

I I 1

20
r (a.u. )

It is useful to define an effective radius R,ff by
R,gf

—=a' . This choice is motivated by the fact that the
classical polarizability of a metal sphere equals R . A
small metal sphere therefore is pola;-ized as if it were a
classical conducting sphere of radius R,f~. It also follows
that the electric field outside the region where 6n is appre-
ciable is given by the electric field outside a classical metal
sphere of radius R,rr. To see this, apply Eqs. (10) and (11)
to this exterior region where f (r) is assumed to be negligi-
ble, and introduce a using Eq. (18). The potential in this
exterior region becomes

aV(r, 8)= —8'0 r — cosO,
r

where the calculated electronic response enters only in
3

cx —R effe

It is convenient to specify the location of the effective
radius relative to the jellium edge, and to introduce the pa-

3--

2

I I I I I

IO 20
r (a.u.)

FIT&. 1. Electron densities and electric field for the case r, =2
and A =7 a.u. In the upper panel the unperturbed electron den-
sity no(r) is drawn on the same scale as the jellium density,
which is the dashed step. Perturbation in the electron charge
—6n(r, O) is drawn greatly enlarged on an arbitrary scale. In the
lower panel the solid line is 8', (r, O), the radial component of the
electric field plotted along the polar axis, and the dashed line is
the corresponding electric field for a classical metal sphere.
Both curves are normalized to the applied field strength 8'0.
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IV. DISCUS SIGN

A. Induced charge and electric field

The applied electric field causes electronic charge to be
pulled out of the metal out to distances on the order of a
few a.u. from the jellium edge (see Fig. 1). The peak in
the induced charge density —5n is approximately at
r =R +A for our trial function (14). From Table I we see
that this peak is on the order of 1.6 a.u. beyond the jellium
edge for r, =2 and is on the order of 0.5 a.u. beyond the
jellium edge for r, =4. The variation of A with R is
surprisingly small for spheres containing more than 40
electrons. (Results of calculations for spheres having radii
between values of R listed in Table I can be found reliably
by interpolation, and so are not listed. )

The width of the induced charge density is governed by
the parameter B. This parameter shows only slight varia-
tion with R. From the values of 3 and B in Table I, we
can infer that as the particle size increases there is a ten-
dency for the charge to be pulled out slightly further,
while the width of the charge distribution is nearly un-
chaaged.

Most remarkable is the very small variation of the pa-
rameter 6 with radius. There is only a few percent varia-
tion in 6 between the smallest and largest spheres. This
variation is smaller than the variation in the parameter A.
[The quantities 5 and A are determined by different mo-
ments off(r).]

As discussed earlier, the electric field in the exterior re-
gion where 5n is negligible is equal to the electric field
oUtside a classical conducting sphere of radius
R,fr=R +5. For our trial function (14) the exterior re-
gion roughly begins at r =R +3 +8 ', or about R +3.5
a.u. for r, =2 and R +2.0 a.u. for r, =4. For r greater
than these values, the electrostatic potential is well ap-
plox1mated by Eq. (19) with cx = (R +5)

In Fig. 1 we plotted the radial electric field component
5'„(r,O) for the case r, =2 and R =7 a.u. Also shown is
the corresponding classical field, which equals
[1+2(RIr) ]8'0 for r )R and zero for r & R. The electric
field is smaller than the classica] value just outside the jel-
lium surface, but is larger than the classical value in the
exterior region where 6n is negligible. The larger field in
the exterior region arises bemuse 6 is positive.

The electric field inside the sphere is noteworthy. Fig-
ure 1 shows a large region of a small negative value of
8'„(r,O) for r &R. This implies that 5n is slightly over-
screening the external field, giving rise to a total electric
field in the interior which is opposite to the external field.
This overscreening effect is correlat=d with the parameter
K [see Eq. (17)], and as one can see from Table I, is largest
for the smallest spheres, and larger for r, =4 than for
r, =2. That is, the field in the interior becomes more clas-
sical for larger spheres and higher electron density. The
fact that there is a reversed electric field within the sphere
is discussed further in Sec. IV D.

B. Electronic polarizability

Our calculations yield electronic polarizabilities which
are greater than the classical values. This follows from

For our calculated values of 5, Eq. (22) is a reasonable ap-
proximation for the case r, =2 when R ) 14 a.u. and for
the case r, =4 when R )7 a.u.

C. Connection with image plane

On physical grounds it is clear that as E.~ oo, the elec-
trostatic potential and charge density near r =R and 0=0
must approach the corresponding quantities for the prob-
lem of an electric field applied perpendicular to the plane
surface of a semi-infinite metal. This follows from con-
sidering a section of a very large sphere in the region near
the surface where 0=0. As R~oo, this part of the
sphere locally resembles a plane surface which is subjected
to an applied field perpendicular to the surface.

When a field is applied perpendicular to a plane surface,
the electron response can be characterized by an image
plane. ' ' Lang and Kohn showed that the image plane
is located at the centroid of the induced electron density.
If the position of the image plane relative to the jellium
background is 6, the Lang-Kohn result is

f 5n~ (z)z dz
6p —— (23)

5n~ (z)dz

where z =0 is the jellium edge and 5n& is the induced elec-
tron density for the problem of a plane surface.

We now consider the case of a very large sphere and
show that 6~6& as R —~op. We perform a change of
variable r =R +g in the integrand of Eq. (18), and assume
the large-R expansion (R +g) -=R +3(R . This gives

f f(j)(R +3' )dg, (24)

where f(g)=f(R +/) is the function f after a shift of
origin to the surface of the sphere. The assumption that
g' «R is justified because f (r) is appreciable only in a fin-
ite range around R.

As R ~ oo, Eq. (24) yields the form (22), with a value of
5 given by

f „f44dk

f f(k)dk

In obtaining (25) we used the result that

f f(g)dg ~ —3/4' as R ~~, which follows from
Eqs. (15) and (17) and the fact that as R —+ oo, the electric

Fq. (2O) and the fact, that our 5 values are positive.
Hence, our results conflict with previous calcula-
tions, ' ' ' where it was concluded that a is smaller than
the classical value R . As remarked earlier, the problem
with these previous calculations is that they were not self-
consistent. Either an infinite barrier was assumed at some
stage in the calculation or electronic response functions
were approximated to be nearly bulk metalliclike in the re-
gion r ~R while the region r )R was treated as vacu-
um. ' ' The net effect is to prevent the electrons from be-
ing pulled out of the jellium background. As a result, 6
turned out to be negative and a was smaller than R .

When R &~5, Eq. (20) gives

a=R (1+35/R) .
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a-=R (1+35~/R) . (26)

A similar result can be obtained in the large -E. limit from
an expression given by Ljungbert and Apell. To apply
their expression, one must assume that the metal sphere is
described by a dielectric constant e, where

~

e
~

&&I for
the static case.

D. Sum rule

The electrostatic field within the jellium sphere must
satisfy a certain sum rule or electrostatic balance theorem.
The sum rule states that the sum of all the electrostatic
forces on the positive background of an isolated neutral
object in a uniform external field vanishes. This sum rule
has been derived for isolated molecules ', it is also true for
current-carrying conductors. Although these derivations
make use of the exact quantum-mechanical equations of
motion of the electrons, we have also shown that the sum
rule holds if the electron system is characterized by an ap-
proximate energy functional. The mathematical state-
ment of the sum rule is

field vanishes at the center of the sphere. (The bulk-limit
result of perfect shielding is approached. )

Now in the R~oo limit the functions f and 5n~ be-
come identical (apart from differences in normalization).
That is, the induced electron distribution in the vicinity of
the radius of the sphere (with 8=0) goes over to the in-
duced electron distribution in the vicinity of a plane sur-
face. We conclude that the right-hand sides of Eqs. (23)
and (25) are equal, and so 5~5~ as R ~ oo.

Our calculations show that 6 varies little between E. =7
a.u. and 40 a.u. It is reasonable to assume that the 6
value for R =40 a.u. is close to the 6 value for R ~~. It
then follows from our calculations that 5~ =2.0 a.u. for
r, =2 and 5z -0.9 a.u. for r, =4. The corresponding re-
sults of Lang and Kohn's wave-mechanical calculation
are 1.6 a.u. for r, =2 and 1.3 a.u. for r, =4.

Presumably the wave-mechanical form of the density-
functional formalism is superior to the density-gradient
form. However, the density-gradient form probably indi-
cates the correct variation of 5, if not the correct value.
Since it indicates that 5 is nearly independent of R we
might reverse the previous arguments (to incorporate the
wave-mechanical value of 5~ ) and obtain

where we have made use of our convention that
V(r =0)=0. We emphasize that the potential V is due
only to the external field and induced charges; it does not
include the contributions from n+ and no. Alternatively,
we can express the condition (28) in terms of the radial
component of field for 8=0, as follows:

R

, r, 0 dr=0. (29)

As far as we are aware, none of the previously reported
calculations within the jellium model satisfy conditions
(28) or (29). The failure to satisfy the sum rule is particu-
larly obvious in the semiclassical or Thomas-Fermi —type
calculations that confine the electrons to r &R. In those
calculations 8' is parallel to 8'o everywhere along the po-
lar axis. The sum rule requires that along 0=0 within the
jellium, the electric field is parallel to 8'o in some regions
and antiparallel to 8'o in others. The average field along
8=0 vanishes according to Eq. (29). In our calculations
we do find a region within the sphere where the field is

parallel to 8'o and another region where it is antiparallel
to 8'o. This can be seen in Fig. 1. Note, however, that
for our calculations the antiparallel component dominates
in this r, =2, R =7 a.u. case. We find that the radius ro
for which V(ro, 8)=0 is within a fraction of an a.u. from
R, and that the agreement with the sum rule is better for
r, =4 than for r, =2. Table II gives values of ro for vari-
ous cases.

E. Reliability of variational calculations

Our numerical results are approximate for two reasons.
First, our chosen trial functions may not be accurate rep-
resentations of the true electron distribution that mini-
mizes the energy functional. Second, the energy function-
al that we use is only an approximation to the exact, but
unknown, energy functional. We discuss these two points
in the remainder of this section.

Accuracy of trial functions

One indication that our trial function (14) for f (r) is a
good one is the excellent agreement of the values of 5 cal-
culated by means of Eq. (20) and each of the two equa-
tions, (18) and (21). If 5,„„s„is the value of 5 obtained
from the energy 5E by means of Eqs. (20) and (21), then

J n~(r) 8'(r)d r=0 . (27) 5,„„ss——R —( —25E/8'o) ' (30)

The sum rule (27) holds whether or not the positive back-
ground density is assumed to be rigid. In our calculations
we assumed a rigid uniform background. When we calcu-
late 5' from the potential using Eqs. (11) and (12), we find
that the sum rule (27) leads to the interesting result

5r„~d
——R — 5n (r, 8)r cosg d r1 3

' 1/3

(31)

If 5r„id is the value of 5 obtained from the induced dipole
field using Eqs. (18) and (20), then

V(R, O) =0, (28) For our three-parameter trial function we found that

TABLE II. Calcolated values of the radius rp for which V(rp, O) =0.
2

4.48

2
7
7.56

2
40
40.45

4
7
7.12

40
40.00
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5eriergy and 6fie&d agree tO fOur-figure aCCuraCy, SO that Only
one value 5 is reported in Table I.

In general, 5,„gy and 6f,,&d may differ significantly. To
investigate this and to test the importance of the over-
screening effect (K&1) we performed a two-parameter
variational calculation. We used the same form of the tri-
al function f(r) as before but we fixed E =1. Results for
the very small spheres are given in Table III. (For larger
spheres, the optimal K approaches unity, and the results
are in better agreement with the three-parameter calcula-
tion. ) We note that the 5 values shown in Table III are
only approximately equal. This is an indication that the
three-parameter trial function with variable K is a good
one, and the two-parameter trial function with K =1 is
considerably less accurate. In other words, the overscreen-
ing effect needs to be included for small spheres.

Note that for the two-parameter trial function 5,„„gy is
closer than 6f;,&d to the value of 5 for the three-parameter
trial function. This is to be expected because 5E satisfies
a minimum principle and hence 6E and 6,„gy are relative-
ly insensitive to changes in the trial function when one is
near the minimum. Furthermore, because the true value
of 6E is less than or equal to the value of 6E calculated by
using a trial function, we deduce that 5,„„gy calculated
from a trial function satisfies the extremum principle

5true + 5energy ~ (32)

where 5„„,is the value of 6 for the true charge density.
Thus, as we improve the trial function, 6ezergy should in-
crease. Comparison of the results in Tables I and III
shows that this is the case. Because of the extremum
principle (32), 5,„„s„is a more reliable estimate of 5„„,
than is 5f„~d. The relatively small change in 6,„gy as we
go from a two-parameter to a three-parameter variational
calculation also indicates that we are probably near the
minimum 5E and therefore the values of 5 in Table I are
close to 6„„,.

The fact that the sum rule (27) is not accurately obeyed
for some cases indicates that some details of our 5n(r, o)
are in error. Note, however, that the field in the exterior
region depends only on 5 by Eqs. (19) and (20). We con-
clude that our results for the exterior field should be ap-
proximately correct.

There may also be some error in the calculation of
5n(r, 0) that is introduced by relying on the trial function
(13) for no(r). Although we experimented with a limited
number of other trial functions for no(r), we did not find
them to be significantly better.

2. Accuracy of energy functionaI

It has been suggested that the energy functional which
we are considering is not accurate in treating the kinetic
energy term Ek;„. The choice a2 ———,', in the gradient ex-
pansion (2) for Ek;„may be an underestimate. To in-
vestigate the sensitivity of our calculations to a2, we chose
az ———,', as a reasonable upper limit to this coefficient.
We then repeated the calculations. The results are shown
in Table IV. The values of 5 for r, =2 are lowered by
about 15%%uo and the values of 5 for r, =4 are raised by
about 10%. The near constancy of 6 as a function of R is
still observed. The 5 values for the large spheres are
closer to the values of 5z calculated by Lang and Kohn
for the plane surface. In general, the sum-rule condition
(29) is also better obeyed.

The use of a gradient expansion for Ek;„excludes ef-
fects due to discrete quantum levels and Friedel oscilla-
tions. A treatment of such effects requires an RPA calcu-
lation or a density-functional calculation in wave-
mechanical form. It is reasonable to expect that the weak
R dependence of 6 which we have found will also be
found, at least in some average sense, in the wave-
mechanical calculations.

V. CGNCLUSION

Our variational calculation has proven to be conceptual-
ly simple and numerically tractable. The calculations that
we have described can be readily performed on a micro-
computer.

We find that the applied field pulls out electronic
charge from the jellium region by a significant amount.
The effective radius of the polarization charge lies a dis-
tance 6 beyond the jellium radius R, where 6 is nearly in-
dependent of particle size for R in the range between 7
a.u. and 40 a.u. From the results in Tables I and IV we
estimate 5=1.7—2.0 a.u. for r, =2 and 6=0.9—1.1 a.u.
for r, =4.

The electronic polarizability is given by a=(R+5),
and it is larger than the classical value R since 5 is posi-
tive. In the limit of large spheres, 5 approaches the
image-plane distance 5» for a flat surface. This fact and
the near constancy of 6 with R suggests the approxima-
tion a=-(R+5») for R &~5».

The effective-radius shift 6 can be directly related to the
energy as in Eq. (30), and as a result satisfies an extremum
principle given by expression (32).

The electric field outside the region of induced charge is

TABLE III. Results of two-parameter variational calculation (K = 1).

r,
R
A
B

~field

~energy

2

1.510
0.673
1.82
1.91

2
7
1.688
0.655
1.90
2.01

4
7
0.416
0.683
0.65
0.88
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TABLF IV. Results of variational calculation when a2 ——
36 in the kinetic-energy functional.

b

B
K
6
ro

2
7

—0.235
0.767
1.285
0.586
1.067
1.752
7.11

2
40

—0.040
0.783
1.458
0.588
1.011
1.664

40.05

4
7

—0.500
0.665
0.229
0.523
1.226
1.159
7.10

40
—0.359

0.693
0.608
0.542
1.026
1.027

39.92

equal to the field outside a classical conducting sphere of
radius R,ff ——R+6. This equivalence allows one to use
classical expressions, for example, in approximating the
field experienced by an adsorbed molecule on a small met-
al sphere that is exposed to infrared radiation. '

A general sum rule was developed for the jellium model
of a sphere. Equation (28) holds for an exact calculation
based on any assumed form for the energy functional.

None of the previous calculations satisfies this sum rule;
our calculations satisfy this sum rule approximately in the
majority of cases as can be seen from Tables II and IV.
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